JPH08109375A - Production of phosphor - Google Patents

Production of phosphor

Info

Publication number
JPH08109375A
JPH08109375A JP27022294A JP27022294A JPH08109375A JP H08109375 A JPH08109375 A JP H08109375A JP 27022294 A JP27022294 A JP 27022294A JP 27022294 A JP27022294 A JP 27022294A JP H08109375 A JPH08109375 A JP H08109375A
Authority
JP
Japan
Prior art keywords
phosphor
plasma
temperature
producing
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27022294A
Other languages
Japanese (ja)
Other versions
JP3585967B2 (en
Inventor
Masaaki Tamaya
正昭 玉谷
Keiko Arubesaaru
恵子 アルベサール
Naohisa Matsuda
直寿 松田
Yoshikazu Okumura
美和 奥村
Shinjiro Motoki
信二郎 元木
Kazuhiro Kawasaki
一博 川嵜
Seiji Yokota
誠二 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Neturen Co Ltd
Toshiba Corp
Original Assignee
Neturen Co Ltd
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neturen Co Ltd, Toshiba Corp filed Critical Neturen Co Ltd
Priority to JP27022294A priority Critical patent/JP3585967B2/en
Publication of JPH08109375A publication Critical patent/JPH08109375A/en
Application granted granted Critical
Publication of JP3585967B2 publication Critical patent/JP3585967B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To provide a method for producing a spherical phosphor capable of forming a dense and homogeneous fluorescent face. CONSTITUTION: In this method for producing a phosphor expressed by the composition formula Ln2 O3 :R or Ln2 O2 S:R (Ln is at least one kind of element selected from a group consisting of La, Gd, Lu and Y; R is at least one element selected from the lanthanoid group), MWO4 (M is at least one kind of metal among Ca and Mg) or CaWO4 :Pb, a raw material phosphor is treated in a high- temperature plasma controlling atmosphere and high frequency energy to prescribed values using argon, helium, krypton, neon, xenon, oxygen, nitrogen, hydrogen or a mixed gas of these two or more kinds of gases so that average temperature of plasma is >=1600 deg.C and <=6500 deg.C to provide sphere having 0.5-20μm average particle diameter and 1.0-1.5 ratio of long diameter to short diameter in each particle.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は蛍光体の製造方法に関す
る。
FIELD OF THE INVENTION The present invention relates to a method for producing a phosphor.

【0002】[0002]

【従来の技術】陰極線管や蛍光ランプに用いられる蛍光
体は、電子線や紫外線によって励起したときの発光効率
の観点から数μmの粒径が必要とされている。この程度
の粒径を有する結晶粒を得るために、蛍光体は通常、フ
ラックスを用いた固相反応によって合成される。しか
し、フラックスを用いて合成された形状は完全な球形で
はなく、原料粒子の形状や結晶構造を反映して多面体に
近い形となる。
2. Description of the Related Art Phosphors used in cathode ray tubes and fluorescent lamps are required to have a particle size of several μm from the viewpoint of luminous efficiency when excited by electron beams or ultraviolet rays. In order to obtain crystal grains having such a grain size, the phosphor is usually synthesized by a solid-phase reaction using a flux. However, the shape synthesized by using the flux is not a perfect spherical shape, but is a shape close to a polyhedron reflecting the shape and crystal structure of the raw material particles.

【0003】こうした蛍光体を用いて例えば陰極線管の
蛍光面を形成した場合、電子線励起によって生じる発光
が蛍光面からの光出力としては必ずしも十分に利用され
ないという欠点がある。すなわち、蛍光体粒子の形状が
多面体に近いと、緻密な蛍光膜が得られず空隙が生じる
うえ、光反射膜としてのアルミバックの平滑度も劣り凹
凸が生じる。このため、発光した光の乱反射が大きくな
り、これが光の損失の原因となる。同様に前記のような
蛍光体を蛍光ランプに用いた場合にも、緻密な蛍光膜が
得られないため、紫外線励起による発光が十分有効に利
用されない。
When such a phosphor is used to form a phosphor screen of a cathode ray tube, for example, there is a disadvantage that the light emission generated by electron beam excitation is not always sufficiently utilized as the light output from the phosphor screen. That is, when the shape of the phosphor particles is close to a polyhedron, a dense phosphor film cannot be obtained and voids are formed, and the smoothness of the aluminum back as a light reflecting film is poor and unevenness occurs. Therefore, diffuse reflection of the emitted light becomes large, which causes a loss of light. Similarly, when the above fluorescent material is used in a fluorescent lamp, a dense fluorescent film cannot be obtained, so that the light emission due to the ultraviolet excitation is not effectively utilized sufficiently.

【0004】例えば、カラー陰極線管は次のような方法
により製造される。ガラス内面に蛍光体および感光性樹
脂からなる懸濁液(スラリー)を全面塗布して蛍光膜を
形成し、紫外線を照射して所望の領域だけを重合させ
る。この後、紫外線が照射されなかった領域の蛍光膜を
洗い流す。このとき、蛍光膜の光散乱が大きいと紫外線
が蛍光膜の内部にまで侵入しないので内部が重合しにく
い。このため、蛍光膜の輝度が最大になる十分厚い膜が
形成されにくい。また、光散乱が大きいと、所望の領域
以外の領域まで感光して重合するため、設計通りの蛍光
膜パターンを得ることが困難になる。
For example, a color cathode ray tube is manufactured by the following method. A suspension (slurry) composed of a phosphor and a photosensitive resin is applied to the entire inner surface of the glass to form a fluorescent film, and ultraviolet rays are irradiated to polymerize only a desired region. After this, the fluorescent film in the region not irradiated with ultraviolet rays is washed away. At this time, if the light scattering of the fluorescent film is large, ultraviolet rays do not penetrate into the inside of the fluorescent film, so that the inside is less likely to polymerize. Therefore, it is difficult to form a sufficiently thick film that maximizes the brightness of the fluorescent film. Further, when the light scattering is large, it is difficult to obtain the designed fluorescent film pattern because the area other than the desired area is exposed and polymerized.

【0005】一方、これらの蛍光体を焼結体にして、透
光性蛍光体薄片として用いることもある。この場合、室
温で成形した後、高圧下で1200〜1500℃に加熱
する方法が知られている。このとき成形体の充填密度が
低いと焼結時に変形しやすく、焼結体内部の発光特性に
むらが生じやすい。
On the other hand, these phosphors may be sintered to be used as translucent phosphor flakes. In this case, a method is known in which after molding at room temperature, heating at 1200 to 1500 ° C. under high pressure is performed. At this time, if the packing density of the molded body is low, the molded body is likely to be deformed during sintering, and unevenness is likely to occur in the light emitting characteristics inside the sintered body.

【0006】さらに、例えばMWO4 (ただし、MはC
aおよびMgのうち少なくとも1種)またはCaW
4 :Pbのいずれの蛍光体も、400〜500nmに
ピーク波長を持つ発光スペクトルを有し、短波長の発光
であるために視感度的に不利であるという問題があっ
た。また、CaWO4 :Pbの励起スペクトルのピーク
は254nmよりもかなり長波長側にずれており、25
4nmの紫外線で励起する場合には励起効率が低下する
という問題があった。
Further, for example, MWO 4 (where M is C
at least one of a and Mg) or CaW
Each of the O 4 : Pb phosphors has an emission spectrum having a peak wavelength in the range of 400 to 500 nm, and has a problem that it is disadvantageous in terms of visibility because it emits light of a short wavelength. Further, the peak of the excitation spectrum of CaWO 4 : Pb is considerably shifted to the long wavelength side of 254 nm.
There is a problem that the excitation efficiency is lowered when excited by 4 nm ultraviolet light.

【0007】光の散乱は蛍光膜に含まれる粒子の全表面
積が大きいほど大きいから粒子の形状が球状であること
が望ましい。また、最密充填を得るためにも分散性の良
好な球状粒子が望ましい。そこで、球形にできるだけ近
い形状を有する蛍光体粒子を得る試みとして、B.C.
Grabmaier et al.;Phys.Sta
t.Sol.(a)130,K183(1992)に示
されるようなエマルジョンを用いる方法が知られてい
る。しかし、この方法で得られる蛍光体は微粒子の集ま
りであって不透明であり、また結晶性が不良なため再焼
成が必要となる。この結果得られる蛍光体粒子の形状は
必ずしも完全な球形ではなく、また粒径も小さいため陰
極線管に用いる蛍光体としては好ましくない。この方法
で得られる蛍光体を焼結体原料とするときには、粒子自
身の内部に空隙があるため、成形体の充填密度が低く、
焼結に伴う変形が大きい。
The larger the total surface area of the particles contained in the fluorescent film, the larger the light scattering. Therefore, it is desirable that the particles have a spherical shape. Further, spherical particles having good dispersibility are also desirable in order to obtain the closest packing. Therefore, as an attempt to obtain phosphor particles having a shape as close to a spherical shape as described in B. C.
Grabmaier et al. Phys. Sta
t. Sol. (A) A method using an emulsion as shown in 130, K183 (1992) is known. However, the phosphor obtained by this method is an aggregate of fine particles, is opaque, and has poor crystallinity, so that re-firing is required. The shape of the phosphor particles obtained as a result is not necessarily perfectly spherical, and the particle size is also small, which is not preferable as a phosphor used in a cathode ray tube. When the phosphor obtained by this method is used as the raw material for the sintered body, since the particles themselves have voids, the packing density of the molded body is low,
Large deformation due to sintering.

【0008】球状蛍光体を得る他の試みとして特開昭6
2−201989号公報には、高温プラズマ中におい
て、造粒した蛍光体原料を加熱する方法が開示され、希
土類オキシ硫化物もこの蛍光体のなかに含まれている。
しかし、この方法で得られる蛍光体には、全体が強く着
色するため著しく発光効率が低いこと、また発光色と発
光効率の点で実用蛍光体として望ましい付活剤濃度が得
られないことなどの欠点があった。また、通常好ましい
粒径0.5〜20μmの蛍光体の場合、大部分が蒸発し
て超微粒子が生成してしまい、溶融して生成する球状粒
子の量の割合が少なくなることが多く、かつこの割合を
制御するのが困難であった。
As another attempt to obtain a spherical phosphor, Japanese Patent Laid-Open No. Sho 6-96
Japanese Unexamined Patent Publication No. 2-201989 discloses a method of heating a granulated phosphor raw material in high temperature plasma, and a rare earth oxysulfide is also contained in this phosphor.
However, the phosphor obtained by this method has a markedly low luminous efficiency because the whole is strongly colored, and the activator concentration desired as a practical phosphor cannot be obtained in terms of the emission color and the luminous efficiency. There was a flaw. In addition, in the case of a phosphor having a generally preferable particle size of 0.5 to 20 μm, most of the phosphor is evaporated to form ultrafine particles, and the ratio of the amount of spherical particles formed by melting is often small, and It was difficult to control this ratio.

【0009】さらに、上記のような用途に適用される個
々の蛍光体の問題点について述べる。R.C.Rop
p:J.Electrochem.Soc.,112
巻、181頁(1965年)に示されるように、Gd2
3 :Euは単斜晶の結晶系に属する。ところが、R.
S.Roth et al.:J.Res.Natio
nal Bureau of Standards,6
4A巻、309頁(1960年)に示されるように、G
2 3 は室温では立方晶が安定であり、高温安定相で
ある単斜晶を得るには1200℃以上の高温にした後、
急冷することが必要であり、通常のるつぼ中の蛍光体焼
成法では製造が困難である。一方、Araiet a
l.:J.Alloys and Compound
s,192巻、45頁(1993年)に示されるよう
に、プラセオジムを付活した単斜晶Gd23 は、立方
晶Gd2 3 では得られない緑色の発光バンドを有する
ため短残光緑色発光が必要な用途に使用できる可能性が
あるが、上記と同様に高温安定相である単斜晶を得るた
めの製造上の問題点を解決することが要求される。
Further, the problems of the individual phosphors applied to the above applications will be described. R. C. Rop
p: J. Electrochem. Soc. , 112
Gd 2 as shown in Volume 181 (1965).
O 3 : Eu belongs to the monoclinic crystal system. However, R.
S. Roth et al. : J. Res. Natio
nal Bureau of Standards, 6
4A, p. 309 (1960), G
The cubic crystal of d 2 O 3 is stable at room temperature, and in order to obtain a monoclinic crystal which is a stable phase at high temperature, after it is heated to 1200 ° C. or higher,
It needs to be rapidly cooled, which is difficult to manufacture by the usual phosphor firing method in a crucible. On the other hand, Araiet a
l. : J. Alloys and Compound
S., 192, p. 45 (1993), praseodymium-activated monoclinic Gd 2 O 3 has a short emission due to a green emission band that cannot be obtained with cubic Gd 2 O 3. Although there is a possibility that it can be used for applications requiring light green emission, it is required to solve the manufacturing problems for obtaining a monoclinic crystal that is a stable phase at high temperature as described above.

【0010】[0010]

【発明が解決しようとする課題】本発明は上記問題点を
解決するためになされたものであり、粒径が小さく真球
に近い形状を有する蛍光体を製造できる方法を提供し、
緻密で均質な蛍光面を形成して輝度の高い陰極線管や蛍
光ランプを得ることを目的とする。
The present invention has been made to solve the above problems, and provides a method for producing a phosphor having a small particle size and a shape close to a true sphere.
The purpose is to obtain a cathode ray tube or a fluorescent lamp with high brightness by forming a dense and uniform fluorescent screen.

【0011】[0011]

【課題を解決するための手段と作用】本発明の蛍光体の
製造方法は、Ln2 3 :RもしくはLn2 2 S:R
(ただし、LnはLa,Gd,LuおよびYからなる群
より選択される少なくとも1種の元素、Rはランタニド
族より選択される少なくとも1種の元素)、MWO
4(ただし、MはCaおよびMgのうち少なくとも1
種)またはCaWO4 :Pbの組成式で表される蛍光体
を製造するに際し、プラズマの平均温度が1600℃以
上6500℃以下となるようにアルゴン、ヘリウム、ク
リプトン、ネオン、キセノン、酸素、窒素、水素または
これらの2種以上の混合ガスを用いて、雰囲気および高
周波エネルギーを所定の如く制御した高温プラズマ中で
処理し、平均粒径が0.5〜20μm、個々の粒子の長
径と短径との比が1.0〜1.5の範囲の球状にするこ
とを特徴とするものである。
[Means and Actions for Solving the Problems] The method for producing a phosphor of the present invention comprises: Ln 2 O 3 : R or Ln 2 O 2 S: R
(Where Ln is at least one element selected from the group consisting of La, Gd, Lu and Y, and R is at least one element selected from the lanthanide group), MWO
4 (However, M is at least 1 of Ca and Mg
Seed) or CaWO 4 : Pb compositional formula, in order to produce a plasma having an average temperature of 1600 ° C. or higher and 6500 ° C. or lower, argon, helium, krypton, neon, xenon, oxygen, nitrogen, Hydrogen or a mixed gas of two or more of these is used to treat in an atmosphere and high-temperature plasma in which high-frequency energy is controlled in a predetermined manner, and the average particle diameter is 0.5 to 20 μm. The ratio is made spherical in the range of 1.0 to 1.5.

【0012】また、本発明の蛍光体の製造方法は、Ln
2 3 :RもしくはLn2 2 S:R(ただし、Lnは
La,Gd,LuおよびYからなる群より選択される少
なくとも1種の元素、Rはランタニド族より選択される
少なくとも1種の元素)、MWO4 (ただし、MはCa
およびMgのうち少なくとも1種)またはCaWO4
Pbの組成式で表される蛍光体を製造するに際し、高周
波電源出力が5〜100kW、プラズマガス流量が20
〜150l/分、キャリアガス流量が5〜50l/分、
プラズマ発生部外囲円筒の内径が30〜100mmの条
件で発生させた高温プラズマ中で処理し、平均粒径が
0.5〜20μm、個々の粒子の長径と短径との比が
1.0〜1.5の範囲の球状にすることを特徴とするも
のである。
Further, the method for producing a phosphor of the present invention is based on Ln
2 O 3 : R or Ln 2 O 2 S: R (where Ln is at least one element selected from the group consisting of La, Gd, Lu and Y, and R is at least one element selected from the lanthanide group) Element), MWO 4 (where M is Ca
And at least one of Mg) or CaWO 4 :
When manufacturing the phosphor represented by the composition formula of Pb, the high frequency power output is 5 to 100 kW, and the plasma gas flow rate is 20.
~ 150 l / min, carrier gas flow rate 5-50 l / min,
It is treated in high-temperature plasma generated under the condition that the inner diameter of the plasma generator surrounding cylinder is 30 to 100 mm, the average particle diameter is 0.5 to 20 μm, and the ratio of the major axis to the minor axis of each particle is 1.0. It is characterized in that it has a spherical shape in the range of up to 1.5.

