JPH0810864A - Electromagnetic forming device - Google Patents

Electromagnetic forming device

Info

Publication number
JPH0810864A
JPH0810864A JP6147848A JP14784894A JPH0810864A JP H0810864 A JPH0810864 A JP H0810864A JP 6147848 A JP6147848 A JP 6147848A JP 14784894 A JP14784894 A JP 14784894A JP H0810864 A JPH0810864 A JP H0810864A
Authority
JP
Japan
Prior art keywords
work
magnetic flux
gap
air
electromagnetic forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6147848A
Other languages
Japanese (ja)
Other versions
JP3454570B2 (en
Inventor
Seiichi Minegishi
誠一 嶺岸
Kazukiyo Fujisawa
和清 藤沢
Noriaki Okamoto
徳明 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP14784894A priority Critical patent/JP3454570B2/en
Publication of JPH0810864A publication Critical patent/JPH0810864A/en
Application granted granted Critical
Publication of JP3454570B2 publication Critical patent/JP3454570B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To further narrow the clearance generated between a magnetic flux collecting member and a work without making the magnetic flux collecting member in contact with the work and to increase the electromagnetic forming force without degrading the forming efficiency. CONSTITUTION:In an electromagnetic forming device 10 utilizing the force acting on the space C between magnetic flux converging device 18 on account of magnetic field generated by a coil 34 and secondary current induced by the work 20, plural nozzle parts 16a to 16d to almost uniform the clearance C cover an upper side of the circumference by flowing air into the clearance C between the work 20 and the magnetic flux collecting unit 18 are provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、コイルによって生成さ
れる磁界と、ワークに誘起される二次電流との関係から
磁束集中部材とワークとの間隙に作用する力を用いて該
ワークを電磁成形する電磁成形装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention uses a force acting on a gap between a magnetic flux concentrating member and a work from the relationship between a magnetic field generated by a coil and a secondary current induced in the work to electromagnetically work the work. The present invention relates to an electromagnetic forming device for forming.

【0002】[0002]

【従来の技術】例えば、特公昭43−24270号公報
に開示されるように、パイプ等の管状部材に対して縮管
加工、拡管加工等の塑性成形を行うために電磁成形(pu
lse magnetic forming)装置が用いられている。図7に
示されるように、この電磁成形装置1は、基本的には、
略円筒状に形成され、内部に設けられたコイル2によっ
て変化磁界を生成させるコイル部材3と、前記コイル部
材3内に装着され内部に略円筒状のワーク4を収容する
ための孔部が画成された磁束集中部材5と、ワーク4の
上部を縮径するためのテーパ部が形成された成形金型6
とから構成される。なお、参照符号9は電磁成形装置1
が載置される架台を示している。
2. Description of the Related Art For example, as disclosed in Japanese Patent Publication No. 43-24270, electromagnetic forming (pu) for performing plastic forming such as pipe reduction and expansion on a tubular member such as a pipe.
lse magnetic forming) device is used. As shown in FIG. 7, the electromagnetic forming apparatus 1 basically has
A coil member 3 that is formed in a substantially cylindrical shape and that generates a changing magnetic field by the coil 2 provided inside, and a hole portion that is mounted in the coil member 3 and that accommodates a substantially cylindrical work 4 inside are defined. Formed magnetic flux concentrating member 5 and molding die 6 in which a taper portion for reducing the diameter of the upper portion of the work 4 is formed
Composed of and. In addition, reference numeral 9 is the electromagnetic forming apparatus 1.
It shows a stand on which is mounted.

【0003】前記磁束集中部材5の内周面は、内方の中
心に向かって突出する環状凸部7と環状部8とから形成
されている。この場合、前記環状凸部7とワーク4とは
間隙Aだけ離間し、環状部8とワーク4とは間隙Bだけ
離間している。
The inner peripheral surface of the magnetic flux concentrating member 5 is formed of an annular convex portion 7 and an annular portion 8 which project toward the inner center. In this case, the annular convex portion 7 and the work 4 are separated by a gap A, and the annular portion 8 and the work 4 are separated by a gap B.

【0004】前記電磁成形装置1によって発生する電磁
成形力F(N)は、F=IBlと表される。ここで、I
は、磁束集中部材5に誘起する電流(A)、Bは、磁束
集中部材5に発生する磁束の磁束密度(T)、lは、ワ
ーク4の加工部の長さ(m)を夫々表している。この場
合、前記コイル2に通電された電流によって変化磁界が
生成され、前記変化磁界によってワーク4に誘起電流
(二次電流)を生じさせる。前記コイル部材3に形成さ
れた磁束は、磁束集中部材5の内周面とワーク4の外周
面との間に画成された間隙の広狭に対応して集中し、前
記間隙が狭小であればある程、高い磁束密度からなる磁
束が発生する。従って、間隙Bよりも狭小な間隙Aで
は、より大なる成形圧力である電磁成形力が生成される
(図8参照)。
The electromagnetic forming force F (N) generated by the electromagnetic forming apparatus 1 is expressed as F = IBl. Where I
Is the current (A) induced in the magnetic flux concentrating member 5, B is the magnetic flux density (T) of the magnetic flux generated in the magnetic flux concentrating member 5, and l is the length (m) of the machined portion of the workpiece 4, respectively. There is. In this case, a changing magnetic field is generated by the current passed through the coil 2, and an induced current (secondary current) is generated in the work 4 by the changing magnetic field. The magnetic flux formed in the coil member 3 concentrates in accordance with the width of the gap defined between the inner peripheral surface of the magnetic flux concentration member 5 and the outer peripheral surface of the work 4, and if the gap is small, The magnetic flux having a higher magnetic flux density is generated to some extent. Therefore, in the gap A which is narrower than the gap B, the electromagnetic forming force, which is a larger forming pressure, is generated (see FIG. 8).

