JPH08109076A - Manufacture of carbon fiber-carbon conjugate material - Google Patents

Manufacture of carbon fiber-carbon conjugate material

Info

Publication number
JPH08109076A
JPH08109076A JP6331334A JP33133494A JPH08109076A JP H08109076 A JPH08109076 A JP H08109076A JP 6331334 A JP6331334 A JP 6331334A JP 33133494 A JP33133494 A JP 33133494A JP H08109076 A JPH08109076 A JP H08109076A
Authority
JP
Japan
Prior art keywords
pitch
carbon fiber
composite material
bulk density
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6331334A
Other languages
Japanese (ja)
Inventor
Yasuhiro Yamada
泰弘 山田
Takeshi Imamura
健 今村
Keiko Nishikubo
桂子 西久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP6331334A priority Critical patent/JPH08109076A/en
Publication of JPH08109076A publication Critical patent/JPH08109076A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE: To achieve the improvement regarding lightness, heat resistance, strength and bulkiness by the heat treatment of a carbon fiber fabric of two dimensions or three dimensions in pitch under specified conditions. CONSTITUTION: A carbon fiber fabric of two dimensions or three dimensions is immersed in pitch of the volume larger than the carbon fiber, then subjected to a heat treatment under reduced pressure or atmospheric pressure at 450-550 deg.C for 0.5-3hr and cooled. Then, the pitch adhered around the carbon fiber fabric is removed. Subsequently, the carbon fiber fabric is treated at >=1000 deg.C in an inert gas to carbonize to obtain the objective carbon fiber-carbon conjugate material. Optionally, the obtained conjugate material is repeatedly treated in pitch under reduced pressure or atmospheric pressure at 450-550 deg.C for 0.5-3hr followed by a heat treatment at >=1000 deg.C to obtain the more densified material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は軽量で、耐熱性、強度が
高く、しかも、強度は温度と共に増加する物性を持つ超
高温材料の1として有望な炭素繊維炭素複合材の製造方
法に関するものであり、熱可塑性の重質瀝青物であるピ
ッチをマトリックスとして、一定の形状を持つ2次元あ
るいは3次元の炭素繊維織物から炭素繊維炭素複合材を
製造する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a carbon fiber-carbon composite material, which is promising as an ultrahigh temperature material which is lightweight, has high heat resistance and high strength, and has strength which increases with temperature. The present invention relates to a method for producing a carbon fiber-carbon composite material from a two-dimensional or three-dimensional carbon fiber woven fabric having a certain shape, using a pitch, which is a thermoplastic heavy bituminous material, as a matrix.

【0002】[0002]

【従来の技術】炭素繊維炭素複合材(以下、C/C複合
材と略記する)は炭素繊維と炭素質物質をマトリックス
として成形した後、熱処理によって炭素化して製造され
る。成形に用いられる炭素質物質としてはフェノール樹
脂で代表される熱硬化性樹脂、ピッチで代表される熱可
塑性物質である。熱硬化性樹脂の場合は成形後、硬化さ
せることによって炭素化過程で成形体が崩壊することは
ないが、熱可塑性物質の場合は特別な硬化あるいは固化
処理を行わない限り、崩壊する。そのため、フェノール
樹脂にピッチを混合して熱硬化性を持たせたマトリック
スも使用されている。さらに、ピッチの熱処理によっ
て、ピッチ全体を炭素質メソフェースに変換したバルク
メソフェースの粉末をマトリックスとする方法がある
(例えば、安斉ほか、炭素材料学会第11回年会要旨
集、98ページ、1984年)。この方法はバルクメソ
フェースの半溶融性と高炭素収率である特徴を生かした
ものであるが、粉末であるため繊維間に均一に充填させ
ることが困難である。そのため電着法によって繊維表面
に付着させる方法も開発されている(例えば、角南ほ
か、炭素材料学会第13回年会要旨集、154ページ、
1986年)。熱可塑性であるピッチ類をマトリックス
とした場合は成形体の崩壊を防ぐために、通常、加圧炭
素化を行うか、酸素やオゾンあるいは酸化剤によって酸
化処理し、固化させる方法が行われている。
2. Description of the Related Art A carbon fiber-carbon composite material (hereinafter abbreviated as C / C composite material) is manufactured by molding carbon fibers and a carbonaceous material as a matrix and then carbonizing the same by heat treatment. The carbonaceous material used for molding is a thermosetting resin typified by a phenol resin, or a thermoplastic material typified by a pitch. In the case of a thermosetting resin, the molded body does not collapse in the carbonization process by curing after molding, but in the case of a thermoplastic substance, it collapses unless special curing or solidification treatment is performed. Therefore, a matrix in which pitch is mixed with phenol resin to have thermosetting property is also used. Further, there is a method of using a powder of bulk mesophase obtained by converting the entire pitch into a carbonaceous mesophase by heat treatment of the pitch as a matrix (for example, Anzai et al., Proceedings of the 11th Annual Meeting of the Carbon Material Society, page 98, 1984). ). This method takes advantage of the semi-melting property of bulk mesophase and high carbon yield, but since it is a powder, it is difficult to uniformly fill the fibers. Therefore, a method of adhering to the fiber surface by the electrodeposition method has been developed (for example, Kakunan et al., 13th Annual Meeting of the Carbon Material Society, 154 pages,
1986). When thermoplastic pitches are used as a matrix, in order to prevent the collapse of the molded body, usually, a method of carbonizing under pressure or oxidizing and oxidizing with oxygen, ozone or an oxidant to solidify is performed.

【0003】一方、上記のマトリックスを用い、炭素化
して得られるC/C複合材は一般にかさ密度の低いもの
しか得られない。その理由はマトリックスが有機物であ
り、炭素化時に分解物が生成することによる。高強度C
/C複合材を製造するためにはかさ密度を高くする必要
があり、そのため、緻密化処理が行われている。この処
理は1回の操作では全ての空孔を充填することはできな
いので、所望のかさ密度に達するまで繰り返し行われ
る。
On the other hand, a C / C composite material obtained by carbonizing the above-mentioned matrix can generally only give a low bulk density. The reason is that the matrix is an organic substance and a decomposition product is generated during carbonization. High strength C
In order to manufacture the / C composite material, it is necessary to increase the bulk density, and therefore, the densification treatment is performed. Since this treatment cannot fill all the pores in one operation, it is repeated until the desired bulk density is reached.

【0004】[0004]

【発明が解決しようとする課題】ピッチに代表される熱
可塑性の炭素質物質をマトリックスとした炭素繊維との
成形体は何らかの処理を行わない限り、炭素化過程で成
形体が崩壊するという問題がある。この崩壊を防ぐため
に型枠中での加圧炭素化やピッチの酸化による固化処理
が行われている。
A molded product of carbon fiber having a matrix of a thermoplastic carbonaceous material typified by pitch has a problem that the molded product collapses in the carbonization process unless some treatment is carried out. is there. In order to prevent this collapse, solidification treatment is carried out by pressure carbonization in the mold and oxidation of the pitch.