【0013】なお、Rはランタニド族元素を表すが、こ
のなかでも特に蛍光体として有用な元素はCe,Pr,
Nd,Sm,Eu,Tb,Dy,Ho,Er,Tm,Y
bである。本発明の方法で製造された蛍光体は、粒径
0.2μm以下の超微粒子を0.001〜5重量%含ん
でいることが好ましい。
Although R represents a lanthanide group element, among them, particularly useful elements as a phosphor are Ce, Pr,
Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, Y
b. The phosphor produced by the method of the present invention preferably contains 0.001 to 5% by weight of ultrafine particles having a particle diameter of 0.2 μm or less.

【0014】以下、本発明をさらに詳細に説明する。The present invention will be described in more detail below.

【0015】本発明の蛍光体の製造方法は、原料蛍光体
粒子をキャリアガスとともに熱プラズマフレームの適当
な位置に投入し、一部の原料蛍光体粒子あるいは原料蛍
光体粒子の表面の一部を蒸発させて短時間のうちに熱プ
ラズマ外部に取り出して急冷し超微粒子となり、他の大
部分の粒子あるいは表面が蒸発した残りの粒子部分を溶
解させて表面張力による液状球となしこれを急冷して球
状粒子を得るという原理に基づく。この際、冷却ガスを
流さなくとも急冷されるが、プラズマの尾炎部に冷却ガ
スを流すことによりさらに急冷することもできる。図1
に製造装置の概念図を示す。ここで、10はプラズマガ
ス、11は電磁フィーダを改良した粉体供給器、12は
キャリアガス供給ボンベ、13は粉体供給口(ノズル構
造は略す)、14は高周波発振器、15はコイル、16
はプラズマフレーム、17は反応容器、18はサイクロ
ン、19はプラズマ発生部外囲円筒、20は冷却ガス源
を示す。
In the method for producing a phosphor of the present invention, the raw material phosphor particles are introduced into a thermal plasma flame at an appropriate position together with a carrier gas, and a part of the raw material phosphor particles or a part of the surface of the raw material phosphor particles is introduced. It is evaporated and taken out of the thermal plasma in a short time and rapidly cooled to become ultrafine particles, and most of the other particles or the remaining particles after evaporation of the surface are dissolved to form liquid spheres due to surface tension, which are then rapidly cooled. Based on the principle of obtaining spherical particles. At this time, it is rapidly cooled without flowing the cooling gas, but it can be further cooled by flowing the cooling gas to the tail flame portion of the plasma. FIG.
Figure 2 shows the concept of the manufacturing equipment. Here, 10 is a plasma gas, 11 is a powder feeder with an improved electromagnetic feeder, 12 is a carrier gas supply cylinder, 13 is a powder supply port (nozzle structure is omitted), 14 is a high frequency oscillator, 15 is a coil, 16
Is a plasma flame, 17 is a reaction vessel, 18 is a cyclone, 19 is a cylinder surrounding the plasma generating part, and 20 is a cooling gas source.

【0016】従来プラズマ分野においては入力を大きく
する工夫が多くなされ、例えば特開昭63−85007
号に示されているように、プラズマの高温部に原料粉末
を投入し、蒸発させて超微粒子を製造する熱源として用
いられることが多かった。この場合、図2の21で示す
渦流高温部の温度T4 は1万℃にも達する。しかし、逆
にプラズマを低温度にする工夫は、原料投入時にフレー
ムが消滅しやすく、かりにプラズマを維持しても不安定
になるなどの問題があり、あまりなされていなかった。
本発明は高周波入力とガス流量と種類を最適に選ぶこと
により従来よりも低温度で安定なプラズマを発生させる
ことができたことに基づく。
In the conventional plasma field, many efforts have been made to increase the input, for example, Japanese Patent Laid-Open No. 63-85007.
As shown in the publication, it was often used as a heat source for producing ultrafine particles by pouring a raw material powder into a high temperature part of plasma and evaporating it. In this case, the temperature T 4 of the high temperature eddy current portion indicated by 21 in FIG. 2 reaches 10,000 ° C. However, conversely, the idea of lowering the temperature of the plasma has not been made because there is a problem that the flame tends to disappear when the raw material is charged, and even if the plasma is maintained, it becomes unstable.
The present invention is based on the fact that stable plasma can be generated at a lower temperature than before by selecting the high-frequency input, gas flow rate, and type optimally.

【0017】本発明では超微粒子と球状粒子の割合を制
御するために、ガス流量と種類を適当に選び主に高周波
入力を変え、蛍光体の材料特性に合わせて粉体供給位置
の温度を制御する。球状蛍光体を作製するには従来のよ
うな高温プラズマは不適であった。この理由を以下に示
す。一つの原料粒子をある温度のプラズマ中に導入する
と粒子内の温度分布はプラズマ温度より低いが、端部が
高く中心部が低い。中心部が融点以上の温度になると全
体が溶融し端部が蒸発する傾向にある。球状蛍光体を得
るには蛍光体の融点以上の温度が必要である。一方、主
に球状粒子からなり0.001〜5重量%の超微粒子を
含むためには沸点より大きくはずれた高い温度は不適で
ある。粒径0.5〜20程度の大きさの本発明の蛍光体
を得るには、蛍光体は1万℃のような高温でなく160
0〜2500℃の融点以上6500℃程度までの温度の
プラズマに供給されることが望ましい。
In the present invention, in order to control the ratio of ultrafine particles to spherical particles, the gas flow rate and type are appropriately selected, the high frequency input is mainly changed, and the temperature of the powder supply position is controlled according to the material characteristics of the phosphor. To do. Conventional high temperature plasma was not suitable for producing spherical phosphors. The reason for this is shown below. When one raw material particle is introduced into plasma at a certain temperature, the temperature distribution in the particle is lower than the plasma temperature, but the edge is high and the center is low. When the temperature of the central portion is equal to or higher than the melting point, the whole tends to melt and the edges tend to evaporate. In order to obtain a spherical phosphor, a temperature higher than the melting point of the phosphor is required. On the other hand, a high temperature deviating from the boiling point is unsuitable in order to consist mainly of spherical particles and to contain 0.001 to 5% by weight of ultrafine particles. In order to obtain the phosphor of the present invention having a particle size of about 0.5 to 20, the phosphor is not at a high temperature such as 10,000 ° C. but 160
It is desirable to supply the plasma having a melting point of 0 to 2500 ° C. or more and a temperature of about 6500 ° C.

【0018】プラズマフレームは図2に示すような温度
分布を持つ。原料粉末の供給位置を図2の22のような
低温部分に持ってくることもできるが、本発明者らはこ
の方法では超微粒子と球状粒子の量の割合を制御するの
が困難であり、電源からの入力、ガスの流量およびガス
の種類を制御して渦流部と粉体供給口の平均温度を低く
し、かつこの位置での温度勾配を緩やかにした場合に好
都合な結果が得られることを見出した。すなわち、図3
の模式図に示すように、図2の2つの渦流中心の中央位
置からプラズマ軸流方向に対して温度をプロットする
と、渦流域の温度が高いT42の場合と低いT41の場合で
最低温度T1 の得られる位置aは大きく変わらない。す
なわち最低温度を低くすればプラズマ内の温度勾配を緩
やかにできた。この図でT2 は投入された粉体が短時間
の滞留時間に溶融するプラズマ温度を示し、T3 は粉体
が蒸発する温度を示す。粉体供給口から投入された粉体
はΔxの位置幅を持ってプラズマ内に侵入する。このと
きT2 とT3 の中間の平均温度が同一であるとすると温
度勾配の緩やかな場合には全体の粒子を溶融できる温度
以上にできかつ適当な割合の粒子を蒸発させることがで
きる。一方温度勾配が急な場合、蒸発する温度以上の温
度と溶融する温度以下の温度にさらされる粒子が共存す
る傾向にある。このとき溶融する温度以上になるような
位置に粉体供給口をもってきても蒸発する温度以上の温
度になる粒子量の割合が多くなり、蛍光体として好まし
い範囲以上の超微粒子が生成されてしまう。図3から容
易に推測されるように、温度勾配の緩やかな場合にはた
とえ粉体供給口から投入される粉体の位置分布幅が小さ
くなっても球状粒子と超微粒子の割合の制御は温度勾配
の緩やかな方が容易であり、これが粉体処理量の向上に
結びつく。
The plasma flame has a temperature distribution as shown in FIG. Although it is possible to bring the feed position of the raw material powder to a low temperature portion such as 22 in FIG. 2, the present inventors find it difficult to control the ratio of the amounts of ultrafine particles and spherical particles by this method, It is possible to obtain favorable results by controlling the input from the power supply, the flow rate of gas and the type of gas to lower the average temperature of the swirl part and the powder supply port, and to make the temperature gradient at this position gentle. Found. That is, FIG.
As shown in the schematic diagram of Fig. 2, when the temperature is plotted from the central position of the two vortex flow centers in Fig. 2 in the plasma axial flow direction, the lowest temperature is obtained in the case where the temperature in the vortex region is high T 42 and the temperature is low T 41. The obtained position a of T 1 does not change much. That is, by lowering the minimum temperature, the temperature gradient in the plasma could be made gentle. In this figure, T 2 represents the plasma temperature at which the charged powder melts during a short residence time, and T 3 represents the temperature at which the powder evaporates. The powder introduced from the powder supply port enters the plasma with a positional width of Δx. At this time, if the average temperature between T 2 and T 3 is the same, when the temperature gradient is gentle, it is possible to raise the temperature above the temperature at which all the particles can be melted and to evaporate an appropriate ratio of particles. On the other hand, when the temperature gradient is steep, particles exposed to temperatures above the evaporating temperature and below the melting temperature tend to coexist. At this time, even if the powder supply port is brought to a position such that the temperature is higher than the melting temperature, the ratio of the amount of particles that are higher than the temperature for evaporation is increased, and ultrafine particles exceeding the preferred range for the phosphor are generated. . As can be easily inferred from FIG. 3, when the temperature gradient is gentle, the ratio of the spherical particles to the ultrafine particles is controlled by the temperature even if the position distribution width of the powder fed from the powder supply port becomes small. A gentler gradient is easier, which leads to an improvement in powder throughput.

【0019】このプロセスを蛍光体材料に当てはめる
と、Ln2 3 :Rの組成式で表される場合には原料粉
体が投入される部分の平均プラズマ温度は2500〜6
500℃が望ましい。2500℃以下では原料が完全に
は溶融せず球状化が不十分である。また6500℃以上
では蒸発量が多く超微粒子が多くなってしまう。同様に
してLn2 2 S:Rでは2000〜6000℃、Mg
WO4 、CaWO4 およびCaWO4 :Pbでは160
0〜5500℃が球状化条件に適している。
When this process is applied to a phosphor material, in the case of being represented by the composition formula of Ln 2 O 3 : R, the average plasma temperature of the portion into which the raw material powder is put is 2500 to 6
500 ° C is desirable. At 2500 ° C. or lower, the raw material is not completely melted and spheroidization is insufficient. At 6500 ° C or higher, the amount of evaporation is large and the amount of ultrafine particles is large. Similarly, for Ln 2 O 2 S: R, 2000 to 6000 ° C., Mg
160 for WO 4 , CaWO 4 and CaWO 4 : Pb
0 to 5500 ° C is suitable for spheroidizing conditions.

【0020】上記好ましい温度勾配は図1の19のプラ
ズマ発生部外囲円筒の径が30〜100mmのとき、1
〜28MHzの高周波電源への入力が10〜200k
W、高周波電源からの出力が5〜100kW、ガスの種
類によっても変わるがプラズマガス流量が20〜150
l/分、キャリアガス流量が5〜50l/分のときに得
られた。上記外囲円筒の径の下限の30mmのときに
は、電源入力10〜30kW、電源出力約5〜15k
W、プラズマガス流量20〜100l/分、キャリアガ
ス流量5〜40l/分、高周波周波数2〜28MHzが
好ましい。また、上記外囲円筒の径の上限の100mm
のときには、電源入力80〜200kW、電源出力40
〜100kW、プラズマガス流量100〜150l/
分、キャリアガス流量10〜50l/分、高周波周波数
1〜5MHzが好ましい。なお、上記の条件のうち、プ
ラズマ発生部外囲円筒の径の限定理由に関しては、30
mm未満の場合には工業的な処理量が得られず、100
mmを超える装置では大きな電力が必要となり現実的で
はない。これらの条件のとき、フレームが消滅しないで
安定したプラズマを維持でき、球状粒子および適当な割
合の超微粒子が得られる。
The above-mentioned preferable temperature gradient is 1 when the diameter of the plasma generating portion surrounding cylinder 19 in FIG. 1 is 30 to 100 mm.
Input to high frequency power supply of ~ 28MHz is 10 ~ 200k
W, the output from the high frequency power source is 5 to 100 kW, and the plasma gas flow rate is 20 to 150 depending on the type of gas.
1 / min and the carrier gas flow rate was 5 to 50 l / min. When the lower limit of the diameter of the surrounding cylinder is 30 mm, the power input is 10 to 30 kW and the power output is about 5 to 15 k.
W, a plasma gas flow rate of 20 to 100 l / min, a carrier gas flow rate of 5 to 40 l / min, and a high frequency of 2 to 28 MHz are preferable. Also, the upper limit of the diameter of the outer cylinder is 100 mm.
In case of, power input 80 ~ 200kW, power output 40
~ 100 kW, plasma gas flow rate 100-150 l /
Min, carrier gas flow rate of 10 to 50 l / min, and high frequency of 1 to 5 MHz are preferable. Among the above conditions, the reason for limiting the diameter of the plasma generating portion surrounding cylinder is 30
If it is less than mm, an industrial throughput cannot be obtained and 100
A device larger than mm requires a large amount of power and is not realistic. Under these conditions, a stable plasma can be maintained without the flame disappearing, and spherical particles and an appropriate proportion of ultrafine particles can be obtained.

【0021】プラズマの雰囲気は好ましいプラズマ温度
を得るためと原料蛍光体の変質を避ける方向で選ばれ
る。例えば、Ln2 3 :RでR=Euの場合、プラズ
マの発生のしやすさと母体の変質を避けるために酸素を
含んだ雰囲気が望ましい。一方R=PrあるいはTbの
場合、酸素の含有は極力避ける。Ln2 2 S系蛍光体
の場合、母体の変質を避けるために酸素の含有は極力避
ける必要がある。また熱プラズマによるこの系の蛍光体
に特有な着色は原料に硫黄を混合すると軽減される。
The plasma atmosphere is selected in order to obtain a preferable plasma temperature and to avoid deterioration of the raw material phosphor. For example, when Ln 2 O 3 : R and R = Eu, an atmosphere containing oxygen is desirable in order to easily generate plasma and avoid alteration of the matrix. On the other hand, when R = Pr or Tb, the oxygen content is avoided as much as possible. In the case of the Ln 2 O 2 S-based phosphor, it is necessary to avoid oxygen content as much as possible in order to avoid alteration of the matrix. Further, the coloration peculiar to the phosphor of this system due to the thermal plasma is reduced by mixing sulfur into the raw material.

【0022】原料粉体の熱プラズマへの投入量は適当な
粉体供給装置と粉体の流動性の組み合わせにより原料粒
径が0.5〜20μmの場合に一台で50g/分程度に
供給可能であり、上記の温度で十分処理できた。
The amount of the raw material powder to be introduced into the thermal plasma is about 50 g / min per unit when the raw material particle size is 0.5 to 20 μm by a combination of an appropriate powder supply device and the fluidity of the powder. It was possible and could be processed sufficiently at the above temperature.

【0023】原料蛍光体としては、Ln2 3 :Rもし
くはLn2 2 S:R(ただし、LnはLa,Gd,L
uおよびYからなる群より選択される少なくとも1種の
元素、Rはランタニド族より選択される少なくとも1種
の元素)、MWO4 (ただし、MはCaおよびMgのう
ち少なくとも1種)またはCaWO4 :Pbの組成式で
表されるものが用いられる。
As the raw material phosphor, Ln 2 O 3 : R or Ln 2 O 2 S: R (where Ln is La, Gd, L
at least one element selected from the group consisting of u and Y, R is at least one element selected from the lanthanide group), MWO 4 (where M is at least one of Ca and Mg) or CaWO 4 A compound represented by the composition formula of Pb is used.