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記の
従来技術では、電磁成形力をより増大させるために磁束
集中部材5の内周面とワーク4の外周面との間隙Aを、
従来に比較してより一層狭小にした場合、磁束集中部材
5の内周面とワークの外周面とが接触し易くなるという
不都合がある。
However, in the above prior art, the gap A between the inner peripheral surface of the magnetic flux concentration member 5 and the outer peripheral surface of the work 4 is increased in order to further increase the electromagnetic forming force.
If it is made narrower than the conventional one, there is a disadvantage that the inner peripheral surface of the magnetic flux concentrating member 5 and the outer peripheral surface of the workpiece are likely to come into contact with each other.

【0006】すなわち、磁束集中部材5の孔部に対して
ワーク4を予め位置決めして収容した場合であっても、
前記磁束集中部材5の孔部の軸線X1 に対するワーク4
の軸線X2 がずれたり(図9A参照)、あるいはワーク
4が傾倒することにより(図9B参照)、磁束集中部材
5の内周面とワーク4の外周面とが接触して短絡導通
し、結局、磁束集中部材5に誘導電流(二次電流)が流
れて好適に磁場を生成することができないという不都合
がある。このことは、図9Cに示されるように、磁束集
中部材5とワーク4との間に異物9aが進入し、前記異
物9aを介して磁束集中部材5とワーク4とが短絡導通
する場合も同様である。
That is, even when the work 4 is previously positioned and accommodated in the hole of the magnetic flux concentration member 5,
Workpiece 4 with respect to the axis X 1 of the hole of the magnetic flux concentration member 5
When the axis line X 2 of (1) is displaced (see FIG. 9A) or the work 4 is tilted (see FIG. 9B), the inner peripheral surface of the magnetic flux concentrating member 5 and the outer peripheral surface of the work 4 come into contact with each other to cause short-circuit conduction. After all, there is a disadvantage that an induced current (secondary current) flows through the magnetic flux concentration member 5 and a magnetic field cannot be generated appropriately. This also applies to the case where the foreign matter 9a enters between the magnetic flux concentration member 5 and the work 4 and the magnetic flux concentration member 5 and the work 4 are short-circuited and conducted via the foreign matter 9a, as shown in FIG. 9C. Is.

【0007】また、磁束集中部材5の孔部内に収容され
るワーク4が位置ずれ等を生じないように図示しない位
置決め手段等を介して位置決めを行う場合には、前記磁
束集中部材5からワーク4を着脱することが煩雑とな
り、成形効率が劣化するという不都合もある。
Further, when the workpiece 4 housed in the hole of the magnetic flux concentrating member 5 is positioned by a not-shown positioning means or the like so as not to be displaced, the magnetic flux concentrating member 5 is moved to the workpiece 4. There is also the inconvenience that the attachment and detachment becomes complicated and the molding efficiency deteriorates.

【0008】本発明は、前記の不都合を克服するために
なされたものであり、磁束集中部材とワークとが接触す
ることなく前記磁束集中部材とワークとによって画成さ
れる間隙のより一層の狭小化を図るとともに、成形効率
を劣化させることなく電磁成形力を増強することが可能
な電磁成形装置を提供することを目的とする。
The present invention has been made to overcome the above inconvenience, and the gap defined by the magnetic flux concentrating member and the work is further narrowed without contact between the magnetic flux concentrating member and the work. It is an object of the present invention to provide an electromagnetic molding device capable of increasing the electromagnetic molding force without deteriorating the molding efficiency.

【0009】[0009]

【課題を解決するための手段】前記の目的を達成するた
めに、本発明は、コイルによって生成される磁界と、ワ
ークに誘起される二次電流との関係から磁束集中部材と
ワークとの間隙に作用する力を用いて該ワークを電磁成
形する装置において、前記ワークと前記磁束集中部材と
の間隙にエアーを送風することにより、前記ワークと磁
束集中部材との間隙を略均一とするエアー供給手段を設
けることを特徴とする。
In order to achieve the above object, the present invention provides a gap between a magnetic flux concentrating member and a work from the relationship between a magnetic field generated by a coil and a secondary current induced in the work. In an apparatus for electromagnetically forming a work by using a force acting on an air supply, air is blown into a gap between the work and the magnetic flux concentrating member, so that air is supplied to make the gap between the work and the magnetic flux concentrating member substantially uniform. Means are provided.

【0010】また、本発明は、ワークと前記磁束集中部
材との間隙にエアーを送風することにより、前記ワーク
と磁束集中部材との間隙を略均一とするエアー供給手段
と、前記間隙に送風されるエアーの流速・流量を制御す
るエアー流量制御機構と、を備えることを特徴とする。
Further, according to the present invention, air is blown into the gap between the work and the magnetic flux concentrating member, so that the gap between the work and the magnetic flux concentrating member is made substantially uniform, and the air is blown into the gap. And an air flow rate control mechanism for controlling the flow velocity / flow rate of the air.

【0011】[0011]

【作用】上記の本発明に係る電磁成形装置では、ワーク
に対して縮管加工または拡管加工を施す際、エアー供給
手段によってワークと前記磁束集中部材との間隙にエア
ーを送風し、ワークと磁束集中部材との間の全ての間隙
を略均一の状態にすることができる。このように位置決
めされた状態でワークに対し電磁成形が施される。従っ
て、ワークと磁束集中部材との間隙を狭小化した場合で
あっても、前記ワークと磁束集中部材とが接触して短絡
導通することを防止することが可能となる。
In the electromagnetic forming apparatus according to the present invention described above, when the work is subjected to the contracting process or the expanding process, the air is blown into the gap between the work and the magnetic flux concentrating member by the air supply means, and the work and the magnetic flux are All the gaps with the concentrating member can be made substantially uniform. Electromagnetic forming is performed on the work piece in the thus positioned state. Therefore, even when the gap between the work and the magnetic flux concentration member is narrowed, it is possible to prevent the work and the magnetic flux concentration member from coming into contact with each other to cause short-circuit conduction.

【0012】また、エアー流量制御機構を介してワーク
と磁束集中部材との間隙に送風されるエアーの流速・流
量を制御することができる。
Further, it is possible to control the flow velocity / flow rate of the air blown into the gap between the work and the magnetic flux concentration member via the air flow rate control mechanism.

【0013】[0013]

【実施例】次に、本発明に係る電磁成形装置について好
適な実施例を挙げ、添付の図面を参照しながら以下詳細
に説明する。
The preferred embodiments of the electromagnetic forming apparatus according to the present invention will now be described in detail with reference to the accompanying drawings.