【0005】前者の方法では型枠の使用という成形体の
大きさと加圧装置を必要とする制約があると共に、加熱
によって軟化、溶融状態のピッチを成形体から漏出する
ことを完全に防ぐことは非常に困難である。さらに大き
な問題として、適用可能な炭素繊維の形態、すなわち、
平織や朱子織のような2次元の織物では適用することが
できるが、3次元織である立体的な織物では織物自体が
変形し、所望の形状を持つ成形体とならず、適用できな
いのである。
In the former method, there is a restriction that the size of the molded body and a pressurizing device are required, such as the use of a mold, and it is not possible to completely prevent the softened and molten pitch from leaking out from the molded body by heating. Very difficult. An even bigger problem is the applicable carbon fiber morphology, namely
It can be applied to a two-dimensional woven fabric such as a plain weave or a satin weave, but cannot be applied to a three-dimensional woven fabric that is a three-dimensional woven fabric because the woven fabric itself is deformed and does not have a desired shape. .

【0006】後者の方法はピッチを原料としたピッチ系
炭素繊維の製造において、紡糸したピッチ繊維の不融化
処理に適用される方法、すなわち、空気(酸素)やオゾ
ンあるいはこれらに窒素酸化物やヨウ素を混合したガス
中での加熱による気相酸化、重クロム酸カリ水溶液のよ
うな酸化剤による液相酸化であるが、これらの方法は直
径が約10μmのピッチ繊維のような表面積が大きい場
合は有効であるが、繊維とマトリックスから成る成形体
の場合は非常に困難である。その理由はピッチの酸化反
応が表面から生じ、徐々に内部に進行するためである。
したがって、成形体表面に存在するピッチの酸化反応に
よって固化したピッチ層が成形体を炭素化したときに、
内部の溶融したピッチの漏出を防ぐために必要な強度を
持つと成形体の崩壊は防ぐことが出来るが、固化したピ
ッチ層の強度は低いので崩壊を防ぐことはできない。さ
らに、固化したピッチ層を増加させるために酸化反応を
進行させると、表面付近のピッチ層は過度に酸化され、
粘結性を失い、微粉末状で剥離する。つまり、この方法
ではほぼピッチ全体を酸化させることが困難であるた
め、適用することはできないという問題がある。
The latter method is a method applied to the infusibilizing treatment of spun pitch fibers in the production of pitch-based carbon fibers using pitch as a raw material, that is, air (oxygen) or ozone, or nitrogen oxides or iodine in these. Gas-phase oxidation by heating in mixed gas, and liquid-phase oxidation by an oxidizing agent such as potassium dichromate aqueous solution. These methods are used when the surface area is large such as pitch fiber with diameter of about 10 μm. Although effective, it is very difficult in the case of a molded body composed of fibers and a matrix. The reason is that the oxidation reaction of pitch occurs from the surface and gradually progresses to the inside.
Therefore, when the pitch layer solidified by the oxidation reaction of the pitch existing on the surface of the molded body carbonizes the molded body,
If the strength of the molded body is sufficient to prevent leakage of the melted pitch inside, the molded body can be prevented from collapsing, but since the solidified pitch layer has low strength, it cannot be prevented from collapsing. Furthermore, when the oxidation reaction is advanced to increase the solidified pitch layer, the pitch layer near the surface is excessively oxidized,
It loses caking properties and peels off in the form of fine powder. In other words, it is difficult to oxidize almost the entire pitch by this method, so there is a problem that it cannot be applied.

【0007】さらに、バルクメソフェースの粉末をマト
リックスとした場合、半溶融性であるため炭素化時に成
形体が崩壊することはないが、粉末であるため繊維間に
均一に充填することが困難である。そのため粉末をスラ
リー状態にしフィラメントワインデング法で成形する方
法が採用されているが、この方法では繊維束が分散する
ことが必要であるため繊維束の織物では適用できないと
いう問題がある。また、粉末を電着法で付着させる方法
も同様の問題がある。
Further, when the powder of bulk mesophase is used as a matrix, the molded body does not collapse during carbonization because it is semi-melting, but it is difficult to uniformly fill the spaces between the fibers because it is a powder. is there. Therefore, a method of forming powder into a slurry state and molding by a filament winding method is adopted, but this method has a problem that it cannot be applied to a woven fabric of fiber bundles because it is necessary to disperse the fiber bundles. Further, the method of depositing the powder by the electrodeposition method has the same problem.

【0008】上記の問題はかさ密度の低いC/C複合材
をかさ密度を高くして高性能C/C複合材とする緻密化
処理においても同様である。すなわち、緻密化のために
ピッチを含浸した場合、そのまま炭素化処理すると、含
浸した大部分のピッチは系外に排出され、残存する炭素
量が少ないため、かさ密度はわずかに高くなるに過ぎな
い。そのため、所望のかさ密度に達するに必要な含浸−
炭素化処理する緻密化処理回数が多くなる。この処理回
数を減らすことがコスト低減に直接関与するので重要で
あるが、ピッチを含浸させる限り、上記と同様の固化の
問題が生じる。
[0008] The above-mentioned problems also occur in the densification process for increasing the bulk density of a C / C composite material having a low bulk density to obtain a high-performance C / C composite material. That is, when pitch is impregnated for densification, if carbonization is performed as it is, most of the impregnated pitch is discharged out of the system, and the amount of carbon remaining is small, so the bulk density is only slightly increased. . Therefore, the impregnation required to reach the desired bulk density
The number of densification treatments for carbonization increases. It is important to reduce the number of times of this treatment because it directly contributes to cost reduction, but as long as the pitch is impregnated, the same solidification problem as described above occurs.

【0009】含浸剤として熱硬化性であるフェノール樹
脂を用いた場合は固化の問題はないが、細孔内に十分充
填させるためには粘度の低い低重合度の樹脂あるいは溶
剤で希釈した樹脂を用いる必要があり、そのため、炭素
収率が低く、結果的に1回の処理でのかさ密度上昇は低
くなるという問題が生じる。
When a thermosetting phenol resin is used as the impregnating agent, there is no problem of solidification, but in order to sufficiently fill the pores, a resin having a low viscosity and a low polymerization degree or a resin diluted with a solvent is used. Therefore, there is a problem that the carbon yield is low, and as a result, the increase in bulk density in one treatment is low.