【0024】本発明においては、特開昭62−2019
89号公報の製造方法とは異なり、得られる蛍光体の付
活剤濃度とは異なる付活剤濃度を持ち、かつ造粒しない
蛍光体を原料として用いる。このような原料蛍光体はフ
ラックスを用いて製造される。原料蛍光体の粒子表面を
酸処理するかまたは微量の有機物界面活性剤を付与し
て、その分散性と流動性を改善することにより、原料蛍
光体と得られる球状蛍光体との平均粒径の差を50%以
内に収めることができる。原料として用いられる蛍光体
の一次粒子の粒径は約2μm以上であることが好まし
い。これは、一次粒子の粒径が小さい場合には、たとえ
一次粒子が凝集した二次粒子の径が2μm以上であった
としても、全体が溶融して蒸発してしまい、これを急冷
して得られる粒子は0.2μm以下になることが多いた
めである。原料として用いた蛍光体の分散性が良好な場
合には、得られる蛍光体の粒径は原料蛍光体の粒径とほ
ぼ同じになる。したがって、得られる蛍光体の粒径は、
原料蛍光体の粒径および凝集度合によって制御すること
ができる。また、真球に近い形状を有する蛍光体を得る
には、原料となる粒子全体が蒸発することなく、かつ粒
子の表面が完全に溶融するような条件を設定する。この
ような条件は、プラズマのパワーとプラズマ中に供給す
る原料蛍光体の量を調整することにより達成できる。こ
の条件で原料粒子を溶融させ、表面張力によって球形の
形状を保った状態で急冷凝固させることにより、本発明
に係る蛍光体粒子を得ることができる。
In the present invention, JP-A-62-2019
Unlike the production method of Japanese Patent Publication No. 89, a phosphor having an activator concentration different from the activator concentration of the obtained phosphor and not granulated is used as a raw material. Such a raw material phosphor is manufactured using a flux. By acid-treating the particle surface of the raw phosphor or imparting a trace amount of an organic surfactant to improve the dispersibility and fluidity of the raw phosphor, the average particle diameter of the raw phosphor and the resulting spherical phosphor can be improved. The difference can be kept within 50%. The particle size of primary particles of the phosphor used as a raw material is preferably about 2 μm or more. This is because when the particle size of the primary particles is small, even if the diameter of the secondary particles obtained by aggregating the primary particles is 2 μm or more, the whole is melted and evaporated, and it is obtained by quenching it. This is because the resulting particles are often 0.2 μm or less. When the dispersibility of the phosphor used as the raw material is good, the particle size of the obtained phosphor is almost the same as the particle size of the raw phosphor. Therefore, the particle size of the obtained phosphor is
It can be controlled by the particle size and the degree of aggregation of the raw phosphor. Moreover, in order to obtain a phosphor having a shape close to a true sphere, conditions are set such that the entire raw material particles are not evaporated and the surface of the particles is completely melted. Such conditions can be achieved by adjusting the power of the plasma and the amount of the raw material phosphor supplied into the plasma. The phosphor particles according to the present invention can be obtained by melting the raw material particles under these conditions and rapidly solidifying the raw material particles while maintaining the spherical shape by the surface tension.

【0025】本発明の方法により製造される蛍光体粒子
の平均粒径を0.5〜20μmと規定したのは、平均粒
径が0.5μmよりも小さい場合または20μmよりも
大きい場合には、蛍光面の輝度が低くなってしまうため
である。
The average particle size of the phosphor particles produced by the method of the present invention is defined as 0.5 to 20 μm, when the average particle size is smaller than 0.5 μm or larger than 20 μm. This is because the brightness of the phosphor screen becomes low.

【0026】また、粒径0.2μm以下の超微粒子を
0.001〜5重量%含むことが好ましいとしたのは以
下のような理由による。すなわち、5重量%を超えて超
微粒子が含まれていると、光散乱が増加するために、こ
の蛍光体から作製した蛍光膜の光透過率が低下し、実用
性に乏しくなる。一方、上記範囲内の超微粒子を含んで
いると、蛍光体の流動性と分散性が向上する。このた
め、液中での蛍光体の沈降や蛍光体スラリーの塗布によ
って蛍光膜を形成したとき、この蛍光膜は最密充填に近
くなる。したがって、蛍光膜内の乱反射が少なくなって
膜の透過率が向上し、蛍光面からの光出力として利用さ
れる発光の割合が大きくなり、蛍光面の輝度が向上す
る。一方、カラー陰極線管などの熱処理時に、超微粒子
が球状粒子間のバインダーの役目を果たし、蛍光膜の付
着力が強化される。なお、製造直後の蛍光体が0.2μ
m以下の超微粒子を多く含んでいる場合には、超音波洗
浄を行い、上澄み液を捨てることによって、0.2μm
以下の超微粒子の含有量が上記範囲となるように調整す
る。
The reason why 0.001 to 5% by weight of ultrafine particles having a particle diameter of 0.2 μm or less is preferably contained is as follows. That is, when the content of the ultrafine particles exceeds 5% by weight, the light scattering increases, so that the light transmittance of the phosphor film made from this phosphor decreases and the practicality becomes poor. On the other hand, the inclusion of ultrafine particles within the above range improves the fluidity and dispersibility of the phosphor. For this reason, when the fluorescent film is formed by the sedimentation of the fluorescent material in the liquid or the application of the fluorescent material slurry, the fluorescent film becomes close to the closest packing. Therefore, diffused reflection in the fluorescent film is reduced, the transmittance of the film is improved, the ratio of light emission used as light output from the fluorescent screen is increased, and the brightness of the fluorescent screen is improved. On the other hand, during heat treatment of a color cathode ray tube or the like, the ultrafine particles act as a binder between spherical particles, and the adhesive force of the fluorescent film is strengthened. It should be noted that the phosphor just after the production is 0.2μ
If a large amount of ultrafine particles of m or less is included, ultrasonic cleaning is performed and the supernatant liquid is discarded to obtain 0.2 μm.
The following ultrafine particle contents are adjusted to fall within the above range.

【0027】本発明の方法により製造される蛍光体は、
個々の蛍光体粒子の長径と短径との比(アスペクト
比)、すなわち個々の蛍光体粒子において径が最大の部
分と最小の部分との比が1.0〜1.5の範囲にあり、
エッジなどの突起がなく球形に近い形状をもつものであ
る。蛍光体粒子の長径と短径との比は、1.0〜1.2
であることがより好ましい。このようにほぼ球形に近い
粒子形状を有する蛍光体を用いて液中での沈降またはス
ラリーの塗布によって蛍光膜を形成すると、最密充填に
近い蛍光膜が得られる。また、球状の蛍光体粒子を用い
て形成された蛍光膜では粒子の全表面積が小さいので、
同じ塗布量でも従来の蛍光体を用いた場合よりも光散乱
が少なくなり、光透過量が大きくなる。したがって、例
えばカラー陰極線管の蛍光面を光印刷法により形成した
場合には、蛍光面の光透過率が大きいことから蛍光膜の
深い部分まで感光するので、従来の蛍光体を用いた場合
よりも、膜厚を厚くすることができ、膜厚の制御も容易
になる。しかも、光透過率が大きくかつ緻密な膜である
ことから、光散乱に起因する端部の凹凸やむらのない良
質な蛍光膜パターンが得られる。さらに、カラー陰極線
管でも単色陰極線管でも、蛍光膜が最密充填に近いため
に、蛍光面の上に形成される光反射金属膜の平滑性が良
好になる。このため、蛍光面で発光した光のうち電子線
励起側に進行した部分の光を効率よく反射でき、輝度を
向上させることができる。これに加えて、蛍光膜の光透
過率が大きいため、蛍光面で発光した光のうち電子線励
起側とは反対の方向(人間が観測する側)に進行する光
の割合が大きくなり、輝度向上に寄与する。
The phosphor produced by the method of the present invention is
The ratio of the major axis and the minor axis of each phosphor particle (aspect ratio), that is, the ratio of the maximum diameter part and the minimum diameter part of each phosphor particle is in the range of 1.0 to 1.5,
It has a shape close to a sphere, with no protrusions such as edges. The ratio of the major axis and the minor axis of the phosphor particles is 1.0 to 1.2.
Is more preferable. When the fluorescent film having a particle shape that is almost spherical is formed and the fluorescent film is formed by sedimentation in a liquid or application of slurry, a fluorescent film close to the closest packing can be obtained. Also, since the total surface area of the particles is small in the fluorescent film formed using spherical phosphor particles,
Even with the same coating amount, light scattering is reduced and the light transmission amount is increased as compared with the case of using a conventional phosphor. Therefore, for example, when the fluorescent surface of a color cathode ray tube is formed by an optical printing method, since the light transmittance of the fluorescent surface is large, it is exposed to a deep portion of the fluorescent film. The film thickness can be increased, and the film thickness can be easily controlled. Moreover, since the film has a high light transmittance and is dense, a good quality fluorescent film pattern without unevenness or unevenness at the end portion due to light scattering can be obtained. Further, in both the color cathode ray tube and the single color cathode ray tube, since the phosphor film is close to the closest packing, the smoothness of the light reflecting metal film formed on the phosphor screen becomes good. Therefore, of the light emitted from the phosphor screen, the light of the portion that has proceeded to the electron beam excitation side can be efficiently reflected, and the brightness can be improved. In addition to this, since the light transmittance of the fluorescent film is high, the proportion of the light emitted from the fluorescent surface that travels in the direction opposite to the electron beam excitation side (the side observed by humans) increases, and Contribute to improvement.

【0028】本発明においては、目的とする蛍光体に応
じて製造条件を適宜変更し、好適な粒径および微粒子の
含有量を調整することが好ましい。例えば、Ln
2 3 :Rの組成式で表される蛍光体を製造する際に
は、プラズマの平均温度が2500℃以上6500℃以
下となるようにアルゴン、ヘリウム、クリプトン、ネオ
ン、キセノン、酸素、窒素、水素またはこれらの2種以
上の混合ガスを用いて、雰囲気および高周波エネルギー
を所定の如く制御した高温プラズマ中で処理し、平均粒
径が0.5〜15μmの球状とし、粒径0.2μm以下
の超微粒子を0.001〜1重量%含むように調整する
ことが好ましい。
In the present invention, it is preferable to appropriately change the production conditions according to the intended phosphor to adjust the suitable particle size and the content of fine particles. For example, Ln
When producing the phosphor represented by the composition formula of 2 O 3 : R, argon, helium, krypton, neon, xenon, oxygen, nitrogen, and nitrogen are added so that the average temperature of the plasma is 2500 ° C. or higher and 6500 ° C. or lower. Hydrogen or a mixed gas of two or more of these is used to treat in an atmosphere and high-temperature plasma in which high-frequency energy is controlled in a predetermined manner to form spherical particles having an average particle size of 0.5 to 15 μm and a particle size of 0.2 μm or less. It is preferable to adjust the content of the ultrafine particles of 0.001 to 1% by weight.

【0029】また、Ln2 2 S:Rの組成式で表され
る希土類オキシ硫化物蛍光体を製造する際には、プラズ
マの平均温度が2000℃以上5500℃以下となるよ
うにアルゴン、ヘリウム、クリプトン、ネオン、キセノ
ン、酸素、窒素、水素またはこれらの2種以上の混合ガ
スを用いて、雰囲気および高周波エネルギーを所定の如
く制御した高温プラズマ中で処理し、平均粒径が0.5
〜15μmの球状とし、粒径0.2μm以下の超微粒子
を0.001〜0.5重量%含むように調整することが
好ましい。
When the rare earth oxysulfide phosphor represented by the composition formula of Ln 2 O 2 S: R is produced, argon and helium are used so that the average temperature of the plasma is 2000 ° C. or higher and 5500 ° C. or lower. , Krypton, neon, xenon, oxygen, nitrogen, hydrogen, or a mixed gas of two or more of these, in a high-temperature plasma in which the atmosphere and high-frequency energy are controlled as desired, and the average particle size is 0.5.
It is preferable that the particles have a spherical shape of ˜15 μm and that the ultrafine particles having a particle size of 0.2 μm or less are contained in an amount of 0.001 to 0.5 wt%.

【0030】また、MWO4 またはCaWO4 :Pbの
組成式で表される蛍光体を製造する際には、プラズマの
平均温度が1600℃以上5500℃以下となるように
アルゴン、ヘリウム、クリプトン、ネオン、キセノン、
酸素、窒素、水素またはこれらの2種以上の混合ガスを
用いて、雰囲気および高周波エネルギーを所定の如く制
御した高温プラズマ中で処理し、平均粒径が0.5〜2
0μmの球状とし、粒径0.2μm以下の超微粒子を
0.001〜5重量%含むように調整することが好まし
い。
When producing a phosphor represented by the composition formula of MWO 4 or CaWO 4 : Pb, argon, helium, krypton and neon are used so that the average temperature of plasma is 1600 ° C. or higher and 5500 ° C. or lower. ,xenon,
Oxygen, nitrogen, hydrogen, or a mixed gas of two or more of these is used to perform treatment in high-temperature plasma in which the atmosphere and high-frequency energy are controlled as desired, and the average particle size is 0.5 to 2
It is preferable that the particles have a spherical shape of 0 μm and that ultrafine particles having a particle diameter of 0.2 μm or less are contained in an amount of 0.001 to 5% by weight.

【0031】上記のような超微粒子を含む蛍光体は、高
周波電源出力が5〜100kW、プラズマガス流量が2
0〜150l/分、キャリアガス流量が5〜50l/
分、プラズマ発生部外囲円筒の内径が30〜100mm
の条件で発生させた高温プラズマ中で処理することによ
り製造することができる。
The phosphor containing the ultrafine particles as described above has a high frequency power output of 5 to 100 kW and a plasma gas flow rate of 2.
0 to 150 l / min, carrier gas flow rate 5 to 50 l / min
The inner diameter of the plasma generator surrounding cylinder is 30 to 100 mm
It can be manufactured by treating in a high temperature plasma generated under the conditions of.

【0032】本発明においては、原料蛍光体の付活剤濃
度を熱プラズマ処理後の付活剤濃度と異なるように設定
することが望ましい。また、高温プラズマ中処理した後
に600〜1300℃で再焼成することにより蛍光体の
発光効率を向上させることができる。
In the present invention, it is desirable to set the activator concentration of the raw phosphor to be different from the activator concentration after the thermal plasma treatment. Further, the luminous efficiency of the phosphor can be improved by performing re-baking at 600 to 1300 ° C. after the treatment in the high temperature plasma.

【0033】さらに、個々の蛍光体について好適な製造
条件、平均粒径、用途などをより詳細に説明する。
Further, suitable manufacturing conditions, average particle diameters, applications, etc. for each phosphor will be described in more detail.

【0034】例えば、Gd2 3 :R(ただし、Rはラ
ンタニド族より選択される少なくとも1種の元素)の組
成式で表され、少なくとも一部の結晶系が単斜晶系であ
り、平均粒径が0.5〜15μmでありかつ長径と短径
との比が1.0〜1.5である球状粒子からなり、赤色
または緑色の発光色を呈する蛍光体は、陰極線管に好適
に用いられる。陰極線管に用いられるGd2 3 :R蛍
光体の平均粒径は1〜10μmであることがより好まし
い。平均粒径に関するこのような最適な範囲は経験的に
知られている。陰極線管に用いられる単斜晶系のGd2
3 :R蛍光体はRの種類によって発光色が異なるた
め、好適な用途も異なる。すなわち、単斜晶Gd
2 3 :Euの場合、その発光色は低温安定型である立
方晶の場合よりも深みのある赤色であり、カラー陰極線
管や投射型陰極線管あるいは高演色型蛍光ランプの赤色
成分に適している。単斜晶Gd2 3 :Prの場合、そ
の発光色は低温安定型である立方晶の赤色から緑色発光
バンドを含む黄緑色に変化する。この発光は残光時間が
10μs程度と非常に短いため、短残光が必要な特殊陰
極線管に適している。単斜晶Gd2 3 :Tbは、効率
の高い緑色発光を示すため、投射型CRTの緑色成分に
適している。
For example, it is represented by the composition formula of Gd 2 O 3 : R (where R is at least one element selected from the lanthanide group), and at least a part of the crystal system is a monoclinic system, and the average is Phosphors which are spherical particles having a particle diameter of 0.5 to 15 μm and a ratio of major axis to minor axis of 1.0 to 1.5 and exhibiting red or green emission color are suitable for cathode ray tubes. Used. The average particle size of the Gd 2 O 3 : R phosphor used for the cathode ray tube is more preferably 1 to 10 μm. Such optimum range for the average particle size is empirically known. Monoclinic Gd 2 used for cathode ray tubes
Since the emission color of the O 3 : R phosphor differs depending on the type of R, its suitable application also differs. That is, monoclinic Gd
The emission color of 2 O 3 : Eu is deeper than that of cubic crystal, which is stable at low temperature, and is suitable for the red component of color cathode ray tubes, projection type cathode ray tubes or high color rendering fluorescent lamps. There is. In the case of monoclinic Gd 2 O 3 : Pr, its emission color changes from cubic red which is a low temperature stable type to yellow-green including a green emission band. Since the afterglow time of this light emission is as short as about 10 μs, it is suitable for a special cathode ray tube requiring a short afterglow. Monoclinic Gd 2 O 3 : Tb emits green light with high efficiency and is suitable for a green component of a projection type CRT.