【0014】図1は、本発明の第1実施例に係る電磁成
形装置を示す概略構成断面図である。
FIG. 1 is a schematic sectional view showing the structure of an electromagnetic forming apparatus according to the first embodiment of the present invention.

【0015】この第1実施例に係る電磁成形装置10は
縮管加工をする場合に使用される点に特徴がある。前記
電磁成形装置10は、架台12上に載置され合成樹脂等
の絶縁材料で形成される略円筒状のコイル部材14と、
内周面の上部側に環状凸部15が形成され、前記環状凸
部15の円周方向に沿って複数のノズル部16a〜16
d(図2参照)が等間隔離間して設けられた略円筒状の
磁束集中器18と、前記磁束集中器18の孔部内に接触
することなく間隙Bを介して収容される略円筒状のワー
ク20と、前記ワーク20の孔部内に収納され、絶縁材
料によって形成される型形成部材22とから構成され
る。前記型成形部材22の上部23は、先端部に向かっ
て縮径して形成されている。なお、前記ノズル部16a
〜16dのノズル径は、夫々略同一に画成されているも
のとする。
The electromagnetic forming apparatus 10 according to the first embodiment is characterized in that it is used when performing a contraction process. The electromagnetic forming device 10 includes a substantially cylindrical coil member 14 placed on a pedestal 12 and formed of an insulating material such as synthetic resin,
An annular convex portion 15 is formed on the upper side of the inner peripheral surface, and a plurality of nozzle portions 16a to 16 are provided along the circumferential direction of the annular convex portion 15.
d (refer to FIG. 2) is a substantially cylindrical magnetic flux concentrator 18 provided at equal intervals, and a substantially cylindrical magnetic flux concentrator 18 accommodated in the hole of the magnetic flux concentrator 18 via a gap B without contact. It comprises a work 20 and a mold forming member 22 housed in the hole of the work 20 and made of an insulating material. The upper portion 23 of the molding member 22 is formed so as to have a reduced diameter toward the tip. Incidentally, the nozzle portion 16a
It is assumed that the nozzle diameters of 16d are substantially the same.

【0016】前記コイル部材14の外周面は絶縁材料に
よって形成された補強部材24によって囲繞され、前記
補強部材24は外部に磁束が洩れることを防止する機能
を営むものである。前記磁束集中器18には、底面部か
ら軸線方向に沿って延在するとともに、内周面側に折曲
して夫々のノズル部16a〜16dに連通する複数の通
路26a〜26dが画成されている。なお、前記架台1
2には、エアーによって磁束集中器18とワーク20と
の間に付着する塵埃を吹き飛ばし、前記吹き飛ばされた
塵埃を排出するための孔部28、並びに前記通路26a
〜26dに連通する孔部30が夫々画成されている。
The outer peripheral surface of the coil member 14 is surrounded by a reinforcing member 24 made of an insulating material, and the reinforcing member 24 has a function of preventing magnetic flux from leaking to the outside. The magnetic flux concentrator 18 has a plurality of passages 26a to 26d extending from the bottom surface along the axial direction and bent toward the inner peripheral surface to communicate with the respective nozzles 16a to 16d. ing. In addition, the mount 1
2, a hole 28 for blowing away dust adhering between the magnetic flux concentrator 18 and the work 20 by air and discharging the blown dust, and the passage 26a.
Each of the holes 30 communicating with 26d is defined.

【0017】前記コイル部材14の内部には、エアー流
通用の流体通路32を有するコイル34が環状に且つ連
続して配設されている。前記コイル34内の流体通路3
2の一端部にはエアー供給源36が接続され、前記流体
通路32の他端部には途中から分岐して磁束集中器18
の通路26a〜26dに夫々連通する管路38a〜38
dが接続される。従って、エアー供給源36から供給さ
れたエアーは、コイル34内の流体通路32、管路38
a〜38dおよび通路26a〜26dを介してノズル部
16a〜16dからワーク20に向かって噴射される。
前記エアー供給源36とノズル部16a〜16dとの間
には、図2に示されるように、夫々のノズル部16a〜
16dから噴射されるエアーの流速を制御するエアー流
量制御機構40が接続されている。なお、前記コイル3
4には該コイル34に通電するための図示しない電源を
接続しておく。
Inside the coil member 14, a coil 34 having a fluid passage 32 for air circulation is arranged annularly and continuously. Fluid passage 3 in the coil 34
An air supply source 36 is connected to one end of the magnetic flux concentrator 18 and the other end of the fluid passage 32 is branched from the middle.
Conduits 38a-38 communicating with the passages 26a-26d, respectively.
d is connected. Therefore, the air supplied from the air supply source 36 is supplied to the fluid passage 32 and the conduit 38 in the coil 34.
It is jetted toward the work 20 from the nozzle portions 16a to 16d through the a to 38d and the passages 26a to 26d.
Between the air supply source 36 and the nozzle portions 16a to 16d, as shown in FIG.
An air flow rate control mechanism 40 that controls the flow velocity of the air injected from 16d is connected. The coil 3
A power source (not shown) for energizing the coil 34 is connected to 4.