【0010】[0010]

【課題を解決するための手段】上記の問題を解決する方
法を種々検討した結果、ピッチ中に炭素繊維を入れて熱
処理すると、ピッチ中で生成した炭素質メソフェースは
繊維表面から優先的に生成することを見いだした。すな
わち、熱可塑性であるピッチを熱処理した場合、よく知
られているように、軟化点以上の温度では液相となり、
光学的等方性であるが、400〜500℃で光学的異方
性の炭素質メソフェースの生成と成長が起こり、ピッチ
全体がメソフェースとなる。さらに、温度を高くする
か、長時間加熱すると流動性を失い、ついには固化し、
この固化したものは高温で熱処理しても形態、組織共に
変化しない。ピッチ中に生成したメソフェースは生成初
期段階では小球体であり、ピッチ中では小球体の成長と
合体が生じ、流動性を示すが、ピッチから分離した小球
体は加熱してもその形態、組織は変化しない。このこと
と先に述べたピッチ中に炭素繊維が存在すると、メソフ
ェースは優先的に炭素繊維周辺から生成するという事実
を組み合わせるならば、熱可塑性であるピッチを熱硬化
性として取扱うことができると考えた。
As a result of various studies on methods for solving the above problems, when carbon fibers are put in pitch and heat-treated, carbonaceous mesophases formed in the pitch are preferentially formed from the fiber surface. I found a thing. That is, when heat-treating a pitch that is thermoplastic, as is well known, at a temperature above the softening point, it becomes a liquid phase,
Generation and growth of an optically anisotropic carbonaceous mesophase occurs at 400 to 500 ° C., which is optically isotropic, and the entire pitch becomes a mesophase. Furthermore, if the temperature is raised or heated for a long time, it loses fluidity and finally solidifies,
This solidified product does not change in morphology and structure even when heat-treated at high temperature. The mesophases generated in the pitch are small spheres in the initial stage of generation, and the growth and coalescence of the small spheres occur in the pitch and show fluidity, but even if the small spheres separated from the pitch are heated, their morphology and texture are It does not change. If this is combined with the fact that the presence of carbon fibers in the pitch described above preferentially produces mesophases from the periphery of carbon fibers, it is thought that the pitch, which is thermoplastic, can be treated as thermosetting. It was

【0011】この考えに基づいて、鋭意研究した結果、
本発明をなすに至った。すなわち、本発明の方法は溶融
したピッチ中に2次元または3次元の炭素繊維織物を入
れるか、あるいはかさ密度の低いC/C複合材を入れ、
これを減圧下または常圧下、450〜550℃の温度範
囲、0.5〜3時間熱処理してピッチを固化させた後、
炭素化してC/C複合材を製造するものである。
As a result of earnest research based on this idea,
The present invention has been made. That is, according to the method of the present invention, a two-dimensional or three-dimensional carbon fiber woven fabric is placed in a molten pitch, or a C / C composite material having a low bulk density is placed,
After heat-treating this under reduced pressure or normal pressure in the temperature range of 450 to 550 ° C. for 0.5 to 3 hours to solidify the pitch,
It is carbonized to produce a C / C composite material.

【0012】したがって、本発明の目的はピッチのよう
な熱可塑性炭素質物質をマトリックスとして炭素繊維の
2次元あるいは3次元織物のような複雑形状の炭素繊維
織物からC/C複合材を製造することおよびかさ密度の
低いC/C複合材のかさ密度を上昇させる操作におい
て、ピッチを用いて簡単な操作で、かつ、最小限の操作
回数でかさ密度の高いC/C複合材を製造することにあ
る。
Therefore, an object of the present invention is to produce a C / C composite material from a carbon fiber woven fabric having a complicated shape such as a two-dimensional or three-dimensional woven fabric of carbon fibers using a thermoplastic carbonaceous material such as pitch as a matrix. And in the operation of increasing the bulk density of a C / C composite material having a low bulk density, it is to manufacture a C / C composite material having a high bulk density with a simple operation using a pitch and with a minimum number of operations. .

【0013】以下、本発明の方法を説明する。ピッチは
コールタールピッチ、原油の減圧蒸留残渣であるアスフ
ァルト、ナフサタールピッチ、FCCデカントオイルの
石油系ピッチのいずれも用いることができる。また、こ
れらのピッチをあらかじめ水素化処理したピッチでもよ
い。軟化点は70〜300℃の範囲のものが好ましい。
軟化点がこれより低いと、400〜500℃に加熱した
とき、粘度は低いが、分解生成物の量が多く、メソフェ
ースの生成量が少なくなると共に、固化するまでの時間
が長くなる。軟化点が高くなると、メソフェースの生成
量は多く、固化するまでの時間は短くなるが、粘度が高
くなり、繊維間へのピッチの浸透が不十分となり好まし
くない。さらに、通常のコールタールピッチ中にはフリ
ーカーボンを数%含有しているが、このフリーカーボン
が存在していても特に支障はない。しかし、緻密化処理
においてはC/C複合材の細孔内へのピッチの浸透を妨
げるので好ましくない。
The method of the present invention will be described below. As the pitch, any of coal tar pitch, asphalt which is a vacuum distillation residue of crude oil, naphtha tar pitch, and petroleum pitch of FCC decant oil can be used. Also, these pitches may be pitches which have been previously hydrotreated. The softening point is preferably in the range of 70 to 300 ° C.
When the softening point is lower than this, when heated to 400 to 500 ° C., the viscosity is low, but the amount of decomposition products is large, the amount of mesophase produced is small, and the time until solidification is long. When the softening point is high, the amount of mesophase produced is large and the time until solidification is short, but the viscosity is high and the penetration of the pitch between the fibers is insufficient, which is not preferable. Furthermore, although ordinary coal tar pitch contains a few% of free carbon, the presence of this free carbon does not cause any problems. However, the densification treatment is not preferable because it impedes the penetration of pitch into the pores of the C / C composite material.

【0014】炭素繊維とピッチをマトリックスとした成
形体を調製する場合の炭素繊維は平織、朱子織等の2次
元の織物、あるいは繊維束を立体的に編んだ3次元織物
のような炭素繊維として一定の形態を持つものである。
2次元の織物の場合、一定の体積を持つC/C複合材を
製造するためには織物を積層し、これを次の工程である
ピッチ中で熱処理する際、積層の乱れを防ぐ必要がある
が、この対策として、例えば、積層した織物を粘着テー
プで固定するか、あるいは鉄板等の板間に挟んで固定し
ても良い。なお、繊維束を一方向に配列した一方向C/
C複合材を調製することは一方向に配列してピッチ中で
熱処理しても繊維の配列の乱れが多くなり、好ましくな
い。しかし、何等かの方法によって繊維の乱れを防ぐ方
法があれば適用可能である。
The carbon fiber used in the case of preparing a molded body having carbon fiber and pitch as a matrix is a two-dimensional woven fabric such as plain weave or satin weave, or a carbon fiber such as a three-dimensional woven fabric in which fiber bundles are three-dimensionally knitted. It has a certain form.
In the case of a two-dimensional woven fabric, in order to manufacture a C / C composite material having a certain volume, it is necessary to prevent the disorder of the lamination when laminating the woven fabric and heat-treating the woven fabric in the next step, pitch. However, as a measure against this, for example, the laminated woven fabric may be fixed with an adhesive tape, or may be fixed by being sandwiched between plates such as an iron plate. In addition, unidirectional C / where fiber bundles are arranged in one direction
It is not preferable to prepare the C-composite material, because even if it is arranged in one direction and heat-treated in the pitch, the arrangement of the fibers is disturbed. However, it can be applied if there is a method for preventing fiber disorder by some method.