【0035】Ln2 2 S:Rの組成式で表される希土
類オキシ硫化物蛍光体では、蛍光体原料をそのまま熱プ
ラズマ処理して得られる球状蛍光体は強く着色する。例
えば、Gd2 2 S蛍光体の場合、強い肌色の体色を呈
し可視光反射率は30%程度となる。また、Y2 2
蛍光体の場合、強い灰紫色の体色を呈し可視光反射率は
10%以下となる。このため、発光が蛍光体自身に吸収
されて発光効率が著しく低下する。この体色はオキシ硫
化物固有の現象によるものと考えられ、粒子表面だけで
はなく内部にまで及ぶ着色である。この体色は得られた
球状蛍光体をさらに硫黄雰囲気中において800〜12
00℃で熱処理を施すことによって消すことができる。
また、熱プラズマ処理する前の原料に硫黄を加えること
によって体色の強さの程度を低減することができる。
In the rare earth oxysulfide phosphor represented by the composition formula of Ln 2 O 2 S: R, the spherical phosphor obtained by directly subjecting the phosphor raw material to thermal plasma treatment is strongly colored. For example, in the case of a Gd 2 O 2 S phosphor, a strong flesh color is exhibited and the visible light reflectance is about 30%. In addition, Y 2 O 2 S
In the case of a phosphor, a strong gray-purple body color is exhibited and the visible light reflectance is 10% or less. Therefore, the light emission is absorbed by the phosphor itself, and the light emission efficiency is significantly reduced. This body color is considered to be due to a phenomenon unique to oxysulfide, and is coloring not only on the surface of particles but also inside. This body color is obtained by subjecting the obtained spherical phosphor to 800 to 12 in a sulfur atmosphere.
It can be erased by heat treatment at 00 ° C.
Further, the degree of body color intensity can be reduced by adding sulfur to the raw material before the thermal plasma treatment.

【0036】Ln2 3 :Rで表される蛍光体の場合、
熱プラズマ処理によって結晶系が変化し、これにともな
って発光色が変化する場合がある。例えば、Ln=Y、
R=Euでは通常立方晶が安定であるが、熱プラズマ処
理すると単斜晶系の粒子を一部含むことがある。この粒
子の発光スペクトルは波長623nmを中心とし、発光
色は深い赤色を呈し、発光効率が低下する。これを10
00℃で再焼成すると全体が低温安定相の立方晶に変化
し、発光スペクトルは623nmのピークを含まず61
1nmを中心とした赤色に変化し、発光効率が向上す
る。Ln=Gdの場合、熱プラズマ処理した蛍光体はほ
ぼ完全に単斜晶の粒子の集合体となる。この場合、目的
によってはこのままの状態で使用できる。一方で、目的
によっては、これをさらに800〜1200℃の温度で
焼成することにより球状の形を保ったままで立方晶の蛍
光体を得ることができる。
In the case of a phosphor represented by Ln 2 O 3 : R,
The crystal system may change due to the thermal plasma treatment, and the emission color may change accordingly. For example, Ln = Y,
When R = Eu, the cubic crystal is usually stable, but when the thermal plasma treatment is performed, some monoclinic particles may be contained. The emission spectrum of this particle is centered around a wavelength of 623 nm, the emission color is deep red, and the emission efficiency is reduced. This is 10
When it is re-baked at 00 ° C, the whole is transformed into a low temperature stable phase cubic crystal, and the emission spectrum does not include a peak at 623 nm.
The color changes to red around 1 nm, and the luminous efficiency improves. When Ln = Gd, the phosphor subjected to the thermal plasma treatment is almost completely an aggregate of monoclinic particles. In this case, it can be used as it is depending on the purpose. On the other hand, depending on the purpose, it is possible to obtain a cubic phosphor while maintaining the spherical shape by further firing it at a temperature of 800 to 1200 ° C.

【0037】また、熱プラズマ処理して得られる球状の
希土類オキシ硫化物蛍光体の付活剤濃度は原料蛍光体と
は異なる。例えば、Y2 2 S:EuにおけるEu/Y
の原子比は、原料で4.0%であっても、熱プラズマ処
理した球状蛍光体では1.8%と1/2以下に低下す
る。一方、超微粒子の部分ではEu/Yは約40%にも
達する。この結果、球状蛍光体の発光色は赤色からずれ
て実用蛍光体としては好ましくない橙色を呈する。ま
た、Ln=YまたはGdでTb付活の蛍光体の場合、T
b濃度が減少すると発光スペクトル中で544nmの発
光線に代表される緑色成分に対して415nmの発光線
に代表される青色成分が強くなる。緑色発光蛍光体を得
るためには、Tb/Lnの原子比を2〜6%とする必要
があるが、この範囲の付活剤濃度の原料蛍光体を用いる
と熱プラズマ処理によってTb/Ln原子比が低下する
ために所望の発光色からずれてしまう。同様の現象の他
の例について説明すると、例えばランプ用赤色蛍光体の
2 3 :Euを原料とした場合、Eu/Y原子比は原
料で4.4%であったも、熱プラズマ処理した球状蛍光
体では3.5%程度に低下する。一方、超微粒子の部分
ではEu/Y比は約20%に達する。この結果、球状蛍
光体の発光色は望みの赤色からずれて橙色にシフトした
色を呈し、また発光効率が20%程度低下する。付活剤
濃度の変化の程度は熱プラズマ処理条件、例えば原料蛍
光体の供給量などによって異なるが、付活剤濃度の変化
を全くなくすことはできない。したがって、所望の発光
色が得られる球状蛍光体中の付活剤濃度を得るために
は、原料蛍光体の付活剤濃度を調整する。
The activator concentration of the spherical rare earth oxysulfide phosphor obtained by the thermal plasma treatment is different from that of the starting phosphor. For example, Eu / Y in Y 2 O 2 S: Eu
Even if the atomic ratio is 4.0% in the raw material, it is 1.8% in the spherical phosphor subjected to the thermal plasma treatment, which is lower than 1/2. On the other hand, Eu / Y reaches about 40% in the ultrafine particles. As a result, the luminescent color of the spherical phosphor deviates from red and exhibits an orange color which is not preferable for a practical phosphor. If Ln = Y or Gd and the phosphor is Tb-activated, T
When the b concentration decreases, the blue component represented by the 415 nm emission line becomes stronger in the emission spectrum than the green component represented by the 544 nm emission line. In order to obtain a green-emitting phosphor, the atomic ratio of Tb / Ln needs to be 2 to 6%. However, when a raw material phosphor having an activator concentration in this range is used, Tb / Ln atoms are processed by thermal plasma treatment. Since the ratio is lowered, the desired emission color is deviated. Another example of the similar phenomenon will be described. For example, when Y 2 O 3 : Eu of the red phosphor for lamp is used as a raw material, the Eu / Y atomic ratio was 4.4% in the raw material, but the thermal plasma treatment In the case of the spherical phosphor, the amount is reduced to about 3.5%. On the other hand, the Eu / Y ratio reaches about 20% in the ultrafine particles. As a result, the emission color of the spherical phosphor is shifted from the desired red color to an orange color, and the emission efficiency is reduced by about 20%. Although the degree of change in the activator concentration depends on the thermal plasma processing conditions, for example, the amount of the raw material phosphor supplied, the change in the activator concentration cannot be eliminated at all. Therefore, in order to obtain the activator concentration in the spherical phosphor that can obtain a desired emission color, the activator concentration of the raw material phosphor is adjusted.

【0038】MWO4 またはCaWO4 :Pbの組成式
を有する球状蛍光体に関しては、発光スペクトルが長波
長側にずれることから、視感度的に明るくなる。一方、
励起スペクトルは254nmからのずれが小さくなるた
め、254nmの紫外線で励起したときに従来より励起
光率が向上し蛍光膜の輝度向上につながる。
With respect to the spherical phosphor having the composition formula of MWO 4 or CaWO 4 : Pb, the emission spectrum is shifted to the long wavelength side, so that the luminous efficiency becomes bright. on the other hand,
Since the deviation of the excitation spectrum from 254 nm is small, when excited by ultraviolet rays of 254 nm, the excitation light efficiency is improved and the brightness of the fluorescent film is improved.

【0039】[0039]

【実施例】以下、本発明の実施例を説明する。Embodiments of the present invention will be described below.

【0040】(実施例1)原料としてY2 3 :Eu蛍
光体を用いた。この原料蛍光体の平均粒径をブレーン法
により測定したところ4.5μmであった。この原料蛍
光体を高周波熱プラズマ中に供給して溶融し急冷するこ
とによって本発明に係る蛍光体を得た。プラズマ発生部
外囲円筒の径は40mm、プラズマガスはアルゴン52
l/min、酸素27l/min、キャリアガスはアル
ゴン10l/min、冷却ガスはアルゴン30l/mi
n、電源出力はプレート電圧EP =10.0kV、Iプ
レート電流P =1.9Aであり、プラズマの平均温度は
3800℃であった。また原料供給速度は20g/mi
nであった。得られた蛍光体の平均粒径をブレーン法に
より測定したところ4.8μmであった。得られた蛍光
体の電子顕微鏡写真を図4に示す。この電子顕微鏡写真
から求めた個々の蛍光体粒子の長径と短径との比は1.
00〜1.10の範囲にあった。また、この蛍光体のX
線回折パターンはY2 3 のものと同一であり、その組
成もY2 3 :Euであることが確かめられた。この蛍
光体を加速電圧10kV、電流密度1μA/cm2 の電
子線で励起して粉体輝度を測定したところ、原料蛍光体
の98%の値であった。
Example 1 A Y 2 O 3 : Eu phosphor was used as a raw material. The average particle diameter of the raw material phosphor was measured by the Blaine method and found to be 4.5 μm. The phosphor according to the present invention was obtained by supplying this raw material phosphor into high-frequency thermal plasma, melting and quenching. The diameter of the plasma generator surrounding cylinder is 40 mm, and the plasma gas is argon 52
l / min, oxygen 27 l / min, carrier gas argon 10 l / min, cooling gas argon 30 l / mi
n, the power supply output was a plate voltage E P = 10.0 kV, the I plate current P was 1.9 A, and the average temperature of the plasma was 3800 ° C. The raw material supply rate is 20 g / mi
It was n. The average particle diameter of the obtained phosphor was 4.8 μm as measured by the Blaine method. An electron micrograph of the obtained phosphor is shown in FIG. The ratio of the major axis to the minor axis of each phosphor particle obtained from this electron micrograph is 1.
It was in the range of 00 to 1.10. In addition, X of this phosphor
It was confirmed that the line diffraction pattern was the same as that of Y 2 O 3 , and the composition was Y 2 O 3 : Eu. When this phosphor was excited with an electron beam having an accelerating voltage of 10 kV and a current density of 1 μA / cm 2 , the powder brightness was measured and found to be 98% of that of the raw phosphor.

【0041】次に、得られた蛍光体を用いて沈降法によ
りコーティングウェイト7mg/cm2 の蛍光面を形成
し、アルミバックを施した後、電子銃を装着し、排気・
封止して7インチ投射型陰極線管を作製した。この陰極
線管について電圧30kV、ビーム電流200μAの条
件で輝度を測定したところ790ft−Lであった。こ
の値は、原料蛍光体を用いて同様に作製した陰極線管の
輝度750ft−Lに比べて5%高い値であった。
Next, using the obtained phosphor, a phosphor screen having a coating weight of 7 mg / cm 2 was formed by a sedimentation method, an aluminum back was applied, and then an electron gun was attached and exhausted.
A 7-inch projection type cathode ray tube was manufactured by sealing. When the luminance of this cathode ray tube was measured under the conditions of a voltage of 30 kV and a beam current of 200 μA, it was 790 ft-L. This value was 5% higher than the luminance of 750 ft-L of the cathode ray tube similarly manufactured by using the raw material phosphor.

【0042】(実施例2)シュウ酸塩共沈生成物を90
0℃で分解焼成した後、フラックスとしてアルカリ土類
ハロゲン化物を用いて1100℃で焼成することによ
り、Pr濃度が0.1モル%のLa2 3 :Pr蛍光体
を得た。この原料蛍光体の平均粒径をブレーン法により
測定したところ6.8μmであった。この原料蛍光体を
高周波熱プラズマ中に供給して溶融し急冷することによ
って本発明に係る蛍光体を得た。プラズマ発生部外囲円
筒の径は40mm、プラズマガスはアルゴン60l/m
in、キャリアガスはアルゴン10l/min、冷却ガ
スはアルゴン30l/min、電源出力はEP =10.
0kV、IP =1.8Aであり、プラズマの平均温度は
3600℃であった。また原料供給速度は15g/mi
nであった。得られた蛍光体の平均粒径をブレーン法に
より測定したところ7.3μmであった。電子顕微鏡写
真から求めた個々の蛍光体粒子の長径と短径との比は
1.00〜1.15の範囲にあり、0.2μm以下の超
微粒子を0.3重量%含んでいた。この蛍光体の粉体輝
度を実施例1と同様の条件で測定したところ、原料蛍光
体の78%の値であった。このように粉体輝度がかなり
低下しているのは、Prがいくぶん酸化されたことによ
るものと考えられる。また、このときの発光色は緑色で
あり、510nm付近と670nm付近にピークを有す
るスペクトルを示した。この発光色は原料蛍光体と同一
であり組成も同一であった。
Example 2 90% of oxalate coprecipitation product was obtained.
After being decomposed and baked at 0 ° C., it was baked at 1100 ° C. using an alkaline earth halide as a flux to obtain a La 2 O 3 : Pr phosphor having a Pr concentration of 0.1 mol%. The average particle diameter of the raw material phosphor was measured by the Blaine method and found to be 6.8 μm. The phosphor according to the present invention was obtained by supplying this raw material phosphor into high-frequency thermal plasma, melting and quenching. The diameter of the plasma generator surrounding cylinder is 40 mm, and the plasma gas is 60 l / m of argon.
in, carrier gas was argon 10 l / min, cooling gas was argon 30 l / min, and power supply output was E P = 10.
0 kV, I P = 1.8 A, and the average temperature of the plasma was 3600 ° C. The raw material supply rate is 15 g / mi
It was n. The average particle size of the obtained phosphor was 7.3 μm as measured by the Blaine method. The ratio of the major axis to the minor axis of each phosphor particle obtained from the electron micrograph was in the range of 1.00 to 1.15, and contained 0.3% by weight of ultrafine particles of 0.2 μm or less. When the powder brightness of this phosphor was measured under the same conditions as in Example 1, it was 78% of that of the starting phosphor. It is considered that the reason why the powder brightness is considerably lowered is that Pr is somewhat oxidized. Further, the emission color at this time was green, and a spectrum having peaks near 510 nm and around 670 nm was shown. This emission color was the same as that of the raw material phosphor, and the composition was also the same.

【0043】次に、得られた蛍光体を用いて沈降法によ
りコーティングウェイト11mg/cm2 の蛍光面を形
成し、アルミバックを施した後、電子銃を装着し、排気
・封止して7インチ投射型陰極線管を作製した。この陰
極線管について、電圧30kV、ビーム電流200μA
の条件で輝度を測定したところ300ft−Lであっ
た。この値は、原料蛍光体を用いて同様に作製した陰極
線管の輝度250ft−Lに比べて20%高い値であっ
た。このように本実施例の蛍光体は、原料蛍光体と比較
して、粉体輝度が低いにもかかわらず、陰極線管として
の輝度は高くなっている。これは、本実施例の蛍光体の
粒子形状が真球に近い形状であることによる。
Next, using the obtained phosphor, a phosphor screen having a coating weight of 11 mg / cm 2 was formed by a sedimentation method, and after applying an aluminum back, an electron gun was attached, and exhaust and sealing were performed. An inch projection type cathode ray tube was produced. About this cathode ray tube, voltage 30 kV, beam current 200 μA
When the luminance was measured under the conditions of, it was 300 ft-L. This value was 20% higher than the luminance of 250 ft-L of the cathode ray tube similarly manufactured by using the raw material phosphor. As described above, the phosphor of the present example has a higher brightness as a cathode ray tube, although the powder brightness is lower than that of the raw material phosphor. This is because the particle shape of the phosphor of this example is close to a true sphere.