【0018】このエアー流量制御機構40は、4つのノ
ズル部16a〜16dが夫々略90°の角度で等間隔に
離間して環状に配設され、ノズル部16a〜16dに夫
々連通する管路38a〜38dを介してエアー供給源3
6に夫々接続されている。さらに、夫々のノズル部16
a〜16dの近傍には、軸部材42を回転中心として矢
印方向に所定角度回動することにより、夫々のノズル部
16a〜16dから噴射されるエアーの流速を制御する
回動板44を付勢するドライバ46a〜46dが付設さ
れ、各ドライバ46a〜46dはコントローラ48に接
続されている。夫々のノズル部16a〜16dの間には
磁束集中器18の内周面とワーク20の外周面とによっ
て画成される間隙C(図1参照)の量を検出するクリア
ランス測定部材50a〜50dが夫々配設され、各クリ
アランス測定部材50a〜50dは、夫々演算部52に
接続されている。前記演算部52の出力信号はコントロ
ーラ48に導入されている。
In the air flow rate control mechanism 40, four nozzle portions 16a to 16d are annularly arranged at equal intervals of about 90 ° and are annularly arranged. Air supply source 3 via ~ 38d
6 are connected respectively. Further, each nozzle portion 16
In the vicinity of a to 16d, a rotating plate 44 for controlling the flow velocity of the air jetted from each of the nozzle portions 16a to 16d is urged by rotating the shaft member 42 as a rotation center in a direction of an arrow by a predetermined angle. The drivers 46a to 46d are attached, and the drivers 46a to 46d are connected to the controller 48. Clearance measuring members 50a to 50d for detecting the amount of the gap C (see FIG. 1) defined by the inner peripheral surface of the magnetic flux concentrator 18 and the outer peripheral surface of the workpiece 20 are provided between the nozzle portions 16a to 16d. The clearance measuring members 50 a to 50 d are respectively arranged and are connected to the computing unit 52. The output signal of the arithmetic unit 52 is introduced into the controller 48.

【0019】本発明の第1実施例に係る電磁成形装置1
0は、基本的には以上のように構成されるものであり、
次にその動作並びに作用効果について説明する。
Electromagnetic forming apparatus 1 according to the first embodiment of the present invention
0 is basically configured as described above,
Next, the operation and the effects will be described.

【0020】先ず、図1に示されるように、磁束集中器
18と型形成部材22との間に、例えば、アルミニウ
ム、銅等の材料からなる円筒状のワーク20を予め収容
しておく。この場合、前記ワーク20は何ら位置決めさ
れることなく収容されている。
First, as shown in FIG. 1, a cylindrical work 20 made of a material such as aluminum or copper is previously housed between the magnetic flux concentrator 18 and the mold forming member 22. In this case, the work 20 is accommodated without any positioning.

【0021】このような状態において、図示しない電源
を駆動してコイル34に通電するとともに、エアー供給
源36を付勢してノズル部16a〜16dからワーク2
0の外周面に対してエアーを噴射する。前記エアー供給
源36から供給されたエアーは、コイル34の内部に画
成された流体通路32、管路38a〜38dおよび通路
26a〜26dを介して各ノズル部16a〜16dから
夫々噴射される。なお、コイル34の内部に画成された
流体通路32をエアーが流通する際、前記エアーは、コ
イル34の発熱を冷却する機能を営み、該コイル34の
耐久性を向上させることが可能となる。
In such a state, a power source (not shown) is driven to energize the coil 34, and the air supply source 36 is energized so that the workpiece 2 is discharged from the nozzle portions 16a to 16d.
Air is jetted to the outer peripheral surface of 0. The air supplied from the air supply source 36 is jetted from each of the nozzle portions 16a to 16d through the fluid passage 32, the pipe passages 38a to 38d, and the passages 26a to 26d defined inside the coil 34. When air flows through the fluid passage 32 defined inside the coil 34, the air has a function of cooling the heat generation of the coil 34, and the durability of the coil 34 can be improved. .

【0022】ここで、磁束集中器18の内周面とワーク
20の外周面との間隙C1 〜C4 を環状に配設されたク
リアランス測定部材50a〜50dで測定し(図2参
照)、その検出信号を演算部52に導出する。前記演算
部52では、予め記憶されたプログラムに基づいて演算
を行い、磁束集中器18の内周面とワーク20の外周面
との間隙C1 〜C4 が円周上の任意の部位において均一
となるようにコントローラ48に信号を導出する。コン
トローラ48が前記信号に基づいて各ドライバ46a〜
46dを付勢することによって、回転板44は軸部材4
2を中心として所定角度回動し、管路38a〜38d内
のエアーの流通量を夫々調節する。従って、各ノズル部
16a〜16dから噴射されるエアーの流速が夫々制御
され、磁束集中器18の内周面とワーク20の外周面と
の間隙Cが円周上のすべての部位で均一となる。この結
果、前記間隙Cを可能とされる範囲で最大限に狭小化し
た場合であっても、ワーク20と磁束集中器18とが接
触しない状態で電磁成形を行うことができる。
Here, the clearances C 1 to C 4 between the inner peripheral surface of the magnetic flux concentrator 18 and the outer peripheral surface of the workpiece 20 are measured by the clearance measuring members 50a to 50d arranged annularly (see FIG. 2), The detection signal is derived to the arithmetic unit 52. The calculation unit 52 performs a calculation based on a pre-stored program, and the gaps C 1 to C 4 between the inner peripheral surface of the magnetic flux concentrator 18 and the outer peripheral surface of the work 20 are uniform at any portion on the circumference. The signal is derived to the controller 48 so that Based on the signal, the controller 48 drives each driver 46a ...
By urging 46d, the rotary plate 44 moves to the shaft member 4
It rotates by a predetermined angle about 2, and adjusts the flow rate of air in each of the conduits 38a to 38d. Therefore, the flow velocity of the air jetted from each of the nozzle portions 16a to 16d is controlled respectively, and the gap C between the inner peripheral surface of the magnetic flux concentrator 18 and the outer peripheral surface of the work 20 becomes uniform at all portions on the circumference. . As a result, even when the gap C is narrowed to the maximum extent possible, the electromagnetic forming can be performed in a state where the work 20 and the magnetic flux concentrator 18 are not in contact with each other.