【0015】一定の形状を持つ炭素繊維をその大きさ以
上の容器に入れ、炭素繊維の体積以上になるようにピッ
チを加えた後、450〜550℃に加熱し、ピッチが固
化するまで熱処理する。ピッチが固化するまでの時間は
当然のことながら、熱処理温度が低いと長くなり、高い
と短くなる。また、ピッチの軟化点が低い、すなわち、
低沸点成分を多く含有する場合は長くなる。この時間短
縮のために軟化点の高いピッチを用いると、熱処理時の
粘度が高くなり、繊維間へのピッチの浸透が不十分とな
る問題が生ずる。この問題は軟化点の低いピッチの熱処
理で、減圧にするか、あるいは窒素ガス等を吹き込んで
低沸点成分を除去することで解決できる。
Carbon fibers having a certain shape are placed in a container having a size larger than that, a pitch is added so as to be larger than the volume of the carbon fibers, and then heated at 450 to 550 ° C. and heat-treated until the pitch solidifies. . The time until the pitch solidifies is naturally long when the heat treatment temperature is low and short when it is high. Also, the softening point of the pitch is low, that is,
If it contains a large amount of low-boiling components, it will become longer. If a pitch having a high softening point is used for shortening this time, the viscosity at the time of heat treatment becomes high, and the problem of insufficient penetration of the pitch between the fibers occurs. This problem can be solved by heat treatment at a pitch having a low softening point, and by reducing the pressure or by blowing nitrogen gas or the like to remove low boiling point components.

【0016】さらに、ピッチ中の熱処理をオートクレー
ヴ等を用いて加圧下で行うことは繊維間にピッチを浸透
させる効果が大きいと容易に考えられる。しかし、実際
には減圧下あるいは常圧下の場合と同等かそれ以下の効
果しかない。むしろ,低沸点成分や分解生成物が存在す
るために、固化するまでの時間が長くなり、そのため、
温度を高くするか、長時間の加熱が必要になると共に、
加圧容器を必要とする装置上の制約の方が大きい。
Further, it is easily considered that performing the heat treatment in the pitch under pressure using an autoclave or the like has a great effect of penetrating the pitch between the fibers. However, in actuality, the effect is equal to or less than that under reduced pressure or normal pressure. Rather, it takes a long time to solidify due to the presence of low-boiling components and decomposition products.
As the temperature is raised or heating is required for a long time,
There are more restrictions on the device that require a pressurized container.

【0017】冷却後、容器から取り出し、成形された炭
素繊維の周囲に付着している固化したピッチを取り除
く。ピッチが十分固化した段階まで熱処理した場合には
ピッチは容易に取り除くことができる。ピッチを取り除
いたものは窒素ガス等の不活性ガス中で約1000℃ま
で加熱して炭素化し、必要ならば、2000℃以上の温
度で黒鉛化処理する。約1000℃で炭素化した際、成
形された炭素繊維の表面からピッチが漏出し、炭素化し
たものが認められる場合があるが、これはピッチ中、4
50〜550℃の熱処理時にピッチが十分固化していな
かったためであり、かさ密度の低いC/C複合材とな
る。したがって、可能な限りかさ密度の高いC/C複合
材を得るためには十分固化させる必要がある。
After cooling, it is taken out of the container and the solidified pitch adhering to the periphery of the molded carbon fiber is removed. When heat treatment is performed up to the stage where the pitch is sufficiently solidified, the pitch can be easily removed. The product from which the pitch has been removed is heated to about 1000 ° C. in an inert gas such as nitrogen gas to carbonize it, and if necessary, graphitized at a temperature of 2000 ° C. or higher. When carbonized at about 1000 ° C., pitch may leak from the surface of the molded carbon fiber and carbonized may be recognized.
This is because the pitch was not sufficiently solidified during the heat treatment at 50 to 550 ° C., and the C / C composite material has a low bulk density. Therefore, in order to obtain a C / C composite material having a bulk density as high as possible, it is necessary to sufficiently solidify it.

【0018】このようにして、一定の形状を持つ炭素繊
維からはC/C複合材が製造できる。得られたC/C複
合材のかさ密度が所望のものでない場合には再びピッチ
中で熱処理することによって所望のかさ密度のものにす
る。
In this way, a C / C composite material can be manufactured from carbon fibers having a certain shape. If the bulk density of the resulting C / C composite is not desired, it is heat treated again in the pitch to obtain the desired bulk density.

【0019】なお、上記の本発明の方法にしたがって一
定の形状を持つ炭素繊維から製造したC/C複合材のか
さ密度が所望のかさ密度に達していない場合は本発明の
方法以外の他の従来の方法で緻密化することが出来ると
共に、他の方法で製造したかさ密度の低いC/C複合材
の緻密化に本発明の方法を適用することが出来る。
When the bulk density of the C / C composite material produced from carbon fibers having a certain shape according to the method of the present invention does not reach the desired bulk density, other than the method of the present invention. The method of the present invention can be applied to the densification of a C / C composite material having a low bulk density, which can be densified by a conventional method and also manufactured by another method.