【0044】(実施例3)シュウ酸塩共沈生成物を90
0℃で分解焼成した後、フラックスを用いずに1400
℃で焼成することにより、Eu濃度が5モル%Gd2
3 :Eu蛍光体を得た。この原料蛍光体のX線回折を測
定したところ、大部分は単斜晶系のGd23 であった
が、最強ピーク比で5%の立方晶系のGd2 3 のパタ
ーンも観測された。この原料蛍光体の平均粒径をブレー
ン法により測定したところ3.5μmであったが、やや
凝集ぎみであった。この原料蛍光体を高周波熱プラズマ
中に供給して溶融し急冷することによって本発明に係る
蛍光体を得た。プラズマ発生部外囲円筒の径は40m
m、プラズマガスはアルゴン52l/min、酸素27
l/min、キャリアガスはアルゴン10l/min、
冷却ガスはアルゴン30l/min、電源出力はEP
10.0kV、IP =1.7Aであり、プラズマの平均
温度は3500℃であった。また原料供給速度は20g
/minであった。得られた蛍光体の平均粒径をブレー
ン法により測定したところ4.2μmであった。電子顕
微鏡写真から求めた個々の蛍光体粒子の長径と短径との
比は1.00〜1.18の範囲にあった。得られた蛍光
体のX線回折を測定したところ、単斜晶系のGd2 3
と一致し、立方晶系のGd2 3 のパターンは見られ
ず、ほぼ完全に単斜晶系のGd2 3 :Eu蛍光体にな
っていることが確かめられた。得られた蛍光体を波長2
54nmの紫外線で励起して粉体輝度を測定したとこ
ろ、原料蛍光体の95%の値であった。
Example 3 90% of oxalate coprecipitation product was obtained.
After decomposition and firing at 0 ° C, 1400 without using flux
The Eu concentration is 5 mol% Gd 2 O by firing at ℃
3 : Eu phosphor was obtained. The measured X-ray diffraction of the raw phosphor, mostly was the Gd 2 O 3 monoclinic, pattern of Gd 2 O 3 5% cubic strongest peak ratio is also observed It was The average particle size of the raw material phosphor was 3.5 μm as measured by the Blaine method, but it was slightly agglomerated. The phosphor according to the present invention was obtained by supplying this raw material phosphor into high-frequency thermal plasma, melting and quenching. The diameter of the plasma generator surrounding cylinder is 40m
m, plasma gas is argon 52 l / min, oxygen 27
l / min, the carrier gas is argon 10 l / min,
Cooling gas is argon 30 l / min, power output is E P =
The value was 10.0 kV, I P = 1.7 A, and the average temperature of the plasma was 3500 ° C. The raw material supply rate is 20g
It was / min. The average particle diameter of the obtained phosphor was 4.2 μm as measured by the Blaine method. The ratio of the major axis to the minor axis of each phosphor particle obtained from the electron micrograph was in the range of 1.00 to 1.18. When the X-ray diffraction of the obtained phosphor was measured, it was found to be monoclinic Gd 2 O 3
It was confirmed that the pattern of cubic Gd 2 O 3 was not seen, and that it was almost completely a monoclinic Gd 2 O 3 : Eu phosphor. The obtained phosphor has a wavelength of 2
When the powder luminance was measured by exciting with a 54 nm ultraviolet ray, the value was 95% of that of the raw material phosphor.

【0045】次に、得られた蛍光体をニトロセルロース
バインダを用いてガラス管内面に塗布することにより、
定格40Wの蛍光ランプを作製した。また、原料蛍光体
を用いて同様の蛍光ランプを作製した。定格入力下で両
者の蛍光ランプの光束を測定したところ、実施例3の蛍
光ランプは原料蛍光体の蛍光ランプに比べ3%高い値を
示した。
Next, by applying the obtained phosphor to the inner surface of the glass tube using a nitrocellulose binder,
A 40 W rated fluorescent lamp was produced. Further, a similar fluorescent lamp was manufactured using the raw material phosphor. When the luminous fluxes of both fluorescent lamps were measured under rated input, the fluorescent lamp of Example 3 showed a value 3% higher than that of the raw fluorescent material.

【0046】(実施例4)原料として立方晶の結晶系に
属するGd2 3 :Eu蛍光体を用いた。この原料蛍光
体の平均粒径をブレーン法により測定したところ3.4
μmであった。この原料蛍光体を高周波熱プラズマ中に
供給して溶融し急冷して粉体試料を得た。この蛍光体を
水中に懸濁し、超音波洗浄して静置し、上層部分を除去
し、吸引ろ過の後に100℃で乾燥して本発明に係る蛍
光体を得た。プラズマ発生部外囲円筒の径は40mm、
プラズマ発生部外囲円筒の径は40mm、プラズマガス
はアルゴン52l/min、酸素27l/min、キャ
リアガスはアルゴン10l/min、冷却ガスはアルゴ
ン30l/min、電源出力はEP =10.0kV、I
P =1.7Aであり、プラズマの平均温度は3500℃
であった。また原料供給速度は20g/minであっ
た。得られた蛍光体の平均粒径をブレーン法により測定
したところ3.6μmであった。得られた蛍光体の電子
顕微鏡写真を図5に示す。電子顕微鏡写真から求めた個
々の蛍光体粒子の長径と短径との比は1.00〜1.1
0の範囲にあった。この蛍光体は0.2μm以下の超微
粒子を0.2重量%含んでいた。この蛍光体のX線回折
パターンは原料蛍光体と全く異なり、単斜晶系であるこ
とを示していた。この蛍光体を加速電圧10kV、電流
密度1μA/cm2 の電子線または波長254nmの紫
外線で励起して発光スペクトルを測定したところ、主発
光波長は623nmであり、発光色度値はx=0.6
3、y=0.35であった。これらの値は原料蛍光体の
主発光波長611nmおよび発光色度値x=0.62、
y=0.36から変化していた。
Example 4 A Gd 2 O 3 : Eu phosphor belonging to the cubic crystal system was used as a raw material. The average particle diameter of the raw material phosphor was measured by the Blaine method to be 3.4.
μm. This raw material phosphor was supplied into high-frequency thermal plasma, melted and rapidly cooled to obtain a powder sample. This phosphor was suspended in water, ultrasonically washed and allowed to stand, the upper layer portion was removed, suction filtration was performed, and then drying was carried out at 100 ° C. to obtain the phosphor according to the present invention. The diameter of the plasma generator surrounding cylinder is 40 mm,
Plasma generating outer囲円barrel diameter 40 mm, the plasma gas is argon 52l / min, oxygen 27l / min, carrier gas argon 10l / min, the cooling gas is argon 30l / min, power supply output E P = 10.0 kV, I
P = 1.7 A, average temperature of plasma is 3500 ° C
Met. The raw material supply rate was 20 g / min. The average particle diameter of the obtained phosphor was 3.6 μm as measured by the Blaine method. An electron micrograph of the obtained phosphor is shown in FIG. The ratio of the major axis and the minor axis of each phosphor particle obtained from the electron micrograph is 1.00 to 1.1.
It was in the 0 range. This phosphor contained 0.2% by weight of ultrafine particles of 0.2 μm or less. The X-ray diffraction pattern of this phosphor was completely different from that of the starting phosphor, indicating that it was a monoclinic system. This phosphor was excited with an electron beam having an accelerating voltage of 10 kV and a current density of 1 μA / cm 2 or ultraviolet rays having a wavelength of 254 nm to measure the emission spectrum. The main emission wavelength was 623 nm, and the emission chromaticity value was x = 0. 6
3, y = 0.35. These values are the main emission wavelength of the raw material phosphor of 611 nm and the emission chromaticity value x = 0.62,
It changed from y = 0.36.

【0047】次に、得られた蛍光体を用いて沈降法によ
り塗布量7mg/cm2 の蛍光面を形成し、アルミバッ
クを施した後、電子銃を装着し、排気・封止して7イン
チ投射型陰極線管を作製した。この陰極線管について、
電圧29kV、ビーム電流1500μAの条件で輝度を
測定したところ、3500ft−Lであった。この値
は、1300℃で焼成し急冷して得た単斜晶Gd
2 3 :Eu蛍光体を用いて同様に作製した陰極線管の
輝度2700ft−Lに比べて30%高い値であった。
Next, using the obtained phosphor, a phosphor screen having a coating amount of 7 mg / cm 2 was formed by a sedimentation method, and after applying an aluminum back, an electron gun was attached, and exhaust and sealing were performed. An inch projection type cathode ray tube was produced. About this cathode ray tube,
When the luminance was measured under the conditions of a voltage of 29 kV and a beam current of 1500 μA, it was 3500 ft-L. This value is monoclinic Gd obtained by firing at 1300 ° C and quenching.
The value was 30% higher than the luminance of 2700 ft-L of the cathode ray tube similarly manufactured using the 2 O 3 : Eu phosphor.

【0048】(実施例5)原料として立方晶の結晶系に
属するY2 3 :Eu蛍光体を用いた。Eu/Y原子比
は4.4%であった。この原料蛍光体の平均粒径をブレ
ーン法により測定したところ3.2μmであった。この
原料蛍光体を高周波熱プラズマ中に供給して溶融し急冷
しサイクロンで回収することによって真球に近い粒子か
らなる蛍光体を得た。この蛍光体を水中に懸濁し、超音
波洗浄して静置し、上層部分を除去し、吸引ろ過・乾燥
した。プラズマ発生部外囲円筒の径は40mm、プラズ
マガスはアルゴン52l/min、酸素27l/mi
n、キャリアガスはアルゴン8l/min、酸素2l/
min、冷却ガスはアルゴン30l/min、電源出力
はEP =10.0kV、IP =1.9Aであり、プラズ
マの平均温度は3800℃であった。また原料供給速度
は15g/minであった。この蛍光体には立方晶の結
晶系のほかに、わずかに単斜晶の結晶系の粒子が含まれ
ていた。また、粒径0.2μm以下の超微粒子が0.1
重量%含まれていた。この蛍光体を空気中、1100℃
で2時間焼成して得られた蛍光体は立方晶の結晶系の粒
子のみからなっていた。この蛍光体の平均粒径をブレー
ン法により測定したところ3.8μmであった。電子顕
微鏡写真から求めた個々の蛍光体粒子の長径と短径との
比は1.00〜1.10の範囲にあった。超微粒子はい
くぶん溶融・結晶成長して粒子表面に付着したが、その
量は約0.1%であった。Eu/Y原子比は3.5%で
あった。
Example 5 As a raw material, a Y 2 O 3 : Eu phosphor belonging to a cubic crystal system was used. The Eu / Y atomic ratio was 4.4%. The average particle diameter of the raw material phosphor was measured by the Blaine method and found to be 3.2 μm. This raw material phosphor was supplied into a high-frequency thermal plasma, melted, rapidly cooled, and collected by a cyclone to obtain a phosphor composed of particles close to a true sphere. This phosphor was suspended in water, ultrasonically washed and allowed to stand, the upper layer portion was removed, suction filtration and drying were performed. The diameter of the plasma generator surrounding cylinder is 40 mm, the plasma gas is 52 l / min of argon, and 27 l / mi of oxygen.
n, carrier gas is argon 8 l / min, oxygen 2 l / min
min, the cooling gas was argon 30 l / min, the power supply output was E P = 10.0 kV, I P = 1.9 A, and the average temperature of the plasma was 3800 ° C. The raw material supply rate was 15 g / min. This phosphor contained particles of a slightly monoclinic crystal system in addition to the cubic crystal system. In addition, ultrafine particles having a particle size of 0.2 μm or less are 0.1
It was contained by weight%. This phosphor in air at 1100 ° C
The phosphor obtained by firing for 2 hours consisted only of particles of cubic crystal system. The average particle size of this phosphor was 3.8 μm as measured by the Blaine method. The ratio of the major axis to the minor axis of each phosphor particle obtained from the electron micrograph was in the range of 1.00 to 1.10. The ultrafine particles were fused and crystallized to some extent and adhered to the surface of the particles, but the amount was about 0.1%. The Eu / Y atomic ratio was 3.5%.

【0049】この蛍光体を加速電圧10kV、電流密度
1μA/cm2 の電子線または波長254nmの紫外線
で励起して発光スペクトルを測定したところ、主発光波
長は611nmであり、原料蛍光体と同一であった。た
だし、その発光効率は原料蛍光体に比べ電子線励起で1
10%、紫外線励起で80%であった。
This phosphor was excited with an electron beam having an accelerating voltage of 10 kV and a current density of 1 μA / cm 2 or an ultraviolet ray having a wavelength of 254 nm to measure the emission spectrum. The main emission wavelength was 611 nm, which was the same as the starting phosphor. there were. However, its luminous efficiency is 1 when excited by an electron beam as compared to the starting phosphor.
It was 10% and 80% when excited by ultraviolet rays.

【0050】次に、得られた蛍光体を用いて沈降法によ
り塗布量7mg/cm2 の蛍光面を形成し、アルミバッ
クを施した後、電子銃を装着し、排気・封止して7イン
チ投射型陰極線管を作製した。この陰極線管について、
電圧29kV、ビーム電流1500μAの条件で輝度を
測定したところ、5300ft−Lであった。この値
は、熱プラズマ処理する前の原料蛍光体を用いて同様に
作製した陰極線管の輝度4700ft−Lに比べて13
%高い値であった。
Next, using the obtained phosphor, a phosphor screen having a coating amount of 7 mg / cm 2 was formed by a sedimentation method, and after applying an aluminum back, an electron gun was attached, exhausted and sealed to 7 An inch projection type cathode ray tube was produced. About this cathode ray tube,
When the luminance was measured under the conditions of a voltage of 29 kV and a beam current of 1500 μA, it was 5300 ft-L. This value is 13 compared with the luminance of 4700 ft-L of the cathode ray tube which was similarly produced by using the raw material phosphor before the thermal plasma treatment.
It was a high value.

【0051】(実施例6)熱プラズマ処理の原料として
立方晶の結晶系に属するGd2 3 :Pr蛍光体を用い
た。この原料蛍光体の平均粒径をブレーン法により測定
したところ3.2μmであった。この原料蛍光体を高周
波熱プラズマ中に供給して溶融し急冷することによって
本発明に係る蛍光体を得た。プラズマ発生部外囲円筒の
径は40mm、プラズマガスはアルゴン60l/mi
n、キャリアガスはアルゴン10l/min、冷却ガス
はアルゴン30l/min、電源出力はEP =10.0
kV、IP =1.7Aであり、プラズマの平均温度は3
500℃であった。また原料供給速度は20g/min
であった。得られた蛍光体の平均粒径をブレーン法によ
り測定したところ3.8μmであった。電子顕微鏡写真
から求めた個々の蛍光体粒子の長径と短径との比は1.
00〜1.10の範囲にあった。また、この蛍光体のX
線回折パターンは原料蛍光体と全く異なり、単斜晶系で
あることを示していた。この蛍光体を加速電圧10k
V、電流密度1μA/cm2 の電子線または波長254
nmの紫外線で励起して発光スペクトルを測定したとこ
ろ、緑色の発光色を示し、発光色度値はx=0.31、
y=0.51であった。この発光特性は、原料蛍光体が
赤色の発光色を示し、発光色度値x=0.64、y=
0.28であったのと比較して大幅に変化していた。
Example 6 As a raw material for the thermal plasma treatment, a Gd 2 O 3 : Pr phosphor belonging to the cubic crystal system was used. The average particle diameter of the raw material phosphor was measured by the Blaine method and found to be 3.2 μm. The phosphor according to the present invention was obtained by supplying this raw material phosphor into high-frequency thermal plasma, melting and quenching. The diameter of the plasma generator surrounding cylinder is 40 mm, and the plasma gas is argon 60 l / mi.
n, carrier gas argon 10 l / min, cooling gas argon 30 l / min, power supply output E P = 10.0
kV, I P = 1.7 A, average plasma temperature is 3
It was 500 ° C. The raw material supply rate is 20 g / min
Met. The average particle size of the obtained phosphor was 3.8 μm as measured by the Blaine method. The ratio of the major axis to the minor axis of each phosphor particle obtained from the electron micrograph is 1.
It was in the range of 00 to 1.10. In addition, X of this phosphor
The line diffraction pattern was completely different from that of the starting phosphor, indicating that it was a monoclinic system. This phosphor has an acceleration voltage of 10k
V, electron beam with a current density of 1 μA / cm 2 or wavelength 254
When the emission spectrum was measured by exciting with an ultraviolet ray of nm, it showed a green emission color, and the emission chromaticity value was x = 0.31.
It was y = 0.51. In this emission characteristic, the raw material phosphor shows a red emission color, and the emission chromaticity value x = 0.64, y =
Compared with 0.28, it changed significantly.