【0023】例えば、図3Aに示されるように、ワーク
20の中心O1 がノズル部16d側に偏位して磁束集中
器18の中心O2 と一致しない位置に収容されている場
合、クリアランス測定部材50a〜50dは夫々間隙C
1 〜C4 に対応する検出信号を演算部52に導出する。
演算部52では、間隙C1 〜C4 の量が夫々異なること
から、前記間隙C1 〜C4 の量が均一となるように演算
し、その演算に基づいてコントローラ48に信号を導出
する。コントローラ48では、ノズル部16bから噴射
されるエアーの流速よりもノズル部16dから噴射され
るエアーの流速が大となるように、ドライバ46b、4
6dに信号を導出する。一方のドライバ46dはノズル
部16dの流速が大となるように、他方のドライバ46
bはノズル部16bの流速が小となるように、夫々回動
板44を所定角度回動させてエアーの流通流量を制御す
る。この結果、ワーク20がノズル部16b側に微小距
離だけ偏位して、図3Bに示されるように、ワーク20
の中心O1 と磁束集中器18の中心O2 とが一致し、間
隙C1 =間隙C2 =間隙C3 =間隙C4 となる位置、す
なわち、磁束集中器18の内周面とワーク20の外周面
との間隙Cが円周上のすべての部位で均一となる位置に
ワーク20が位置決めされる。結局、間隙Cの量を従来
に比較して狭小化した場合であっても、ワーク20は磁
束集中器18に接触することなく位置決めされる。
For example, as shown in FIG. 3A, when the center O 1 of the work 20 is deviated to the nozzle portion 16d side and is accommodated at a position which does not coincide with the center O 2 of the magnetic flux concentrator 18, the clearance measurement is performed. The members 50a to 50d each have a gap C.
The detection signals corresponding to 1 to C 4 are derived to the arithmetic unit 52.
Since the amounts of the gaps C 1 to C 4 are different from each other, the arithmetic unit 52 performs an arithmetic operation so that the amounts of the gaps C 1 to C 4 are uniform and outputs a signal to the controller 48 based on the calculation. In the controller 48, the drivers 46b, 4 are arranged so that the flow velocity of the air jetted from the nozzle portion 16d is higher than the flow velocity of the air jetted from the nozzle portion 16b.
The signal is derived to 6d. One of the drivers 46d is arranged so that the flow velocity of the nozzle portion 16d is high, so that the other driver 46d.
b controls the flow rate of the air by rotating the rotating plates 44 by a predetermined angle so that the flow velocity of the nozzle portion 16b becomes small. As a result, the work 20 is deviated to the nozzle portion 16b side by a minute distance, and as shown in FIG.
Center O 1 and the center O 2 of the flux concentrator 18 is matched, the clearance C 1 = clearance C 2 = clearance C 3 = clearance C 4 position, i.e., the inner peripheral surface of the flux concentrator 18 and the workpiece 20 The work 20 is positioned at a position where the gap C between the outer peripheral surface of the work and the outer circumferential surface of the work is uniform at all positions on the circumference. After all, the work 20 is positioned without contacting the magnetic flux concentrator 18 even if the amount of the gap C is narrowed as compared with the conventional case.

【0024】また、磁束集中器18の内周面とワーク2
0の外周面との間隙Cに塵埃が付着した場合であって
も、エアーによって前記塵埃を吹き飛ばして孔部28か
ら外部に排出することができ、磁束集中器18とワーク
20とが短絡して導通することを防止することができ
る。
The inner peripheral surface of the magnetic flux concentrator 18 and the work 2
Even if dust adheres to the gap C between the outer peripheral surface of 0 and the outer peripheral surface of 0, the dust can be blown off by air and discharged to the outside from the hole 28, and the magnetic flux concentrator 18 and the work 20 are short-circuited. It is possible to prevent conduction.

【0025】このようにしてワーク20が磁束集中器1
8内に位置決めされた状態において、通電されたコイル
34から発生する磁束が、磁束集中器18とワーク20
との間隙Cに集中して磁場が形成されるとともに、ワー
ク20に誘起電流(二次電流)が誘起される。前記誘起
電流と磁束との関係に基づいて型形成部材22の軸線方
向と略直交する方向からワーク20の上部側を押圧する
力が作用する(フレミングの左手の法則)。この結果、
図4に示されるように、円筒状のワーク20の上部側が
縮径する縮管加工を施すことができる。
In this way, the work 20 is placed on the magnetic flux concentrator 1.
The magnetic flux generated from the energized coil 34 in the state of being positioned inside the
A magnetic field is formed concentrating in the gap C between and, and an induced current (secondary current) is induced in the work 20. Based on the relationship between the induced current and the magnetic flux, a force that presses the upper side of the work 20 acts from a direction substantially orthogonal to the axial direction of the mold forming member 22 (Fleming's left-hand rule). As a result,
As shown in FIG. 4, it is possible to perform a contracting process in which the diameter of the upper side of the cylindrical work 20 is reduced.

【0026】次に、本発明の第2実施例に係る電磁成形
装置60を図5に示す。
Next, FIG. 5 shows an electromagnetic forming apparatus 60 according to the second embodiment of the present invention.

【0027】この電磁成形装置60は、図6に示される
ように、ワーク70の略中央部に対し拡管加工をする場
合に用いられる点に特徴がある。前記電磁成形装置は、
架台62上に載置され、合成樹脂等の絶縁材料で形成さ
れる略円柱状のコイル部材64と、前記コイル部材64
に外嵌され、外部に向かって膨出する環状凸部65に複
数のノズル部66a〜66d(但し、ノズル部66b、
66dは図示せず)が等間隔に離間して配設された略円
筒状の磁束集中器68と、前記磁束集中器68の環状凸
部65に接触することなく間隙Cを介して収容される略
円筒状のワーク70と、前記ワーク70の外周側に収容
され、絶縁材料によって形成される型形成部材72とか
ら構成される。前記型形成部材72の中央には環状凹部
74が画成されている。前記ノズル部66a〜66dの
ノズル径が夫々略同一に画成されている点は、第1実施
例と同様である。
As shown in FIG. 6, this electromagnetic forming apparatus 60 is characterized in that it is used when expanding the approximately central portion of the work 70. The electromagnetic forming device,
A substantially cylindrical coil member 64 placed on the frame 62 and formed of an insulating material such as synthetic resin, and the coil member 64.
A plurality of nozzle portions 66a to 66d (provided that the nozzle portion 66b,
66d is housed via a gap C without contacting the substantially cylindrical magnetic flux concentrator 68 in which (not shown) are arranged at equal intervals and the annular convex portion 65 of the magnetic flux concentrator 68. It is composed of a substantially cylindrical work 70 and a mold forming member 72 which is housed on the outer peripheral side of the work 70 and is made of an insulating material. An annular recess 74 is defined in the center of the mold forming member 72. Similar to the first embodiment, the nozzle diameters of the nozzle portions 66a to 66d are defined to be substantially the same.