【0020】[0020]

【実施例】以下、実施例によって本発明をさらに詳しく
説明する。 実施例1 本実施例は2次元織物である平織の炭素繊維を用いた2
方向C/C複合材の製造と緻密化処理を示す。市販のポ
リアクリロニトリル(PAN)系高強度炭素繊維の30
00本/束の平織を2600℃で熱処理し、110mm
×110mmに切断したものを用いた。この10枚を積
層し、上下を鉄板で挟み、粘着テープで織物の厚さが約
1mmになるように固定した。この2組を内径180m
m、高さ250mmのステンレス製容器内に設置し、軟
化点234℃のコールタールピッチを入れ、電気炉で3
50℃に加熱して溶融した。入れたピッチの量は織物の
高さ以上になるようにした。ついで、ステンレス製容器
上部から容器内径より小さい径の落し蓋を設置した。な
お、用いたピッチはあらかじめキノリンに溶解、分散さ
せた後、ろ過によってフリーカーボンを除去し、キノリ
ンを蒸留で回収した残渣ピッチを430℃で熱処理して
軟化点を調節したものである。
The present invention will be described in more detail with reference to the following examples. Example 1 This example uses a plain weave carbon fiber which is a two-dimensional woven fabric.
7 shows the manufacture and densification of the directional C / C composite. Commercially available polyacrylonitrile (PAN) -based high strength carbon fiber 30
Heated 00 / bundle plain weave at 2600 ℃, 110mm
A piece cut to × 110 mm was used. These 10 sheets were laminated, sandwiched between the upper and lower iron plates, and fixed with an adhesive tape so that the thickness of the woven fabric was about 1 mm. These two sets have an inner diameter of 180 m
It is installed in a stainless steel container having a height of 250 mm and a height of 250 mm, and coal tar pitch having a softening point of 234 ° C. is put therein.
It was melted by heating to 50 ° C. The amount of pitch was set to be higher than the height of the fabric. Then, a dropping lid having a diameter smaller than the inner diameter of the container was set from the upper part of the stainless steel container. The pitch used was prepared by dissolving and dispersing it in quinoline in advance, removing free carbon by filtration, and subjecting the residual pitch obtained by distillation of quinoline to heat treatment at 430 ° C. to adjust the softening point.

【0021】これを昇温速度5℃/分で480℃まで加
熱し、3時間保持した。冷却後、固化したピッチ中から
鉄板と共に織物を取り出し、鉄板を除いて2枚の成形体
を得た。この成形体1枚から幅20mm、長さ100m
mに切断して4枚、合計8枚採取し、表面を研磨した
後、かさ密度を測定したところ1.25g/cm3であ
った。窒素ガス気流中、管状炉で1000℃まで熱処理
し、30分間保持して焼成した。この熱処理で成形体は
もとの形状を保持しており、得られたC/C複合材のか
さ密度は1.21g/cm3であった。なお、かさ密度
はノギスで測定した体積と重量から求めた8枚の平均値
である。さらに、アルゴン気流中、黒鉛管を発熱体とす
るタンマン炉で2600℃、1時間焼成した。得られた
C/C複合材のかさ密度は1.20g/cm3であっ
た。 このようにして得られた複合材4枚をダンベル形
(中央幅5mm、その長さ20mm)に加工し、室温で
引張強度を測定した結果、平均値として203MPaで
あった。
This was heated to 480 ° C. at a temperature rising rate of 5 ° C./min and held for 3 hours. After cooling, the woven fabric was taken out together with the iron plate from the solidified pitch, and the iron plate was removed to obtain two molded bodies. Width 20 mm, length 100 m from this molded body
After cutting into m pieces, 4 pieces, a total of 8 pieces were collected, and after polishing the surface, the bulk density was measured and found to be 1.25 g / cm 3 . In a nitrogen gas stream, heat treatment was performed in a tubular furnace up to 1000 ° C., holding for 30 minutes and firing. By this heat treatment, the molded body retained its original shape, and the C / C composite material obtained had a bulk density of 1.21 g / cm 3 . The bulk density is an average value of eight sheets obtained from the volume and weight measured with a caliper. Furthermore, it was fired at 2600 ° C. for 1 hour in a Tammann furnace using a graphite tube as a heating element in an argon stream. The bulk density of the obtained C / C composite material was 1.20 g / cm 3 . The four composite materials thus obtained were processed into a dumbbell shape (center width: 5 mm, length: 20 mm), and the tensile strength was measured at room temperature. As a result, the average value was 203 MPa.

【0022】1000℃および2600℃複合材各4枚
を内径80mm、高さ150mmの円筒形ガラス容器内
に設置し、上記と同様のピッチを入れた後、炉中で30
0℃に加熱、溶融させた。溶融後のピッチの量はC/C
複合材の高さより高くした。これを5℃/分で500℃
まで加熱し、2時間保持した。冷却後、固化したピッチ
からC/C複合材を取り出し、表面のピッチを除去した
後、管状炉で1000℃、30分間熱処理した。この操
作を5回繰り返した後、タンマン炉で2600℃、1時
間焼成した。緻密化処理回数および2600℃焼成によ
るかさ密度の変化をまとめて表1に示す。
Four pieces of each of 1000 ° C. and 2600 ° C. composite materials were placed in a cylindrical glass container having an inner diameter of 80 mm and a height of 150 mm, and after putting the same pitch as above, 30 in a furnace.
It was heated to 0 ° C. and melted. The amount of pitch after melting is C / C
Made higher than the height of the composite. 500 ℃ at 5 ℃ / minute
Heated to and held for 2 hours. After cooling, the C / C composite material was taken out from the solidified pitch, the surface pitch was removed, and then heat treatment was performed at 1000 ° C. for 30 minutes in a tubular furnace. After repeating this operation 5 times, it was fired in a Tammann furnace at 2600 ° C. for 1 hour. Table 1 summarizes the number of densification treatments and the change in bulk density due to firing at 2600 ° C.

【0023】[0023]

【表1】 この結果から、2600℃複合材の方が1000℃複合
材のものよりも容易にかさ密度が高くなることが分か
る。
[Table 1] From this result, it can be seen that the bulk density of the 2600 ° C. composite material is higher than that of the 1000 ° C. composite material more easily.

【0024】表1の5回の緻密化処理後,2600℃で
焼成して得られた複合材をダンベル形に加工し、引張強
度を測定した。その結果、1000℃複合材からの強度
は325MPa,2600℃複合材からのそれは416
MPaであった。
The composite material obtained by firing at 2600 ° C. after 5 densification treatments in Table 1 was processed into a dumbbell shape, and the tensile strength was measured. As a result, the strength from the 1000 ° C composite material is 325 MPa, and that from the 2600 ° C composite material is 416 MPa.
It was MPa.