【0052】次に、得られた蛍光体を用いて沈降法によ
り塗布量7mg/cm2 の蛍光面を形成し、アルミバッ
クを施した後、電子銃を装着し、排気・封止して7イン
チ投射型陰極線管を作製した。この陰極線管について、
電圧29kV、ビーム電流1500μAの条件で輝度を
測定したところ、580ft−Lであった。この値は、
1300℃で焼成し急冷して得た単斜晶Gd2 3 :P
r蛍光体を用いて同様に作製した陰極線管の輝度500
ft−Lに比べて16%高い値であった。
Next, using the obtained phosphor, a phosphor screen having a coating amount of 7 mg / cm 2 was formed by a sedimentation method, and after applying an aluminum back, an electron gun was attached, and exhausting and sealing were performed. An inch projection type cathode ray tube was produced. About this cathode ray tube,
When the luminance was measured under the conditions of a voltage of 29 kV and a beam current of 1500 μA, it was 580 ft-L. This value is
Monoclinic Gd 2 O 3 : P obtained by firing at 1300 ° C and quenching
Luminance of a cathode ray tube produced in the same manner using r phosphor 500
The value was 16% higher than that of ft-L.

【0053】(実施例7)ガドリニウムとユーロピウム
のシュウ酸塩共沈を1000℃で分解焼成してGd2
3 :Eu粉末を得た。この粉末のX線回折を測定したと
ころ、立方晶の回折パターンが得られた。次に、この粉
末を高周波熱プラズマ中に供給し、溶融急冷することに
よって本発明に係る蛍光体を得た。プラズマ発生部外囲
円筒の径は40mm、プラズマガスはアルゴン52l/
min、酸素27l/min、キャリアガスはアルゴン
10l/min、冷却ガスはアルゴン30l/min、
電源出力はEP =10.0kV、IP =1.6Aであ
り、プラズマの平均温度は3300℃であった。また原
料供給速度は15g/minであった。この蛍光体のブ
レーン法により測定した平均粒径は1.5μmであっ
た。得られた蛍光体の電子顕微鏡写真を図6に示す。電
子顕微鏡写真より求めた個々の蛍光体粒子の長径と短径
との比は1.00〜1.15の範囲にあった。また、こ
の蛍光体のX線回折ピークの比から立方晶と単斜晶との
比を計算すると、単斜晶がほぼ80%含まれていること
がわかった。
Example 7 Gd 2 O was obtained by decomposing and firing oxalate coprecipitation of gadolinium and europium at 1000 ° C.
3 : Eu powder was obtained. When X-ray diffraction of this powder was measured, a cubic diffraction pattern was obtained. Next, this powder was supplied into high-frequency thermal plasma and melted and rapidly cooled to obtain a phosphor according to the present invention. The diameter of the plasma generator surrounding cylinder is 40 mm, and the plasma gas is 52 l of argon /
min, oxygen 27 l / min, carrier gas argon 10 l / min, cooling gas argon 30 l / min,
The power supply output was E P = 10.0 kV, I P = 1.6 A, and the average temperature of the plasma was 3300 ° C. The raw material supply rate was 15 g / min. The average particle size of this phosphor measured by the Blaine method was 1.5 μm. An electron micrograph of the obtained phosphor is shown in FIG. The ratio of the major axis to the minor axis of each phosphor particle obtained from the electron micrograph was in the range of 1.00 to 1.15. Further, when the ratio of cubic crystals to monoclinic crystals was calculated from the ratio of X-ray diffraction peaks of this phosphor, it was found that monoclinic crystals were contained in approximately 80%.

【0054】(実施例8)カラーTV用赤色蛍光体と同
じフラックス法で作製したY2 2 S:Euを原料とし
て用いた。ただし、Eu/Y原子比は8.0%とした。
この原料蛍光体の平均粒径は4.1μmであった。この
原料蛍光体を1/40希釈硝酸溶液中で20分間撹拌し
水洗した後、吸引ろ過しアルコール置換して乾燥した。
この試料に2重量%の硫黄を加え、アルゴン雰囲気の高
周波熱プラズマ中に導入し、急冷してサイクロンで回収
した。プラズマ発生部外囲円筒の径は40mm、プラズ
マガスはアルゴン60l/min、キャリアガスはアル
ゴン10l/min、電源出力はEP =10.0kV、
P =1.5Aであり、プラズマの平均温度は3000
℃であった。また原料供給速度は20g/minであっ
た。得られた試料に水中で超音波を印加し、静置した
後、上層部分を除去して球状粒子を得た。この試料の粒
子表面には0.2μm以下の超微粒子が0.5%含まれ
ていた。この試料は灰紫色の体色を呈し、可視光反射率
は40%であった。さらに、この試料を硫黄雰囲気中、
900℃で1時間焼成して本発明に係る蛍光体を得た。
図7にこの蛍光体の電子顕微鏡写真を示す。この蛍光体
は平均粒径4.5μmの球状粒子からなっていた。この
電子顕微鏡写真から求めた個々の蛍光体粒子の長径と短
径との比は1.00〜1.10の範囲にあった。この蛍
光体の体色は白色で可視光反射率は94%であった。こ
の蛍光体のX線回折を測定したところ、オキシ硫化物の
回折パターンを示していた。この蛍光体のEu/Y原子
比は3.7%であった。加速電圧10kV,電流密度
0.5μA/cm2 の条件での電子線励起による発光色
はカラーTV用として好適な赤色であった。
(Example 8) Y 2 O 2 S: Eu produced by the same flux method as the red phosphor for color TV was used as a raw material. However, the Eu / Y atomic ratio was set to 8.0%.
The average particle size of this raw material phosphor was 4.1 μm. This raw material phosphor was stirred in a 1/40 diluted nitric acid solution for 20 minutes, washed with water, suction filtered, replaced with alcohol and dried.
2% by weight of sulfur was added to this sample, which was introduced into high-frequency thermal plasma in an argon atmosphere, rapidly cooled, and collected by a cyclone. The diameter of the cylinder surrounding the plasma generation part is 40 mm, the plasma gas is 60 l / min of argon, the carrier gas is 10 l / min of argon, and the power output is E P = 10.0 kV.
I P = 1.5 A, average temperature of plasma is 3000
° C. The raw material supply rate was 20 g / min. Ultrasonic waves were applied to the obtained sample in water and the sample was allowed to stand still, and then the upper layer portion was removed to obtain spherical particles. The particle surface of this sample contained 0.5% of ultrafine particles of 0.2 μm or less. This sample had a gray-purple body color and had a visible light reflectance of 40%. In addition, this sample in a sulfur atmosphere,
The phosphor according to the present invention was obtained by firing at 900 ° C. for 1 hour.
FIG. 7 shows an electron micrograph of this phosphor. This phosphor was composed of spherical particles having an average particle size of 4.5 μm. The ratio of the major axis to the minor axis of each phosphor particle obtained from this electron micrograph was in the range of 1.00 to 1.10. The body color of this phosphor was white and the visible light reflectance was 94%. When X-ray diffraction of this phosphor was measured, it showed a diffraction pattern of oxysulfide. The Eu / Y atomic ratio of this phosphor was 3.7%. The emission color by electron beam excitation under the conditions of an accelerating voltage of 10 kV and a current density of 0.5 μA / cm 2 was red, which is suitable for color TV.

【0055】(比較例1)カラーTV用赤色蛍光体Y2
2 S:Euを原料として用いた。Eu/Y原子比は
4.1%であった。この原料蛍光体の平均粒径は4.3
μmであった。この原料蛍光体を1/40希釈硝酸溶液
中で20分間撹拌し水洗した後、吸引ろ過しアルコール
置換して乾燥した。この試料を高周波熱プラズマ中に導
入し、急冷した。プラズマの条件は実施例8と同一であ
る。得られた試料に水中で超音波を印加し、静置した
後、上層部分を除去して球状粒子を得た。この試料は灰
紫色の体色を呈し、可視光反射率は8%であった。さら
に、この試料を実施例8と同様に硫黄雰囲気中、900
℃で1時間焼成した。この蛍光体の体色は白色であった
が、Eu/Y原子比は1.8であり、電子線励起による
発光色はカラーTV用として不適な橙色であった。
(Comparative Example 1) Red phosphor Y 2 for color TV
O 2 S: Eu was used as a raw material. The Eu / Y atomic ratio was 4.1%. The average particle size of this raw phosphor is 4.3.
μm. This raw material phosphor was stirred in a 1/40 diluted nitric acid solution for 20 minutes, washed with water, suction filtered, replaced with alcohol and dried. This sample was introduced into high frequency thermal plasma and quenched. The plasma conditions are the same as in Example 8. Ultrasonic waves were applied to the obtained sample in water and the sample was allowed to stand still, and then the upper layer portion was removed to obtain spherical particles. This sample had a gray-purple body color and had a visible light reflectance of 8%. Further, this sample was subjected to 900 atmosphere in a sulfur atmosphere in the same manner as in Example 8.
Calcination was carried out at ℃ for 1 hour. The body color of this phosphor was white, but the Eu / Y atomic ratio was 1.8, and the emission color by electron beam excitation was orange, which is unsuitable for color TV.

【0056】(実施例9)フラックス法で作製した平均
粒径5.2μmのGd2 2 S:Prを原料として用い
た。Pr/Gd原子比は0.06%であった。この原料
蛍光体に1/100希釈タモール水溶液を加え、吸引ろ
過しアルコール置換して乾燥した。この試料を高周波熱
プラズマ中に導入して急冷した。プラズマ発生部外囲円
筒の径は40mm、プラズマガスはアルゴン60l/m
in、窒素5l/min、キャリアガスはアルゴン10
l/min、電源出力はEP =10.0kV、IP
1.4Aであり、プラズマの平均温度は2800℃であ
った。また原料供給速度は20g/minであった。得
られた試料は超微粒子を1%含んでいた。この試料に水
中で超音波を印加し、静置した後、上層部分を除去して
超微粒子を0.1%含む球状粒子を得た。この試料は肌
色の体色を呈し、可視光反射率は32%であった。さら
に、この試料を実施例8と同様に硫黄雰囲気中、900
℃で1時間焼成して本発明に係る蛍光体を得た。この蛍
光体の表面の一部には約0.1%の超微粒子が融着して
残っていた。この蛍光体は平均粒径6.1μmの白色の
球状粒子からなり、可視光反射率は93%であった。こ
の蛍光体のX線回折を測定したところ、オキシ硫化物の
回折パターンを示していた。Pr/Gd原子比は0.0
5%であった。電子線励起による発光色は原料と同等の
緑色を示した。
Example 9 Gd 2 O 2 S: Pr having an average particle size of 5.2 μm produced by the flux method was used as a raw material. The Pr / Gd atomic ratio was 0.06%. A 1/100 diluted tamol aqueous solution was added to this raw material phosphor, suction filtration was performed, the alcohol substitution was performed, and drying was performed. This sample was introduced into high frequency thermal plasma and quenched. The diameter of the plasma generator surrounding cylinder is 40 mm, and the plasma gas is 60 l / m of argon.
in, nitrogen 5 l / min, carrier gas is argon 10
l / min, power supply output is E P = 10.0 kV, I P =
It was 1.4 A and the average temperature of the plasma was 2800 ° C. The raw material supply rate was 20 g / min. The resulting sample contained 1% ultrafine particles. After ultrasonic waves were applied to this sample in water and allowed to stand, the upper layer portion was removed to obtain spherical particles containing 0.1% of ultrafine particles. This sample had a flesh-colored body color, and the visible light reflectance was 32%. Further, this sample was subjected to 900 atmosphere in a sulfur atmosphere in the same manner as in Example 8.
The phosphor according to the present invention was obtained by firing at 1 ° C. for 1 hour. About 0.1% of the ultrafine particles were fused and left on a part of the surface of this phosphor. This phosphor was composed of white spherical particles having an average particle size of 6.1 μm and had a visible light reflectance of 93%. When X-ray diffraction of this phosphor was measured, it showed a diffraction pattern of oxysulfide. Pr / Gd atomic ratio is 0.0
5%. The emission color due to electron beam excitation showed a green color similar to that of the raw material.

【0057】(実施例10)フラックス法で作製した平
均粒径4.3μmのY2 2 S:Tbを原料として用い
た。Tb/Y原子比は6.5%であった。この原料蛍光
体に1/100希釈タモール水溶液を加え、吸引ろ過し
アルコール置換して乾燥した。この試料に3重量%の硫
黄を加え、高周波熱プラズマ中に導入して急冷してサイ
クロンで回収した。プラズマ発生部外囲円筒の径は40
mm、プラズマガスはアルゴン60l/min、水素2
l/min、キャリアガスはアルゴン10l/min、
電源出力はEP =10.0kV、IP =1.4Aであ
り、プラズマの平均温度は2800℃であった。また原
料供給速度は15g/minであった。得られた試料に
水中で超音波を印加し、静置した後、上層部分を除去し
て球状粒子を得た。この蛍光体には超微粒子が0.05
%含まれていた。この試料は肌色の体色を呈し、可視光
反射率は50%であった。さらに、この試料を実施例8
と同様に硫黄雰囲気中、900℃で1時間焼成して本発
明に係る蛍光体を得た。この蛍光体は判別できる超微粒
子を0.02%含む平均粒径5.5μmの白色の球状粒
子からなり、可視光反射率は91%であった。Tb/Y
原子比は3.5%であった。電子線励起による発光スペ
クトルは544nmnバンドが415nmのバンドより
10倍以上強く、投射型陰極線管用蛍光体として好適な
緑色を示した。
Example 10 Y 2 O 2 S: Tb having an average particle size of 4.3 μm produced by the flux method was used as a raw material. The Tb / Y atomic ratio was 6.5%. A 1/100 diluted tamol aqueous solution was added to this raw material phosphor, suction filtration was performed, the alcohol substitution was performed, and the phosphor was dried. Sulfur of 3% by weight was added to this sample, which was introduced into high-frequency thermal plasma, rapidly cooled, and recovered by a cyclone. The diameter of the plasma generator surrounding cylinder is 40
mm, plasma gas 60 l / min of argon, hydrogen 2
l / min, the carrier gas is argon 10 l / min,
The power supply output was E P = 10.0 kV, I P = 1.4 A, and the average temperature of the plasma was 2800 ° C. The raw material supply rate was 15 g / min. Ultrasonic waves were applied to the obtained sample in water and the sample was allowed to stand still, and then the upper layer portion was removed to obtain spherical particles. This phosphor contains 0.05% ultrafine particles.
% Was included. This sample had a flesh-colored body color, and the visible light reflectance was 50%. Furthermore, this sample was used as Example 8.
Similarly to the above, the phosphor according to the present invention was obtained by firing at 900 ° C. for 1 hour in a sulfur atmosphere. This phosphor was composed of white spherical particles having an average particle diameter of 5.5 μm and containing 0.02% of distinguishable ultrafine particles, and had a visible light reflectance of 91%. Tb / Y
The atomic ratio was 3.5%. The emission spectrum by electron beam excitation was 10 times or more stronger in the 544 nmn band than in the 415 nm band, and showed a green color suitable as a phosphor for a projection-type cathode ray tube.

【0058】(比較例2)通常の湿式沈澱・焼成法によ
りCaWO4 蛍光体(比較例2)を調製した。ブレーン
法により測定したこの蛍光体の平均粒径は4.3μmで
あった。紫外線または電子線励起したとき、この蛍光体
の発光スペクトルのピーク波長は411nmにあった。
色度値はx=0.165、y=0.120であった。
(Comparative Example 2) A CaWO 4 phosphor (Comparative Example 2) was prepared by a conventional wet precipitation / calcination method. The average particle size of this phosphor measured by the Blaine method was 4.3 μm. When excited by ultraviolet rays or electron beams, the peak wavelength of the emission spectrum of this phosphor was 411 nm.
The chromaticity values were x = 0.165 and y = 0.120.