【0028】前記磁束集中器68には、底面部から中央
部まで延在し内周面側に折曲して夫々ノズル部66a〜
66dに連通する複数の通路76a〜76d(但し、通
路76b、76dは図示せず)が画成されている。な
お、前記架台62には、エアーによって磁束集中器68
とワーク70との間に付着する塵埃を吹き飛ばし、前記
吹き飛ばされた塵埃等を排出するための孔部78、並び
に前記通路76a〜76dに連通する孔部80が夫々画
成されている。
The magnetic flux concentrator 68 extends from the bottom surface portion to the central portion and is bent toward the inner peripheral surface to form nozzle portions 66a to 66a, respectively.
A plurality of passages 76a to 76d (however, the passages 76b and 76d are not shown) are defined to communicate with the 66d. A magnetic flux concentrator 68 is installed on the pedestal 62 by air.
A hole 78 for blowing off dust adhering between the workpiece 70 and the work 70 and discharging the blown dust and the like, and a hole 80 communicating with the passages 76a to 76d are defined.

【0029】前記コイル部材64の内部には、エアー流
通用の流体通路82を有するコイル84が環状に且つ連
続して配設されている。前記コイル84内の流体通路8
2の一端部にはエアー供給源86が接続され、前記流体
通路82の他端部には途中から分岐して磁束集中器68
の通路76a〜76dに夫々連通する管路88a〜88
d(但し、管路88b、88dは図示せず)が接続され
ている。
Inside the coil member 64, a coil 84 having a fluid passage 82 for air circulation is arranged annularly and continuously. Fluid passage 8 in the coil 84
An air supply source 86 is connected to one end of the magnetic flux concentrator 68 and the other end of the fluid passage 82 is branched from the middle.
Pipes 88a-88 communicating with the passages 76a-76d of
d (however, the pipe lines 88b and 88d are not shown) are connected.

【0030】なお、前記エアー供給源86とノズル部6
6a〜66dとの間には、第1実施例と同様に構成さ
れ、夫々のノズル部66a〜66dから噴射されるエア
ーの流速を制御するエアー流量制御機構(図示せず)が
接続されている。
The air supply source 86 and the nozzle portion 6
An air flow rate control mechanism (not shown) configured to control the flow velocity of the air jetted from each of the nozzle portions 66a to 66d is connected between the nozzles 6a to 66d and similar to the first embodiment. .

【0031】本発明の第2実施例に係る電磁成形装置6
0は、基本的には以上のように構成されるものであり、
次にその動作並びに作用効果について説明する。なお、
この電磁成形装置60は、第1実施例に係る電磁成形装
置10と同様の動作並びに作用効果を有するため、異な
る点についてのみ説明する。
Electromagnetic forming apparatus 6 according to the second embodiment of the present invention.
0 is basically configured as described above,
Next, the operation and the effects will be described. In addition,
Since this electromagnetic forming apparatus 60 has the same operation and effect as the electromagnetic forming apparatus 10 according to the first embodiment, only different points will be described.

【0032】第2実施例に係る電磁成形装置60では、
複数のノズル部66a〜66dからワーク70の内周面
に向かってエアーを噴射し、該ワーク70の内周面を押
圧することにより、磁束集中器68の環状凸部65とワ
ーク70の内周面との間隙Cが円周上のすべての部位で
均一となるように位置決めされる。
In the electromagnetic forming apparatus 60 according to the second embodiment,
By injecting air from the plurality of nozzle portions 66a to 66d toward the inner peripheral surface of the work 70 and pressing the inner peripheral surface of the work 70, the annular convex portion 65 of the magnetic flux concentrator 68 and the inner peripheral surface of the work 70. Positioning is performed so that the clearance C between the surface and the surface is uniform at all positions on the circumference.

【0033】なお、前記第1、第2実施例に係る電磁成
形装置10、60では、ノズル部およびクリアランス測
定部材をそれぞれ4個ずつ設けて説明しているが、これ
に限定されるものではなく、等間隔に複数個のノズル部
およびクリアランス測定部材を配設すればよいことは勿
論である。
In the electromagnetic forming devices 10 and 60 according to the first and second embodiments, four nozzle portions and four clearance measuring members are provided, but the present invention is not limited to this. Of course, it is only necessary to dispose a plurality of nozzle portions and clearance measuring members at equal intervals.

【0034】[0034]

【発明の効果】本発明に係る電磁成形装置によれば、以
下の効果が得られる。
According to the electromagnetic forming apparatus of the present invention, the following effects can be obtained.

【0035】すなわち、エアー供給手段を設けることに
より、ワークと磁束集中部材とが接触することがなく、
該ワークと磁束集中部材との間の全ての間隙を略均一の
状態にすることができる。従って、ワークと磁束集中部
材との間隙をより一層狭小とすることができ、前記間隙
の狭小化を図ることにより、成形効率を劣化させること
なく、ワークに作用する力である電磁成形力を増強する
ことが可能となる。
That is, by providing the air supply means, the work and the magnetic flux concentration member do not come into contact with each other,
All the gaps between the work and the magnetic flux concentration member can be made substantially uniform. Therefore, the gap between the work and the magnetic flux concentration member can be further narrowed, and by narrowing the gap, the electromagnetic forming force, which is the force acting on the work, is enhanced without deteriorating the forming efficiency. It becomes possible to do.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例に係る電磁成形装置を示す
概略構成断面図である。
FIG. 1 is a schematic configuration sectional view showing an electromagnetic forming apparatus according to a first embodiment of the present invention.

【図2】図1に示す電磁成形装置を構成するエアー流量
制御機構の概略構成図である。
FIG. 2 is a schematic configuration diagram of an air flow rate control mechanism that constitutes the electromagnetic forming apparatus shown in FIG.

【図3】図3Aおよび図3Bは、図2に示すエアー流量
制御機構の動作を示す説明図である。
3A and 3B are explanatory views showing the operation of the air flow rate control mechanism shown in FIG.