【0025】実施例2 本実施例は3次元織物からC/C複合材を製造したもの
である。PAN系高弾性炭素繊維束を直交3次元織した
厚さ5mm、長さ100mm、幅20mmの3次元織物
(有馬製作所製)を内径180mm、高さ250mmの
ステンレス製容器に入れ、軟化点234℃の実施例1で
用いたコールタールピッチを加え、約350℃に加熱し
て溶融した。溶融したピッチが3次元織物より高くなる
ように調節した後、上から落し蓋を設置し,500℃ま
で加熱し、3時間保持した。冷却後,固化したピッチ中
から織物を取り出し、表面に付着しているピッチを除
き、管状炉で窒素ガス中、1000℃、30分間熱処理
した。得られたものはもとの形状を保持しており、かさ
密度は1.12g/cm3であった。さらに、タンマン
炉で2600℃、1時間焼成し、かさ密度1.11g/
cm3の複合材を得た。これを上記と同様のピッチ中で
の熱処理操作を5回繰り返し,かさ密度の変化を調べ
た。その結果を表2に示す。
Example 2 In this example, a C / C composite material was produced from a three-dimensional fabric. A 3D woven fabric (made by Arima Seisakusho) having a thickness of 5 mm, a length of 100 mm and a width of 20 mm obtained by three-dimensionally woven a PAN-based highly elastic carbon fiber bundle into a stainless steel container having an inner diameter of 180 mm and a height of 250 mm and having a softening point of 234 ° C. The coal tar pitch used in Example 1 was added and heated to about 350 ° C. to melt. After adjusting the molten pitch to be higher than that of the three-dimensional woven fabric, the pitch was dropped from the top, a lid was installed, and the mixture was heated to 500 ° C. and kept for 3 hours. After cooling, the woven fabric was taken out of the solidified pitch, the pitch adhering to the surface was removed, and heat treatment was performed in a tubular furnace at 1000 ° C. for 30 minutes in nitrogen gas. The obtained product retained its original shape and had a bulk density of 1.12 g / cm 3 . Furthermore, it was baked at 2600 ° C. for 1 hour in a Tammann furnace, and the bulk density was 1.11 g /
A cm 3 composite material was obtained. This was repeated 5 times for the heat treatment operation in the same pitch as above, and the change in bulk density was investigated. The results are shown in Table 2.

【0026】[0026]

【表2】 ───────────────── 処理回数 かさ密度 (g/cm3 ) ───────────────── 1 1.46 2 1.63 3 1.71 4 1.78 5 1.80 ─────────────────[Table 2] ───────────────── Number of treatments Bulk density ( g / cm 3 ) ────────────────── 1 1 .46 2 1.63 3 1.71 4 1.78 5 1.80 ─────────────────

【0027】このようにして得られた複合材をタンマン
炉で2600℃,1時間焼成した。この複合材のかさ密
度は1.80g/cm3であり、引張強度は126MP
aであった。
The composite material thus obtained was fired in a Tammann furnace at 2600 ° C. for 1 hour. The bulk density of this composite material is 1.80 g / cm 3 , and the tensile strength is 126 MP.
It was a.

【0028】実施例3 本実施例はかさ密度の低いC/C複合材を実質的に減圧
下の条件でピッチの固化時間の短縮したときの緻密化の
効果を調べたものである。実施例1と同様の操作によっ
てかさ密度1.20g/cm3の2600℃複合材を調
製した。これを3口カバーを付けた内径80mm、高さ
200mmの円筒型ガラス製容器に入れ、実施例1と同
じピッチを加えて、300℃に加熱して溶融させた。3
口カバーの中央口に付けたガラス管を容器底部に達する
まで挿入し、5l/分で窒素ガスを吹き込んだ。このよ
うにして、5℃/分で480℃まで加熱し、この温度に
保持してピッチの状態を観察したところ、約20分経過
した頃からピッチは膨張し始め、30分で膨張が終了し
た。そこで、30分経過後、容器を炉から取り出し、冷
却した後、C/C複合材の表面に付着しているピッチを
取り除き、1000℃、30分間熱処理した。この操作
を5回繰り返したときのかさ密度の変化をまとめて表3
に示す。
Example 3 In this example, a C / C composite material having a low bulk density was examined for the effect of densification when the solidification time of the pitch was shortened under conditions of substantially reduced pressure. A 2600 ° C. composite material having a bulk density of 1.20 g / cm 3 was prepared by the same operation as in Example 1. This was placed in a cylindrical glass container having an inner diameter of 80 mm and a height of 200 mm equipped with a three-neck cover, the same pitch as in Example 1 was added, and the mixture was heated to 300 ° C. to be melted. Three
A glass tube attached to the center opening of the mouth cover was inserted until it reached the bottom of the container, and nitrogen gas was blown at 5 l / min. In this way, heating to 480 ° C. at 5 ° C./min and maintaining the temperature at this temperature and observing the state of the pitch revealed that the pitch started to expand after about 20 minutes and ended in 30 minutes. . Then, after 30 minutes, the container was taken out of the furnace, cooled, the pitch adhering to the surface of the C / C composite material was removed, and heat treatment was performed at 1000 ° C. for 30 minutes. The changes in the bulk density when this operation is repeated 5 times are summarized in Table 3.
Shown in

【0029】[0029]

【表3】 ───────────────── 処理回数 かさ密度(g/cm3) ───────────────── 1 1.51 2 1.66 3 1.76 4 1.80 5 1.83 ─────────────────[Table 3] ───────────────── Number of treatments Bulk density (g / cm 3 ) ────────────────── 1 1 .51 2 1.66 3 1.76 4 1.80 5 1.83 ──────────────────

【0030】この表で示したかさ密度の処理回数による
変化は表1の場合とほぼ同様であり、ピッチ中での熱処
理時に窒素ガスを吹き込み、軽質分を除去して固化を急
速に進行させても、緻密化の効果は変わらず、大幅に固
化時間を短縮することが可能であることが分った。
The change in the bulk density with the number of treatments shown in this table is almost the same as in the case of Table 1. Nitrogen gas is blown during the heat treatment in the pitch to remove the light components to rapidly solidify. However, it was found that the effect of densification did not change and the solidification time could be shortened significantly.

【0031】実施例4 本実施例はフリーカーボンを含むコールタールピッチに
よる緻密化の効果を調べたものである。実施例1と同様
の操作によってかさ密度1.20g/cm3の2600
℃複合材を調製した。これを3口カバーを付けた内径8
0mm、高さ200mmの円筒型ガラス製容器に入れ、
キノリン不溶分量として求めたフリーカーボンを8.7
重量%含むコールタールピッチ(軟化点78℃)を加え
て、300℃に加熱して溶融させた。3口カバーの中央
口に付けたガラス管を容器底部に達するまで挿入し、5
l/分で窒素ガスを吹き込んだ。このようにして、5℃
/分で480℃まで加熱し、この温度に保持してピッチ
の状態を観察したところ、約30分経過した頃からピッ
チは膨張し始め、50分で膨張が終了した。そこで、5
0分経過後、容器を炉から取り出し、冷却した後、C/
C複合材の表面に付着しているピッチを取り除き、10
00℃、30分間熱処理した。この操作を5回繰り返し
たときのかさ密度の変化をまとめて表4に示す。
Example 4 In this example, the effect of densification by coal tar pitch containing free carbon was examined. By the same operation as in Example 1, 2600 having a bulk density of 1.20 g / cm 3
A ° C composite was prepared. This is an inner diameter 8 with a 3-port cover
Put in a cylindrical glass container of 0 mm and height 200 mm,
Free carbon calculated as the amount of quinoline insoluble matter was 8.7
Coal tar pitch (softening point 78 ° C.) containing wt% was added and heated to 300 ° C. to melt. Insert the glass tube attached to the center port of the 3-port cover until it reaches the bottom of the container.
Nitrogen gas was blown in at 1 / min. In this way, 5 ℃
When heated to 480 ° C./min and kept at this temperature and observing the state of the pitch, the pitch started to expand after about 30 minutes, and the expansion ended in 50 minutes. So 5
After 0 minutes, the container was taken out of the furnace, cooled, and then C /
The pitch adhering to the surface of the C composite material is removed, and 10
It heat-processed at 00 degreeC for 30 minutes. The changes in bulk density when this operation is repeated 5 times are summarized in Table 4.