【0059】(実施例11)比較例2のCaWO4 蛍光
体を原料とし、高周波熱プラズマ中に供給し、溶融急冷
することによって蛍光体(実施例11)を得た。プラズ
マ発生部外囲円筒の径は40mm、プラズマガスはアル
ゴン55l/min、酸素20l/min、キャリアガ
スはアルゴン10l/min、冷却ガスはアルゴン30
l/min、電源出力はEP =10.0kV、IP
1.2Aであり、プラズマの平均温度は2500℃であ
った。また原料供給速度は25g/minであった。得
られた蛍光体の平均粒径をブレーン法により測定したと
ころ3.9μmであった。得られた蛍光体の電子顕微鏡
写真を図8に示す。この電子顕微鏡写真より求めた個々
の蛍光体粒子の長径と短径との比は1.00〜1.08
の範囲にあった。得られた蛍光体の粒子表面には原料粒
子の部分的な蒸発によって生じた0.2μm以下の同種
蛍光体が付着しているが、超音波洗浄を行った後、上澄
み液を捨てることによって0.2μm以下の超微粒子を
0.1重量%含んだ蛍光体を得た。また、この蛍光体の
X線回析パターンは、CaWO4 のものであることが確
かめられた。
Example 11 A phosphor (Example 11) was obtained by using the CaWO 4 phosphor of Comparative Example 2 as a raw material, supplying it into high frequency thermal plasma, and melting and quenching. The diameter of the plasma generator surrounding cylinder is 40 mm, the plasma gas is argon 55 l / min, oxygen is 20 l / min, the carrier gas is argon 10 l / min, and the cooling gas is argon 30.
l / min, power supply output is E P = 10.0 kV, I P =
It was 1.2 A and the average temperature of the plasma was 2500 ° C. The raw material supply rate was 25 g / min. The average particle size of the obtained phosphor was 3.9 μm as measured by the Blaine method. An electron micrograph of the obtained phosphor is shown in FIG. The ratio of the major axis to the minor axis of each phosphor particle obtained from this electron micrograph is 1.00 to 1.08.
Was in the range. The same phosphor of 0.2 μm or less generated by partial evaporation of the raw material particles adheres to the particle surface of the obtained phosphor, but after the ultrasonic cleaning, the supernatant liquid is discarded to A phosphor containing 0.1% by weight of ultrafine particles of 0.2 μm or less was obtained. It was also confirmed that the X-ray diffraction pattern of this phosphor was that of CaWO 4 .

【0060】この蛍光体について紫外線または電子線励
起による発光スペクトルを測定したところ、ピーク波長
は433nmであり、比較例2の蛍光体のスペクトルに
比べて20nm以上も長波長側にずれていた。このため
色度値はx=0.173、y=1.44となった。この
蛍光体を254nmの紫外線で励起して粉体輝度を測定
したところ、比較例2の蛍光体に対して78%であっ
た。また、この蛍光体を加速電圧10kV、電流密度
0.5μA/cm2 の電子線で励起して粉体輝度を測定
したところ、比較例2の蛍光体に対して約102%であ
った。
When the emission spectrum of this phosphor was measured by ultraviolet or electron beam excitation, the peak wavelength was 433 nm, which was 20 nm or more longer than the spectrum of the phosphor of Comparative Example 2 on the long wavelength side. Therefore, the chromaticity values were x = 0.173 and y = 1.44. When this phosphor was excited by ultraviolet rays of 254 nm to measure the powder brightness, it was 78% with respect to the phosphor of Comparative Example 2. Further, when the powder luminance was measured by exciting this phosphor with an electron beam having an accelerating voltage of 10 kV and a current density of 0.5 μA / cm 2 , it was about 102% with respect to the phosphor of Comparative Example 2.

【0061】次に、この蛍光体を用いて沈澱法により、
塗布量10mg/cm2 の蛍光膜を形成して透過率を測
定したところ、比較例2の蛍光体を用いて形成した蛍光
膜に対して1.7倍の光透過率が得られた。
Then, a precipitation method is carried out using this phosphor.
When a fluorescent film having a coating amount of 10 mg / cm 2 was formed and the transmittance was measured, a light transmittance 1.7 times that of the fluorescent film formed using the phosphor of Comparative Example 2 was obtained.

【0062】得られた蛍光体を用いて沈降法により塗布
量6mg/cm2 の蛍光面を形成し、アルミバックを施
した後、電子銃を装着し、排気・封止して7インチの陰
極線管を作製した。この陰極線管について、加速電圧3
0kV、ビーム電流500μAの条件で輝度を測定した
ところ、比較例2の蛍光体を用いて同様に作製した陰極
線管に対して118%であった。
Using the obtained phosphor, a phosphor screen having a coating amount of 6 mg / cm 2 was formed by a sedimentation method, and after applying an aluminum back, an electron gun was attached, exhausted and sealed, and a 7-inch cathode wire was attached. A tube was made. About this cathode ray tube, acceleration voltage 3
When the luminance was measured under the conditions of 0 kV and a beam current of 500 μA, it was 118% with respect to the cathode ray tube similarly produced using the phosphor of Comparative Example 2.

【0063】(比較例3)通常の湿式沈澱・焼成法によ
りCaWO4 :Pbの蛍光体(比較例3)を製造した。
ブレーン法により測定したこの蛍光体の平均粒径は3.
6μmであった。紫外線または電子励起によるこの蛍光
体の発光スペクトルのピーク波長は435nmであっ
た。色度値はx=0.172、y=1.169であっ
た。また、励起スペクトルのピーク波長は270nmに
位置していた。
Comparative Example 3 A CaWO 4 : Pb phosphor (Comparative Example 3) was produced by a conventional wet precipitation / calcination method.
The average particle size of this phosphor measured by the Blaine method is 3.
It was 6 μm. The peak wavelength of the emission spectrum of this phosphor excited by ultraviolet rays or electrons was 435 nm. The chromaticity values were x = 0.172 and y = 1.169. The peak wavelength of the excitation spectrum was located at 270 nm.

【0064】(実施例12)比較例3のCaWO4 :P
b蛍光体を原料とし、高周波熱プラズマ中に供給し、溶
融急冷することによって蛍光体(実施例12)を得た。
プラズマ発生部外囲円筒の径は40mm、プラズマガス
はアルゴン55l/min、酸素20l/min、キャ
リアガスはアルゴン10l/min、冷却ガスはアルゴ
ン30l/min、電源出力はEP =10.0kV、I
P =1.2Aであり、プラズマの平均温度は2500℃
であった。また原料供給速度は20g/minであっ
た。得られた蛍光体の平均粒径をブレーン法により測定
したところ、3.1μmであった。また、電子顕微鏡写
真より求めた個々の蛍光体粒子の長径と短径との比は
1.00〜1.11の範囲にあった。得られた蛍光体を
超音波洗浄して上澄み液を捨てることによって0.2μ
m以下の超微粒子を0.05重量%含んだ蛍光体を得
た。また、この蛍光体のX線回析パターンは、CaWO
4 :Pbのものであることが確かめられた。
Example 12 CaWO 4 : P of Comparative Example 3
The phosphor (b) was used as a raw material, supplied into high-frequency thermal plasma, and melted and quenched to obtain a phosphor (Example 12).
Plasma generating outer囲円barrel diameter 40 mm, the plasma gas is argon 55l / min, oxygen 20l / min, carrier gas argon 10l / min, the cooling gas is argon 30l / min, power supply output E P = 10.0 kV, I
P = 1.2A, average plasma temperature is 2500 ° C
Met. The raw material supply rate was 20 g / min. The average particle size of the obtained phosphor was 3.1 μm as measured by the Blaine method. The ratio of the major axis to the minor axis of each phosphor particle obtained from the electron micrograph was in the range of 1.00 to 1.11. The resulting phosphor is ultrasonically washed and the supernatant is discarded to obtain 0.2 μm.
A phosphor containing 0.05% by weight of ultrafine particles of m or less was obtained. The X-ray diffraction pattern of this phosphor is CaWO
4 : confirmed to be Pb.

【0065】この蛍光体について紫外線または電子線励
起による発光スペクトルを測定したところ、ピーク波長
は458nmであり、色度値はx=0.180、y=
0.186であった。また、励起スペクトルは259n
mであり、254nmからのずれはわずかであった。こ
の蛍光体を254nmの紫外線で励起して粉体輝度を測
定したところ、比較例3の蛍光体に対して105%であ
った。また、この蛍光体を加速電圧10kV、電流密度
0.5μA/cm2 の電子線で励起して粉体輝度を測定
したところ、比較例2の蛍光体に対して約103%であ
った。
When the emission spectrum of this phosphor was measured by ultraviolet or electron beam excitation, the peak wavelength was 458 nm and the chromaticity values were x = 0.180 and y =.
It was 0.186. The excitation spectrum is 259n
m, and the deviation from 254 nm was slight. When this phosphor was excited by ultraviolet rays of 254 nm and the powder brightness was measured, it was 105% with respect to the phosphor of Comparative Example 3. Further, when this phosphor was excited with an electron beam having an accelerating voltage of 10 kV and a current density of 0.5 μA / cm 2 , the powder brightness was measured and found to be about 103% of that of the phosphor of Comparative Example 2.

【0066】次に、この蛍光体を用いて沈降法により、
塗布量9mg/cm2 の蛍光膜を形成して透過率を測定
したところ、比較例3の蛍光体を用いて形成した蛍光膜
に対して1.8倍の光透過率が得られた。
Next, by using this phosphor, a sedimentation method is carried out.
When a fluorescent film having a coating amount of 9 mg / cm 2 was formed and the transmittance was measured, a light transmittance that was 1.8 times that of the fluorescent film formed using the phosphor of Comparative Example 3 was obtained.

【0067】(比較例4)通常の湿式沈澱・焼成法によ
りMgWO4 蛍光体(比較例4)を製造した。ブレーン
法により測定したこの蛍光体の平均粒径は4.2μmで
あった。紫外線または電子線励起によるこの蛍光体の発
光スペクトルのピーク波長は498nmであった。色度
値はx=0.225、y=0.418であった。
Comparative Example 4 A MgWO 4 phosphor (Comparative Example 4) was manufactured by a conventional wet precipitation / calcination method. The average particle size of this phosphor measured by the Blaine method was 4.2 μm. The peak wavelength of the emission spectrum of this phosphor excited by ultraviolet rays or electron beams was 498 nm. The chromaticity values were x = 0.225 and y = 0.418.

【0068】(実施例13)比較例4のMgWO4 蛍光
体を原料とし、高周波熱プラズマ中に供給し、溶融急冷
することによって蛍光体(実施例13)を得た。プラズ
マ発生部外囲円筒の径は40mm、プラズマガスはアル
ゴン55l/min、酸素20l/min、キャリアガ
スはアルゴン10l/min、冷却ガスはアルゴン30
l/min、電源出力はEP =10.0kV、IP
1.3Aであり、プラズマの平均温度は2700℃であ
った。また原料供給速度は20g/minであった。得
られた蛍光体の平均粒径をブレーン法により測定したと
ころ、4.0μmであった。また、電子顕微鏡写真より
求めた個々の蛍光体粒子の長径と短径との比は1.00
〜1.07の範囲にあった。得られた蛍光体を超音波洗
浄して上澄み液を捨てることによって0.2μm以下の
超微粒子を0.2重量%含んだ蛍光体を得た。また、こ
の蛍光体のX線回析パターンは、MgWO4 のものであ
ることが確かめられた。
Example 13 A phosphor (Example 13) was obtained by using the MgWO 4 phosphor of Comparative Example 4 as a raw material, supplying it into high-frequency thermal plasma, and melting and quenching. The diameter of the plasma generator surrounding cylinder is 40 mm, the plasma gas is argon 55 l / min, oxygen is 20 l / min, the carrier gas is argon 10 l / min, and the cooling gas is argon 30.
l / min, power supply output is E P = 10.0 kV, I P =
It was 1.3 A and the average temperature of the plasma was 2700 ° C. The raw material supply rate was 20 g / min. The average particle diameter of the obtained phosphor was 4.0 μm as measured by the Blaine method. Further, the ratio of the major axis to the minor axis of each phosphor particle obtained from the electron micrograph is 1.00.
Was in the range of ˜1.07. The obtained phosphor was ultrasonically washed and the supernatant was discarded to obtain a phosphor containing 0.2% by weight of ultrafine particles of 0.2 μm or less. It was also confirmed that the X-ray diffraction pattern of this phosphor was that of MgWO 4 .

【0069】この蛍光体について紫外線または電子線励
起による発光スペクトルを測定したところ、ピーク波長
は512nmであり、色度値はx=0.233、y=
0.441であった。また、励起スペクトルは254n
mよりも短波長側へずれていた。この蛍光体を254n
mの紫外線で励起して粉体輝度を測定したところ、比較
例4の蛍光体に対して114%であった。また、この蛍
光体を加速電圧10kV、電流密度0.5μA/cm2
の電子線で励起して粉体輝度を測定したところ、比較例
4の蛍光体に対して約109%であった。このように、
実施例13の蛍光体は比較例4の蛍光体に比べ、励起ス
ペクトルが短波長側にずれることから紫外線励起した場
合の吸収が多くなり、発光効率も高くなる。
When the emission spectrum of this phosphor was measured by ultraviolet or electron beam excitation, the peak wavelength was 512 nm, and the chromaticity values were x = 0.233, y =
It was 0.441. The excitation spectrum is 254n
It was deviated to the shorter wavelength side than m. 254n this phosphor
When the powder luminance was measured by exciting with ultraviolet rays of m, it was 114% with respect to the phosphor of Comparative Example 4. In addition, this phosphor was used with an acceleration voltage of 10 kV and a current density of 0.5 μA / cm 2.
When the powder luminance was measured by exciting with the electron beam of No. 3, it was about 109% with respect to the phosphor of Comparative Example 4. in this way,
Compared to the phosphor of Comparative Example 4, the phosphor of Example 13 has a larger absorption spectrum when excited by ultraviolet light and a higher luminous efficiency than the phosphor of Comparative Example 4 because the excitation spectrum shifts to the shorter wavelength side.

【0070】次に、この蛍光体を用いて沈降法により、
塗布量12mg/cm2 の蛍光膜を形成して透過率を測
定したところ、比較例4の蛍光体を用いて形成した蛍光
膜に対して1.5倍の光透過率が得られた。
Next, by using this phosphor, a sedimentation method is carried out.
When a fluorescent film having a coating amount of 12 mg / cm 2 was formed and the transmittance was measured, a light transmittance of 1.5 times that of the fluorescent film formed using the phosphor of Comparative Example 4 was obtained.

【0071】得られた蛍光体を用いて沈殿法により塗布
量6mg/cm2 の蛍光面を形成し、アルミバックを施
した後、電子銃を装着し、排気・封止して7インチの陰
極線管を作製した。この陰極線管について、加速電圧3
0kV、ビーム電流500μAの条件で輝度を測定した
ところ、比較例4の蛍光体を用いて同様に作製した陰極
線管に対して115%であった。
Using the obtained phosphor, a phosphor screen having a coating amount of 6 mg / cm 2 was formed by a precipitation method, and after applying an aluminum back, an electron gun was attached, exhausted and sealed, and a 7-inch cathode wire was attached. A tube was made. About this cathode ray tube, acceleration voltage 3
When the luminance was measured under the conditions of 0 kV and a beam current of 500 μA, it was 115% with respect to the cathode ray tube similarly produced using the phosphor of Comparative Example 4.

【0072】[0072]

【発明の効果】以上詳述したように本発明の方法により
製造された蛍光体は、粒径が小さく真球に近い形状を有
するので、緻密で均質な蛍光面を形成することができ、
ひいては輝度の高い陰極線管や蛍光ランプを得ることが
できる。
As described in detail above, since the phosphor produced by the method of the present invention has a small particle size and a shape close to a true sphere, it is possible to form a dense and uniform phosphor screen.
Consequently, it is possible to obtain a cathode ray tube or a fluorescent lamp with high brightness.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法を実施するために用いられた製造
装置の概念図。
FIG. 1 is a conceptual diagram of a manufacturing apparatus used to carry out the method of the present invention.

【図2】熱プラズマフレームの温度分布を示す概念図。FIG. 2 is a conceptual diagram showing a temperature distribution of a thermal plasma flame.

【図3】熱プラズマ温度と軸方向の位置を示す概念図。FIG. 3 is a conceptual diagram showing thermal plasma temperature and axial position.

【図4】本発明の実施例1における蛍光体の粒子構造を
示す電子顕微鏡写真。
FIG. 4 is an electron micrograph showing the particle structure of the phosphor in Example 1 of the present invention.

【図5】本発明の実施例4における蛍光体の粒子構造を
示す電子顕微鏡写真。
FIG. 5 is an electron micrograph showing the particle structure of the phosphor in Example 4 of the present invention.

【図6】本発明の実施例7における蛍光体の粒子構造を
示す電子顕微鏡写真。
FIG. 6 is an electron micrograph showing the particle structure of the phosphor in Example 7 of the present invention.

【図7】本発明の実施例8における蛍光体の粒子構造を
示す電子顕微鏡写真。
FIG. 7 is an electron micrograph showing the particle structure of the phosphor in Example 8 of the present invention.

【図8】本発明の実施例11の蛍光体の粒子構造を示す
電子顕微鏡写真。
FIG. 8 is an electron micrograph showing the particle structure of the phosphor of Example 11 of the present invention.

【符号の説明】[Explanation of symbols]

10…プラズマガス、11…粉体供給器、12…キャリ
アガス供給ボンベ、13…粉体供給口、14…高周波発
振器、15…コイル、16…プラズマフレーム、17…
反応容器、18…サイクロン、19…プラズマ発生部外
囲円筒、20…冷却ガス源。
10 ... Plasma gas, 11 ... Powder supply device, 12 ... Carrier gas supply cylinder, 13 ... Powder supply port, 14 ... High frequency oscillator, 15 ... Coil, 16 ... Plasma frame, 17 ...
Reaction vessel, 18 ... Cyclone, 19 ... Plasma generation part surrounding cylinder, 20 ... Cooling gas source.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松田 直寿 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝研究開発センター内 (72)発明者 奥村 美和 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝研究開発センター内 (72)発明者 元木 信二郎 神奈川県平塚市田村5893 高周波熱錬株式 会社湘南事業所内 (72)発明者 川嵜 一博 神奈川県平塚市田村5893 高周波熱錬株式 会社湘南事業所内 (72)発明者 横田 誠二 神奈川県平塚市田村5893 高周波熱錬株式 会社湘南事業所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Naoshihisa Matsuda, 1 Komukai Toshiba-cho, Sachi-ku, Kawasaki City, Kanagawa Prefecture, Research & Development Center, Toshiba Corporation (72) Miwa Okumura, Komukai-Toshiba, Kawasaki-shi, Kanagawa Prefecture Town No. 1 Incorporated company Toshiba R & D Center (72) Inventor Shinjiro Motoki 5893 Tamura, Hiratsuka-shi, Kanagawa High frequency heat-smelting company Shonan Works (72) Inventor Kazuhiro Kawasaki 5893 Tamura, Hiratsuka-shi, Kanagawa (72) Inventor, Seiji Yokota Stock Company 5893 Tamura, Hiratsuka-shi, Kanagawa High frequency smelting Co., Ltd. Shonan Factory

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 Ln2 3 :RもしくはLn2 2 S:
R(ただし、LnはLa,Gd,LuおよびYからなる
群より選択される少なくとも1種の元素、Rはランタニ
ド族より選択される少なくとも1種の元素)、MWO4
(ただし、MはCaおよびMgのうち少なくとも1種)
またはCaWO4 :Pbの組成式で表される蛍光体を製
造するに際し、プラズマの平均温度が1600℃以上6
500℃以下となるようにアルゴン、ヘリウム、クリプ
トン、ネオン、キセノン、酸素、窒素、水素またはこれ
らの2種以上の混合ガスを用いて、雰囲気および高周波
エネルギーを所定の如く制御した高温プラズマ中で処理
し、平均粒径が0.5〜20μm、個々の粒子の長径と
短径との比が1.0〜1.5の範囲の球状にすることを
特徴とする蛍光体の製造方法。
1. Ln 2 O 3 : R or Ln 2 O 2 S:
R (where Ln is at least one element selected from the group consisting of La, Gd, Lu and Y, R is at least one element selected from the lanthanide group), MWO 4
(However, M is at least one of Ca and Mg)
Alternatively, in producing the phosphor represented by the composition formula of CaWO 4 : Pb, the average temperature of plasma is 1600 ° C. or higher and 6 or more.
Argon, helium, krypton, neon, xenon, oxygen, nitrogen, hydrogen, or a mixed gas of two or more of these gases is used to maintain the temperature below 500 ° C. in a high temperature plasma in which the atmosphere and high frequency energy are controlled as required. And a spherical shape having an average particle size of 0.5 to 20 μm and a ratio of the major axis to the minor axis of each particle in the range of 1.0 to 1.5.
【請求項2】 Ln2 3 :RもしくはLn2 2 S:
R(ただし、LnはLa,Gd,LuおよびYからなる
群より選択される少なくとも1種の元素、Rはランタニ
ド族より選択される少なくとも1種の元素)、MWO4
(ただし、MはCaおよびMgのうち少なくとも1種)
またはCaWO4 :Pbの組成式で表される蛍光体を製
造するに際し、高周波電源出力が5〜100kW、プラ
ズマガス流量が20〜150l/分、キャリアガス流量
が5〜50l/分、プラズマ発生部外囲円筒の内径が3
0〜100mmの条件で発生させた高温プラズマ中で処
理し、平均粒径が0.5〜20μm、個々の粒子の長径
と短径との比が1.0〜1.5の範囲の球状にすること
を特徴とする蛍光体の製造方法。
2. Ln 2 O 3 : R or Ln 2 O 2 S:
R (where Ln is at least one element selected from the group consisting of La, Gd, Lu and Y, R is at least one element selected from the lanthanide group), MWO 4
(However, M is at least one of Ca and Mg)
Or CaWO 4: Upon manufacturing a phosphor represented by the composition formula of Pb, high frequency power supply output is 5~100KW, plasma gas flow rate 20~150L / min, carrier gas flow rate 5~50L / min, the plasma generator The inner diameter of the outer cylinder is 3
Treated in a high-temperature plasma generated under the condition of 0 to 100 mm to form a spherical shape having an average particle size of 0.5 to 20 μm and a ratio of the major axis to the minor axis of each particle in the range of 1.0 to 1.5. A method for producing a phosphor, comprising:
【請求項3】 粒径0.2μm以下の超微粒子を0.0
01〜5重量%含んでいる請求項1または2記載の蛍光
体の製造方法。
3. Ultrafine particles having a particle diameter of 0.2 μm or less are 0.0
The method for producing the phosphor according to claim 1, wherein the phosphor is contained in an amount of 01 to 5% by weight.
【請求項4】 Ln2 3 :R(ただし、LnはLa,
Gd,LuおよびYからなる群より選択される少なくと
も1種の元素、Rはランタニド族より選択される少なく
とも1種の元素)の組成式で表される蛍光体を製造する
に際し、プラズマの平均温度が2500℃以上6500
℃以下となるようにアルゴン、ヘリウム、クリプトン、
ネオン、キセノン、酸素、窒素、水素またはこれらの2
種以上の混合ガスを用いて、雰囲気および高周波エネル
ギーを所定の如く制御した高温プラズマ中で処理し、平
均粒径が0.5〜15μm、個々の粒子の長径と短径と
の比が1.0〜1.5の範囲の球状にすることを特徴と
する請求項1または2記載の蛍光体の製造方法。
4. Ln 2 O 3 : R (where Ln is La,
In producing a phosphor represented by the composition formula of at least one element selected from the group consisting of Gd, Lu and Y, and R is at least one element selected from the lanthanide group, the average temperature of plasma Is 2500 ° C or higher 6500
Argon, helium, krypton,
Neon, xenon, oxygen, nitrogen, hydrogen or these 2
The mixture is treated in a high temperature plasma in which the atmosphere and the high frequency energy are controlled in a predetermined manner using a mixed gas of at least one kind, the average particle diameter is 0.5 to 15 μm, and the ratio of the major axis to the minor axis of each particle is 1. The method for producing a phosphor according to claim 1, wherein the phosphor has a spherical shape in the range of 0 to 1.5.
【請求項5】 粒径0.2μm以下の超微粒子を0.0
01〜1重量%含んでいる請求項4記載の蛍光体の製造
方法。
5. An ultrafine particle having a particle diameter of 0.2 μm or less is 0.0
The method for producing a phosphor according to claim 4, wherein the phosphor contains 0 to 1% by weight.
【請求項6】 Ln2 2 S:R(ただし、LnはL
a,Gd,LuおよびYからなる群より選択される少な
くとも1種の元素、Rはランタニド族より選択される少
なくとも1種の元素)の組成式で表される蛍光体を製造
するに際し、プラズマの平均温度が2000℃以上65
00℃以下となるようにアルゴン、ヘリウム、クリプト
ン、ネオン、キセノン、酸素、窒素、水素またはこれら
の2種以上の混合ガスを用いて、雰囲気および高周波エ
ネルギーを所定の如く制御した高温プラズマ中で処理
し、平均粒径が0.5〜15μm、個々の粒子の長径と
短径との比が1.0〜1.5の範囲の球状にすることを
特徴とする請求項1または2記載の蛍光体の製造方法。
6. Ln 2 O 2 S: R (where Ln is L
a, Gd, Lu and Y, at least one element selected from the group consisting of a, R is at least one element selected from the lanthanide group) in producing a phosphor represented by the composition formula Average temperature is over 2000 ℃ 65
Treatment in argon or helium, krypton, neon, xenon, oxygen, nitrogen, hydrogen or a mixed gas of two or more of these gases at a temperature of 00 ° C. or less in a high temperature plasma in which the atmosphere and high frequency energy are controlled as required. The fluorescent particles according to claim 1 or 2, wherein the spherical particles have an average particle diameter of 0.5 to 15 µm and a ratio of the major axis to the minor axis of each particle is in the range of 1.0 to 1.5. Body manufacturing method.
【請求項7】 粒径0.2μm以下の超微粒子を0.0
01〜0.5重量%含んでいる請求項6記載の蛍光体の
製造方法。
7. An ultrafine particle having a particle diameter of 0.2 μm or less is 0.0
The method for producing the phosphor according to claim 6, wherein the phosphor contains 0.1 to 0.5% by weight.
【請求項8】 MWO4 (ただし、MはCaおよびMg
のうち少なくとも1種)またはCaWO4 :Pbの組成
式で表される蛍光体を製造するに際し、プラズマの平均
温度が1600℃以上5500℃以下となるようにアル
ゴン、ヘリウム、クリプトン、ネオン、キセノン、酸
素、窒素、水素またはこれらの2種以上の混合ガスを用
いて、雰囲気および高周波エネルギーを所定の如く制御
した高温プラズマ中で処理し、平均粒径が0.5〜20
μm、個々の粒子の長径と短径との比が1.0〜1.5
の範囲の球状にすることを特徴とする請求項1または2
記載の蛍光体の製造方法。
8. MWO 4 (where M is Ca and Mg)
At least one of the above) or CaWO 4 : Pb, in producing the phosphor represented by the composition formula, argon, helium, krypton, neon, xenon, so that the average temperature of plasma is 1600 ° C. or higher and 5500 ° C. or lower. Oxygen, nitrogen, hydrogen, or a mixed gas of two or more of these is used to perform treatment in high-temperature plasma in which the atmosphere and high-frequency energy are controlled as desired, and the average particle size is 0.5 to 20.
μm, the ratio of the major axis to the minor axis of each particle is 1.0 to 1.5
The spherical shape in the range of 1 or 2.
A method for producing the described phosphor.
【請求項9】 粒径0.2μm以下の超微粒子を0.0
01〜5重量%含んでいる請求項8記載の蛍光体の製造
方法。
9. An ultrafine particle having a particle diameter of 0.2 μm or less is 0.0
The method for producing the phosphor according to claim 8, wherein the phosphor is contained in an amount of 01 to 5% by weight.
【請求項10】 原料蛍光体の付活剤濃度を熱プラズマ
処理後の付活剤濃度と異なるように設定することを特徴
とする請求項1または2記載の製造方法。
10. The method according to claim 1, wherein the activator concentration of the raw material phosphor is set to be different from the activator concentration after the thermal plasma treatment.
【請求項11】 高温プラズマ中で処理した後に600
〜1300℃で再焼成することを特徴とする請求項1ま
たは2記載の製造方法。
11. 600 after treatment in high temperature plasma
The method according to claim 1 or 2, wherein the firing is performed at 1300 ° C.
JP27022294A 1994-10-07 1994-10-07 Phosphor manufacturing method Expired - Fee Related JP3585967B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27022294A JP3585967B2 (en) 1994-10-07 1994-10-07 Phosphor manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27022294A JP3585967B2 (en) 1994-10-07 1994-10-07 Phosphor manufacturing method

Publications (2)

Publication Number Publication Date
JPH08109375A true JPH08109375A (en) 1996-04-30
JP3585967B2 JP3585967B2 (en) 2004-11-10

Family

ID=17483252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27022294A Expired - Fee Related JP3585967B2 (en) 1994-10-07 1994-10-07 Phosphor manufacturing method

Country Status (1)

Country Link
JP (1) JP3585967B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6100633A (en) * 1996-09-30 2000-08-08 Kabushiki Kaisha Toshiba Plasma display panel with phosphor microspheres
US6455213B1 (en) * 2000-01-04 2002-09-24 Lg Electronics, Inc. Method for manufacturing phosphor layer for image display apparatus
WO2006135104A1 (en) * 2005-06-17 2006-12-21 National Institute For Materials Science Titanium dioxide particle doped with rare earth element and method for producing same
JP2007112707A (en) * 2005-10-21 2007-05-10 Sulzer Metco Us Inc Method for manufacturing metal oxide powder having high purity and readily flowable property

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6100633A (en) * 1996-09-30 2000-08-08 Kabushiki Kaisha Toshiba Plasma display panel with phosphor microspheres
US6455213B1 (en) * 2000-01-04 2002-09-24 Lg Electronics, Inc. Method for manufacturing phosphor layer for image display apparatus
WO2006135104A1 (en) * 2005-06-17 2006-12-21 National Institute For Materials Science Titanium dioxide particle doped with rare earth element and method for producing same
JP2006347826A (en) * 2005-06-17 2006-12-28 National Institute For Materials Science Rare-earth element-doped titanium dioxide particle and its manufacturing method
US8062621B2 (en) 2005-06-17 2011-11-22 National Institute For Materials Science Method of manufacturing titanium dioxide particles doped with rare earth element
JP2007112707A (en) * 2005-10-21 2007-05-10 Sulzer Metco Us Inc Method for manufacturing metal oxide powder having high purity and readily flowable property
US8518358B2 (en) 2005-10-21 2013-08-27 Sulzer Metco (Us), Inc. High purity and free flowing metal oxides powder

Also Published As

Publication number Publication date
JP3585967B2 (en) 2004-11-10

Similar Documents

Publication Publication Date Title
Kang et al. Preparation of nonaggregated Y2O3: Eu phosphor particles by spray pyrolysis method
US6081069A (en) Phosphor, cathode-ray tube, fluorescent lamp and radiation intensifying screen
EP0221562B1 (en) Process for preparing a phosphor
US5851428A (en) Phosphor and manufacturing method thereof
JPH11501350A (en) Manufacturing process for high-purity phosphors that can be used in field emission displays
JP2015042753A (en) Method of producing aluminate luminophore, bam, yag and cat by alum method
US5916482A (en) Use of a compound based on a rare-earth phosphate as a luminophor in plasma systems
JP3469425B2 (en) Phosphor and manufacturing method thereof
US20020017635A1 (en) Rare earth oxide, basic rare earth carbonate, making method, phospor, and ceramic
JP3329598B2 (en) Phosphor, cathode ray tube, fluorescent lamp and phosphor manufacturing method
JP3585967B2 (en) Phosphor manufacturing method
JPH09310067A (en) Production of luminescent material
KR100351635B1 (en) Process for preparing spherical blue phosphor based on aluminates
JP2000087033A (en) Production of phosphor
Liu et al. Crystal growth and photoluminescence properties of truncated cubic BaMgAl10O17: Eu2+ phosphors for three-dimensional plasma display panels
JP2003231881A (en) Phosphor, method for producing phosphor and cathode- ray tube
JP2004256763A (en) Method for producing phosphor
JPH0892553A (en) Fluorescent substance
JPH0892554A (en) Fluorescent substance
JP4373670B2 (en) Method for manufacturing vacuum ultraviolet-excited luminescent material and method for manufacturing plasma display panel
Dutta et al. Sonochemical synthesis of lanthanide ions doped CeF3 nanoparticles: potential materials for solid state lighting devices
JP2007106832A (en) Method for producing phosphor and the phosphor produced by the method
JP2000096048A (en) Production of terbium-activated yttrium silicate fluorescent substance
KR20020015504A (en) Process for preparing of blue emitting phosphor particles by optimizing the precursor materials using spray pyrolysis
JPH02175786A (en) Manufacture of luminescent composition and fluorescent lamp

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040803

A61 First payment of annual fees (during grant procedure)

Effective date: 20040805

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20070813

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20080813

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100813

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20100813

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20110813

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110813

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20120813

LAPS Cancellation because of no payment of annual fees