【図4】電磁成形を施す前のワークと、縮管加工を施し
たワークとを示す斜視図である。
FIG. 4 is a perspective view showing a work before being subjected to electromagnetic forming and a work after being subjected to a contraction process.

【図5】本発明の第2実施例に係る電磁成形装置を示す
概略構成断面図である。
FIG. 5 is a schematic configuration sectional view showing an electromagnetic forming apparatus according to a second embodiment of the present invention.

【図6】電磁成形を施す前のワークと、拡管加工を施し
たワークとを示す斜視図である。
FIG. 6 is a perspective view showing a work before electromagnetic forming and a work subjected to pipe expanding processing.

【図7】従来技術に係る電磁成形装置を示す概略構成断
面図である。
FIG. 7 is a schematic configuration sectional view showing an electromagnetic forming device according to a conventional technique.

【図8】従来技術に係る電磁成形装置において、間隙A
と成形性との関係を示す説明図である。
FIG. 8 shows a gap A in the electromagnetic forming apparatus according to the prior art.
It is explanatory drawing which shows the relationship between the moldability.

【図9】図9A〜図9Cは、図7に示す電磁成形装置に
おける解決すべき課題を説明するための図である。
9A to 9C are views for explaining a problem to be solved in the electromagnetic forming apparatus shown in FIG. 7.

【符号の説明】[Explanation of symbols]

10、60…電磁成形装置 12、62…架
台 14、64…コイル部材 15…環状凸部 16a〜16d、66a〜66d…ノズル部 18、68…磁束集中器 20、70…ワ
ーク 22、72…型成形部材 24…補強部材 26a〜26d、76a〜76d…通路 28、30、78、80…孔部 32、82…流
体通路 34、84…コイル 36、86…エ
アー供給源 38a〜38d、88a〜88d…管路 40…エアー流量制御機構 44…回動板 46a〜46d…ドライバ 48…コントロ
ーラ 50a〜50d…クリアランス測定部材 52…演算部
10, 60 ... Electromagnetic forming device 12, 62 ... Stand 14, 64 ... Coil member 15 ... Annular convex part 16a-16d, 66a-66d ... Nozzle part 18, 68 ... Magnetic flux concentrator 20, 70 ... Work 22, 72 ... Molding member 24 ... Reinforcing member 26a-26d, 76a-76d ... Passage 28, 30, 78, 80 ... Hole portion 32, 82 ... Fluid passage 34, 84 ... Coil 36, 86 ... Air supply source 38a-38d, 88a-88d ... Pipe line 40 ... Air flow rate control mechanism 44 ... Rotating plate 46a to 46d ... Driver 48 ... Controller 50a to 50d ... Clearance measuring member 52 ... Arithmetic unit

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】コイルによって生成される磁界と、ワーク
に誘起される二次電流との関係から磁束集中部材とワー
クとの間隙に作用する力を用いて該ワークを電磁成形す
る装置において、 前記ワークと前記磁束集中部材との間隙にエアーを送風
することにより、前記ワークと磁束集中部材との間隙を
略均一とするエアー供給手段を設けることを特徴とする
電磁成形装置。
1. An apparatus for electromagnetically forming a work by using a force acting on a gap between a magnetic flux concentration member and the work based on a relationship between a magnetic field generated by a coil and a secondary current induced in the work, An electromagnetic forming apparatus comprising: an air supply unit that blows air into a gap between a work and the magnetic flux concentrating member to make the gap between the work and the magnetic flux concentrating member substantially uniform.
【請求項2】コイルによって生成される磁界と、ワーク
に誘起される二次電流との関係から磁束集中部材とワー
クとの間隙に作用する力を用いて該ワークを電磁成形す
る装置において、 前記ワークと前記磁束集中部材との間隙にエアーを送風
することにより、前記ワークと磁束集中部材との間隙を
略均一とするエアー供給手段と、 前記間隙に送風されるエアーの流速・流量を制御するエ
アー流量制御機構と、 を備えることを特徴とする電磁成形装置。
2. An apparatus for electromagnetically forming a work by using a force acting on a gap between a magnetic flux concentration member and the work based on a relationship between a magnetic field generated by a coil and a secondary current induced in the work, By supplying air to the gap between the work and the magnetic flux concentrating member, the air supply means for making the gap between the work and the magnetic flux concentrating member substantially uniform, and controlling the flow velocity / flow rate of the air blown to the gap. An electromagnetic forming apparatus comprising: an air flow rate control mechanism.
【請求項3】請求項1または2記載の装置において、エ
アー供給手段は、磁束集中手段に設けられ、等間隔離間
して環状に配設された複数のノズル部を有することを特
徴とする電磁成形装置。
3. The electromagnetic device according to claim 1, wherein the air supply means has a plurality of nozzle portions provided in the magnetic flux concentration means and annularly arranged at equal intervals. Molding equipment.
【請求項4】請求項1乃至3のいずれか1項に記載の装
置において、エアー流量制御機構は、ワークと磁束集中
部材との間隙量を検出する複数のクリアランス測定部材
と、前記クリアランス測定部材からの検出信号が導入さ
れ、ワークと磁束集中部材との間隙を略均一とする演算
を行う演算部と、前記演算部からの信号に基づいて複数
のドライバを付勢・滅勢し、複数のノズル部に連通する
夫々の通路を流通するエアーの流速・流量を制御するコ
ントローラとを含むことを特徴とする電磁成形装置。
4. The apparatus according to claim 1, wherein the air flow rate control mechanism includes a plurality of clearance measuring members for detecting a gap amount between the work and the magnetic flux concentration member, and the clearance measuring member. A detection signal from the calculation unit is introduced, and a calculation unit that performs calculation to make the gap between the work and the magnetic flux concentration member substantially uniform, and a plurality of drivers are energized / deenergized based on the signal from the calculation unit. An electromagnetic forming apparatus comprising: a controller that controls a flow velocity / flow rate of air flowing through each passage communicating with a nozzle portion.
【請求項5】請求項1乃至4のいずれか1項に記載の装
置において、コイル内にエアーが流通する通路を画成す
ることを特徴とする電磁成形装置。
5. The electromagnetic forming apparatus according to claim 1, wherein a passage through which air flows is defined in the coil.
JP14784894A 1994-06-29 1994-06-29 Electromagnetic molding equipment Expired - Fee Related JP3454570B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14784894A JP3454570B2 (en) 1994-06-29 1994-06-29 Electromagnetic molding equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14784894A JP3454570B2 (en) 1994-06-29 1994-06-29 Electromagnetic molding equipment