【0032】[0032]

【表4】 ───────────────── 処理回数 かさ密度(g/cm3) ───────────────── 1 1.46 2 1.58 3 1.63 4 1.71 5 1.73 ─────────────────[Table 4] ───────────────── Number of treatments Bulk density (g / cm 3 ) ────────────────── 1 1 .46 2 1.58 3 1.63 4 1.71 5 1.73 ─────────────────

【0033】この結果から、処理回数が多くなるにした
がってかさ密度の上昇の程度は小さくなり、複合材の細
孔内へのピッチの浸透をフリーカーボンが阻害している
と考えられた。
From these results, it is considered that the increase in bulk density decreases as the number of treatments increases, and free carbon hinders the penetration of pitch into the pores of the composite material.

【0034】比較例1 本比較例はオートクレーヴによるガス加圧下で緻密化処
理を行ったときのかさ密度の変化を調べたものである。
実施例1と同様の操作によってかさ密度1.20g/c
3の2600℃複合材を調製した。これをオートクレ
ーヴ内に実施例1と同様のコールタールピッチと共に入
れ、窒素ガスで3MPaに加圧した。電気炉でピッチの
温度が500℃になるように加熱した。この時、圧力は
約10MPaに達した。この状態で3、5および7時間
保持した。冷却後、付着しているピッチを取り除き、管
状炉で1000℃、30分間熱処理した。その結果、3
および5時間処理ではピッチの漏出が認められた。そこ
で、保持時間を7時間として上記と同様の操作を全部で
5回繰り返し、かさ密度を測定した。その結果を表5に
示した。
Comparative Example 1 In this comparative example, the change in bulk density when the densification treatment was performed under gas pressure by an autoclave was examined.
By the same operation as in Example 1, the bulk density is 1.20 g / c.
A m 3 2600 ° C. composite was prepared. This was put in an autoclave together with the same coal tar pitch as in Example 1, and pressurized to 3 MPa with nitrogen gas. It heated in an electric furnace so that the temperature of the pitch might be set to 500 degreeC. At this time, the pressure reached about 10 MPa. This state was maintained for 3, 5 and 7 hours. After cooling, the attached pitch was removed, and heat treatment was performed at 1000 ° C. for 30 minutes in a tubular furnace. As a result, 3
Leakage of the pitch was observed after 5 hours of treatment. Therefore, the same operation as above was repeated 5 times in total with the holding time of 7 hours, and the bulk density was measured. The results are shown in Table 5.

【0035】[0035]

【表5】 ───────────────── 処理回数 かさ密度(g/cm3) ───────────────── 1 1.58 2 1.69 3 1.78 4 1.81 5 1.84 ─────────────────[Table 5] ───────────────── Number of treatments Bulk density (g / cm 3 ) ────────────────── 1 1 .58 2 1.69 3 1.78 4 1.81 5 1.84 ──────────────────

【0036】この結果と表1および3の結果と比較し
て、オートクレーヴによる加圧処理は処理回数が少ない
段階で緻密化の効果が高いことが認められたが、低沸点
成分が存在するため、ピッチの固化時間が大幅に長くな
ることが認められた。
Comparing this result with the results of Tables 1 and 3, it was confirmed that the pressure treatment with the autoclave had a high effect of densification in the stage where the number of treatments was small, but the presence of a low boiling point component. It was confirmed that the solidification time of the pitch was significantly increased.

【0037】比較例2 本比較例はかさ密度の低いC/C複合材をピッチ含浸
後、熱処理する従来法について調べたものである。実施
例1と同様の操作によってかさ密度1.20g/cm3
の2600℃複合材を調製した。これを減圧−加圧操作
が可能なオートクレーヴの上部に設置した。オートクレ
ーヴ内に実施例1と同様のコールタールピッチを入れ、
真空ポンプで減圧にし、電気炉でピッチの温度が350
℃になるように加熱した。ついで、ピッチ中に浸漬さ
せ、約1時間放置した後、排気を止め、窒素ガスを約1
MPaに達するまで導入し、約1時間放置後、複合材を
取り出した。
Comparative Example 2 In this comparative example, a conventional method in which a C / C composite material having a low bulk density was impregnated with a pitch and then heat-treated was examined. By the same operation as in Example 1, the bulk density is 1.20 g / cm 3.
2600 ° C. composite material was prepared. This was installed in the upper part of the autoclave in which depressurization-pressurization operation was possible. Put the coal tar pitch similar to Example 1 in the autoclave,
Reduce the pressure with a vacuum pump and raise the pitch temperature to 350 with an electric furnace.
Heated to 0 ° C. Then, after immersing it in the pitch and letting it stand for about 1 hour, the exhaust was stopped and the nitrogen gas was stopped for about 1 hour.
It was introduced until the pressure reached to MPa, left for about 1 hour, and then the composite material was taken out.

【0038】表面に付着しているピッチを取り除いた複
合材をステンレス製型枠に入れ、この型枠をステンレス
製容器中に設置し、落し蓋を介して上部から0.1MP
aの荷重を加えた。落し蓋端からパイプを容器底部に達
するまで挿入し、窒素ガスを流しながら、5℃/分で4
50℃、60分間処理し、ついで、1MPaの荷重下、
600℃、60分間熱処理した。冷却後、型枠から取り
出した複合材端部には漏出し、固化したピッチが存在し
た。固化したピッチを取り除き、管状炉で窒素ガス気流
中、1000℃、30分間熱処理した。このピッチ含浸
−熱処理操作を5回繰り返し、かさ密度を求め、表6に
示した。
The composite material from which the pitch adhering to the surface was removed was placed in a stainless steel mold, and this mold was placed in a stainless steel container.
The load of a was applied. Insert the pipe from the end of the dropping lid until it reaches the bottom of the container, and while flowing nitrogen gas, 4 at 5 ° C / min.
Treatment at 50 ° C. for 60 minutes, then under a load of 1 MPa,
Heat treatment was performed at 600 ° C. for 60 minutes. After cooling, leaked and solidified pitch was present at the end of the composite material taken out from the mold. The solidified pitch was removed, and heat treatment was performed in a tubular furnace in a nitrogen gas stream at 1000 ° C. for 30 minutes. This pitch impregnation-heat treatment operation was repeated 5 times to determine the bulk density, and the results are shown in Table 6.

【0039】[0039]

【表6】 ───────────────── 処理回数 かさ密度(g/cm3) ───────────────── 1 1.36 2 1.47 3 1.55 4 1.59 5 1.61 ─────────────────[Table 6] ───────────────── Number of treatments Bulk density (g / cm 3 ) ────────────────── 1 1 .36 2 1.47 3 1.55 4 1.59 5 1.61 ──────────────────

【0040】[0040]

【発明の効果】熱可塑性であるピッチ類をマトリックス
とした炭素繊維の2次元あるいは3次元織物との成形体
はその炭素化過程でピッチは軟化、溶融し、形状が崩壊
するためピッチ類をマトリックスとすることは困難であ
った。これをピッチ中で炭素繊維織物を減圧下または常
圧下、ピッチが固化するまで熱処理するという簡単な操
作で、炭素繊維織物の原形を保持したC/C複合材の製
造が可能となった。さらに、かさ密度の低いC/C複合
材を同様にしてピッチ中で熱処理することによって緻密
化され、しかも、1回の処理によるかさ密度の上昇は高
く、そのため、所望のかさ密度に達するまでの処理回数
を少なくすることができる。
EFFECTS OF THE INVENTION A molded product of a two-dimensional or three-dimensional woven fabric of carbon fibers having thermoplastic pitches as a matrix softens and melts the pitch during the carbonization process, and the shape collapses, so that the pitches are matrixed. It was difficult to say. A simple operation of heat-treating the carbon fiber woven fabric in the pitch under reduced pressure or normal pressure until the pitch is solidified makes it possible to produce a C / C composite material in which the original shape of the carbon fiber woven fabric is maintained. Further, a C / C composite material having a low bulk density is similarly densified by heat-treating it in a pitch, and the bulk density is highly increased by one treatment, so that the desired bulk density is not reached. The number of processes can be reduced.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 2次元または3次元の炭素繊維織物をピ
ッチ中、減圧下または常圧下で450〜550℃、0.
5〜3時間熱処理した後、1000℃以上の温度で熱処
理することを特徴とする炭素繊維炭素複合材の製造方
法。
1. A two-dimensional or three-dimensional carbon fiber woven fabric in a pitch at 450 to 550 ° C. under reduced pressure or normal pressure at 0.
A method for producing a carbon fiber-carbon composite material, which comprises performing heat treatment at a temperature of 1000 ° C. or higher after heat treatment for 5 to 3 hours.
【請求項2】 2次元または3次元の炭素繊維織物をピ
ッチ中、減圧下または常圧下で450〜550℃、0.
5〜3時間熱処理した後、1000℃以上の温度で熱処
理して得た炭素繊維炭素複合材を再びピッチ中,減圧下
または常圧下で450〜550℃、0.5〜3時間熱処
理した後、1000℃以上の温度で熱処理する操作を繰
返し、緻密化処理することを特徴とする炭素繊維炭素複
合材の製造方法。
2. A two-dimensional or three-dimensional carbon fiber woven fabric in a pitch at 450 to 550 ° C. under reduced pressure or normal pressure at 0.
After heat treatment for 5 to 3 hours and then heat treatment at a temperature of 1000 ° C. or higher, the carbon fiber-carbon composite material is heat treated again in the pitch under reduced pressure or under normal pressure at 450 to 550 ° C. for 0.5 to 3 hours, A method for producing a carbon fiber-carbon composite material, which comprises repeating a heat treatment operation at a temperature of 1000 ° C. or higher to perform a densification treatment.
JP6331334A 1994-10-05 1994-10-05 Manufacture of carbon fiber-carbon conjugate material Pending JPH08109076A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6331334A JPH08109076A (en) 1994-10-05 1994-10-05 Manufacture of carbon fiber-carbon conjugate material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6331334A JPH08109076A (en) 1994-10-05 1994-10-05 Manufacture of carbon fiber-carbon conjugate material

Publications (1)

Publication Number Publication Date
JPH08109076A true JPH08109076A (en) 1996-04-30

Family

ID=18242527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6331334A Pending JPH08109076A (en) 1994-10-05 1994-10-05 Manufacture of carbon fiber-carbon conjugate material

Country Status (1)

Country Link
JP (1) JPH08109076A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007197309A (en) * 2005-12-27 2007-08-09 Jfe Chemical Corp Mesophase microsphere and method of producing carbon material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01305858A (en) * 1988-06-03 1989-12-11 Kawasaki Steel Corp Production of carbon fiber reinforced carbon composite material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01305858A (en) * 1988-06-03 1989-12-11 Kawasaki Steel Corp Production of carbon fiber reinforced carbon composite material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007197309A (en) * 2005-12-27 2007-08-09 Jfe Chemical Corp Mesophase microsphere and method of producing carbon material

Similar Documents

Publication Publication Date Title
JPH01252577A (en) Production of carbon/carbon composite material
JP3151580B2 (en) Manufacturing method of carbon material
JPH08109076A (en) Manufacture of carbon fiber-carbon conjugate material
JPH0816032B2 (en) High-strength carbon-carbon composite manufacturing method
DE3203659A1 (en) Process for producing a sintered body
JPH06183835A (en) Production of preform body for staple fiber-reinforced c/c composite and preform body production by the same method
GB2112827A (en) Carbon fiber materials
US4164601A (en) Coating for fibrous carbon material in boron containing composites
JPH07187833A (en) Carbon fiber reinforced carbon composite material
JP3031626B2 (en) Binder, impregnating agent, and method for producing them
JPS6360156A (en) High carbon composite material
JP3288433B2 (en) Carbon fiber reinforced carbon composite precursor
JP2566555B2 (en) Method for producing carbon fiber reinforced carbon composite material
JP2762461B2 (en) Method for producing carbon fiber reinforced carbon composite
JPS62252371A (en) Manufacture of carbon fiber reinforced carbon composite material
JP3983401B2 (en) Method for producing molded body made of C / C material
JPH11302086A (en) Carbon fiber-reinforced carbon composite material and its production
JPH068215B2 (en) Manufacturing method of carbon fiber reinforced carbon material
JP3861899B2 (en) Carbon fiber
JP2697482B2 (en) Method for producing pitch-based material and method for producing carbon material using the same as raw material
JPH03205360A (en) Production of carbon fiber-reinforced carbon composite material having high strength
JPH01145372A (en) Production of carbon fiber-reinforced carbonaceous composite
JPH01145373A (en) Production of carbon fiber-reinforced carbonaceous material
JP2004091256A (en) Method for producing carbon fiber reinforced carbon composite material
JP2004315252A (en) Production method for carbon/carbon composite material