Publications (2)

Publication Number Publication Date
JPH0810864A true JPH0810864A (en) 1996-01-16
JP3454570B2 JP3454570B2 (en) 2003-10-06

Family

ID=15439630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14784894A Expired - Fee Related JP3454570B2 (en) 1994-06-29 1994-06-29 Electromagnetic molding equipment

Country Status (1)

Country Link
JP (1) JP3454570B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004028720A1 (en) * 2002-09-27 2004-04-08 Kabushiki Kaisha Kobe Seiko Sho Process for producing tubular ring with beads and die for use therein
JP2007075899A (en) * 2002-09-27 2007-03-29 Kobe Steel Ltd Process for producing tubular ring with beads
JP2013252744A (en) * 2012-06-05 2013-12-19 Kobe Steel Ltd Automobile bumper structure and method of manufacturing the same
CN103861933A (en) * 2014-04-01 2014-06-18 湖南大学 Corrugated pipe forming device and corrugated pipe machined through corrugated pipe forming device
CN103861931A (en) * 2014-04-01 2014-06-18 湖南大学 Device and method for machining composite energy absorption tube
KR101493422B1 (en) * 2013-05-24 2015-02-16 한국기계연구원 Helical core structure for electromagnetic forming and electromagnetic forming equipment using the same
KR101493421B1 (en) * 2013-05-24 2015-02-16 한국기계연구원 Electromagnetic forming method and equipment of workpiece with high relative magnetic permeability
US20160221059A1 (en) * 2015-02-03 2016-08-04 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Electromagnetic forming coil device and method of making electromagnetically formed product
CN107030172A (en) * 2017-05-12 2017-08-11 华中科技大学 A kind of electromagnetic casting method and device based on tubing under background magnetic field
CN109175062A (en) * 2018-07-10 2019-01-11 西安交通大学 The electromagnetic pulse forming device and manufacturing process of crimping cable transition joint connecting tube

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004028720A1 (en) * 2002-09-27 2004-04-08 Kabushiki Kaisha Kobe Seiko Sho Process for producing tubular ring with beads and die for use therein
JP2007075899A (en) * 2002-09-27 2007-03-29 Kobe Steel Ltd Process for producing tubular ring with beads
US7487655B2 (en) 2002-09-27 2009-02-10 Kobe Steel, Ltd Process for producing tubular ring with beads and die for use therein
JP2013252744A (en) * 2012-06-05 2013-12-19 Kobe Steel Ltd Automobile bumper structure and method of manufacturing the same
KR101493422B1 (en) * 2013-05-24 2015-02-16 한국기계연구원 Helical core structure for electromagnetic forming and electromagnetic forming equipment using the same
KR101493421B1 (en) * 2013-05-24 2015-02-16 한국기계연구원 Electromagnetic forming method and equipment of workpiece with high relative magnetic permeability
CN103861931A (en) * 2014-04-01 2014-06-18 湖南大学 Device and method for machining composite energy absorption tube
CN103861933A (en) * 2014-04-01 2014-06-18 湖南大学 Corrugated pipe forming device and corrugated pipe machined through corrugated pipe forming device
CN103861933B (en) * 2014-04-01 2015-11-25 湖南大学 A kind of corrugated pipe forming device and the bellows processed with this device
US20160221059A1 (en) * 2015-02-03 2016-08-04 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Electromagnetic forming coil device and method of making electromagnetically formed product
JP2016140897A (en) * 2015-02-03 2016-08-08 株式会社神戸製鋼所 Electromagnet molding coil device and manufacturing method of electromagnet molding material
CN107030172A (en) * 2017-05-12 2017-08-11 华中科技大学 A kind of electromagnetic casting method and device based on tubing under background magnetic field
CN109175062A (en) * 2018-07-10 2019-01-11 西安交通大学 The electromagnetic pulse forming device and manufacturing process of crimping cable transition joint connecting tube

Also Published As

Publication number Publication date
JP3454570B2 (en) 2003-10-06

Similar Documents

Publication Publication Date Title
JP3454570B2 (en) Electromagnetic molding equipment
JP4835968B2 (en) Double-side polishing machine
US10583520B2 (en) Device and method for homogeneously welding two-dimensionally bent structures by friction stir welding
KR101230359B1 (en) Rotating tool for friction stir welding
SE514087C2 (en) Process of joining
RU2076034C1 (en) Method and apparatus for ring-type pieces rotation surfaces active control in process of fine polishing
JPH05131353A (en) Method and device for precision polishing of outer or inner face of ring
JPH01174283A (en) Main spindle orientation control device
US6634255B2 (en) Balancing device for a rotating body, in particular for a tool carrier with a tool rotating at high speed
US5197371A (en) Force limiter and ultrasonic device provided with a force limiter
WO2005021204A1 (en) Method and device for friction stir welding
JP3449824B2 (en) Laser processing head
JP2000117571A (en) Machine tool
US6652689B2 (en) Process and device for ultrasound treatment of a strip of material
JP2000141162A (en) Coolant, coolant detecting unit, fluidity detecting method and control method
EP0335449A1 (en) Force limiter, device and method of limiting contact force provided with such a force limiter
JP3390968B2 (en) Outer diameter measuring method and device
JPS6350129B2 (en)
JPS59225813A (en) Method and device for forming branch pipes
SU812379A1 (en) Pneumatic apparatus for monitoring part presence on working position at forming
SU1299743A1 (en) Installation for butt induction resistance welding
JP2651543B2 (en) Waterjet cutting method
JPS6146372A (en) Automatic build up welding device
KIM et al. Reducing the Non Grinding Time in Grinding Operations (1st Report)-Reducing the Air Grinding time using Sound Sensor
KR100427251B1 (en) Simulation system for wind tunnel test of wheel

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080725

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090725

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100725

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100725

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees