JPH08106997A - Standing wave type accelerating tube - Google Patents

Standing wave type accelerating tube

Info

Publication number
JPH08106997A
JPH08106997A JP23911094A JP23911094A JPH08106997A JP H08106997 A JPH08106997 A JP H08106997A JP 23911094 A JP23911094 A JP 23911094A JP 23911094 A JP23911094 A JP 23911094A JP H08106997 A JPH08106997 A JP H08106997A
Authority
JP
Japan
Prior art keywords
cavity
coupling
accelerating
standing wave
wave type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23911094A
Other languages
Japanese (ja)
Other versions
JP3131350B2 (en
Inventor
Yusuke Moriguchi
勇介 森口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP06239110A priority Critical patent/JP3131350B2/en
Publication of JPH08106997A publication Critical patent/JPH08106997A/en
Application granted granted Critical
Publication of JP3131350B2 publication Critical patent/JP3131350B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Particle Accelerators (AREA)

Abstract

PURPOSE: To enhance accelerating efficiency without causing a change in an accelerating electric field and a change in phases by arranging a coaxial joining cavity only in a position of an optional accelerating cavity. CONSTITUTION: In order to change energy, an accelerating electric field 3 of an accelerating cavity 2 is changed before and behind a joining cavity 9. At this time, plural accelerating electric field changes are caused by the joining cavity 9. The electric field distribution can be changed by a single joining cavity, and since an unused joining hole is blocked up, propagation of a microwave always exists no more than one, so that accelerating efficiency is not reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は医療用放射線発生装置
等に使われるエネルギー切換え幅が広い定在波型加速管
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a standing wave type accelerating tube having a wide energy switching range used in medical radiation generators and the like.

【0002】[0002]

【従来の技術】図12は例えばU.S Patant4
382208May3.1983と同システムの従来の
サイドカップル型定在波型加速管であり、1は加速され
る荷電粒子、2はマイクロ波電界を溜め粒子1を加速す
る電場を作る加速空洞、3は加速空洞に加わる加速電
界、4は加速空洞間にマイクロ波を伝播させる結合空
洞、5は結合空洞と加速空洞の間の孔(5’,5’’,
5’’’,5’’’’,5’’’’’も同様)、6は結
合空洞4の中でショート棒7を有する結合空洞、7は結
合空洞6をショートさせるショート棒、8は加速電界を
作るマイクロ波である。なおこの加速管の全形は中心に
荷電粒子の通過する穴のある円筒形で、加速空洞2は連
続するリング状の空洞で図上ではそのすべてを加速空洞
2として表している。
2. Description of the Related Art FIG. S Pattern4
382208 May 3.1983 is a conventional side-coupled standing-wave accelerating tube of the same system, 1 is a charged particle to be accelerated, 2 is an accelerating cavity for accumulating a microwave electric field and accelerating particle 1, 3 is an accelerating cavity An accelerating electric field applied to the cavity, 4 is a coupling cavity for propagating microwaves between the accelerating cavities, 5 is a hole between the coupling cavity and the accelerating cavity (5 ', 5'',
5 ''',5'''',5''''' as well), 6 is a coupling cavity having a short rod 7 in the coupling cavity 4, 7 is a short rod for shorting the coupling cavity 6, and 8 is A microwave that creates an accelerating electric field. The entire shape of this accelerating tube is a cylinder with a hole through which charged particles pass, and the accelerating cavity 2 is a continuous ring-shaped cavity, all of which are shown as accelerating cavity 2 in the figure.

【0003】次に動作について説明する。図12におい
て、加速管へマイクロ波8が入ると、結合空洞4(及び
6)を介し加速空洞2へと伝播される。そのとき、加速
管の共振周波数をマイクロ波8の共振周波数が一致する
と加速空洞2に加速電界3が誘起され荷電粒子1は加速
される。加速される荷電粒子1のエネルギーを変えるに
は、加速電界3を変化させる必要があり、そのためには
マイクロ波8のパワーを変化させる必要がある。荷電粒
子を安定に加速させるには荷電粒子入口部の加速電界3
を大きく変化させることができないために、マイクロ波
8のパワーを変化させるエネルギー変化方法には限界が
ある。よって、荷電粒子入射部の加速電界を変化させず
に、それ以降のみの加速電界を変化させることができれ
ば、エネルギー変化の範囲は大きくなる。
Next, the operation will be described. In FIG. 12, when the microwave 8 enters the acceleration tube, it is propagated to the acceleration cavity 2 via the coupling cavity 4 (and 6). At that time, when the resonance frequency of the accelerating tube matches the resonance frequency of the microwave 8, the accelerating electric field 3 is induced in the accelerating cavity 2 and the charged particles 1 are accelerated. In order to change the energy of the charged particles 1 to be accelerated, it is necessary to change the acceleration electric field 3, and for that purpose, it is necessary to change the power of the microwave 8. In order to stably accelerate charged particles, the accelerating electric field at the charged particle inlet 3
Cannot be changed significantly, so there is a limit to the energy changing method for changing the power of the microwave 8. Therefore, if the accelerating electric field only after that can be changed without changing the accelerating electric field of the charged particle incident portion, the range of energy change becomes large.

【0004】従来の定在波型加速管ではそのために図に
示す結合空洞6及び6’を使っている。6にショート棒
7を入れると、この結合空洞をショートさせることによ
り、マイクロ波は結合空洞6’(6’はショート棒7’
を抜いておく)を通過する。通常の結合空洞の結合孔5
及び5’は同一であるために、その前後での加速空洞2
の加速電界3は同じであるが、結合空洞6’の前後の結
合孔5’’’’及び5’’’’’の孔の大きさを変化さ
せると、この結合空洞前後の加速空洞での加速電界は図
13に示すように変化する。同様に6’にショート棒
7’を入れ、結合空洞7をマイクロ波が通過するように
し、6前後の結合孔5’’及び5’’’の大きさを適当
に変化させると、図14の様な加速電界が作れる。以上
の様に、マイクロ波パワーのみならず、ショート棒の出
入れにより荷電粒子の加速エネルギーの可変範囲は大き
くできる。
For this purpose, the conventional standing wave type acceleration tube uses the coupling cavities 6 and 6'shown in the figure. When the short rod 7 is put in 6, the microwave is coupled to the coupling cavity 6 '(6' is the short rod 7'by short-circuiting this coupling cavity.
Unplug). Ordinary coupling cavity coupling hole 5
And 5'are the same, so the acceleration cavity 2 before and after it is
The accelerating electric field 3 is the same, but if the size of the holes 5 ″ ″ and 5 ″ ″ ″ before and after the coupling cavity 6 ′ is changed, The accelerating electric field changes as shown in FIG. Similarly, by inserting a short rod 7 ′ into 6 ′ so that microwaves pass through the coupling cavity 7 and appropriately changing the sizes of the coupling holes 5 ″ and 5 ″ ′ before and after 6, FIG. Such an accelerating electric field can be created. As described above, not only the microwave power but also the variable range of the acceleration energy of the charged particles can be increased by moving the short rod in and out.

【0005】なお結合孔の大きさと電界強度は大ざっぱ
な近似として (E1 /E2 )=k(b2 /b1 ) となる。 kは比例乗数 E1 は結合孔の大きさb1 の加速空洞の電界 E2 は結合孔の大きさb2 の加速空洞の電界
The size of the coupling hole and the electric field strength are roughly approximated by (E 1 / E 2 ) = k (b 2 / b 1 ). k is a proportional multiplier E 1 is an electric field of an accelerating cavity having a coupling hole size b 1 E 2 is an electric field of an accelerating cavity having a coupling hole size b 2

【0006】[0006]

【発明が解決しようとする課題】従来の定在波型加速管
は以上のように構成されているので、加速電界を切り変
える加速空洞に結合空洞が2個つくことになる。2個の
うちどちらかをショートするが、完全に空洞を無くすわ
けではないために、ショートしても若干のマイクロ波は
伝播する。よって、正規の結合空洞からの伝播と混り合
うために加速電界の変化及び伝播の変化が生じ、効率良
い加速ができない。
Since the conventional standing wave type accelerating tube is constructed as described above, two coupling cavities are formed in the accelerating cavity for switching the accelerating electric field. One of the two is short-circuited, but the cavity is not completely eliminated, and therefore some microwaves propagate even if they are short-circuited. Therefore, since it mixes with the propagation from the regular coupling cavity, the acceleration electric field and the propagation change, and efficient acceleration cannot be performed.

【0007】この発明は上記のような問題点を解消する
ためになされたもので、加速電界の変化及び位相の変化
を起こさずに加速効率のよい定在波型加速管を得ること
を目的としている。
The present invention has been made to solve the above problems, and an object thereof is to obtain a standing wave type accelerating tube having good acceleration efficiency without causing a change in accelerating electric field and a change in phase. There is.

【0008】[0008]

【課題を解決するための手段】請求項1に記載の定在波
型加速管は結合空洞が加速空洞の中心軸上にないサイド
カップル型定在波型加速管において、任意の上記加速空
洞位置のみに同軸の結合空洞を備える。請求項2に記載
の定在波型加速管は加速空洞と同軸の結合空洞の片側の
結合孔を複数とした請求項第1項の同軸の結合空洞を備
える。請求項3に記載の定在波型加速管は請求項第2項
に記載の定在波型加速管において複数個の結合孔の内1
つのみを有効とする仕切板を備える。請求項4に記載の
定在波型加速管は請求項第3項に記載の定在波型加速管
において結合空洞内で仕切板を移動させたときの空洞内
面に上記仕切板のエッジによる段差を無くした。請求項
5に記載の定在波型加速管は請求項第4項に記載の定在
波型加速管において仕切板の移動による結合孔の大きさ
の違いでの共振周波数の変化を無くすために調整スペー
スを備える。請求項6に記載の定在波型加速管は請求項
第1項に記載の定在波型加速管において複数個の結合孔
を同一仕切板内にならべた。請求項7に記載の定在波型
加速管は請求項第6項に記載の定在波型加速管において
仕切板の移動による結合空洞内面に段差を無くした。請
求項8に記載の定在波型加速管は正きゅこう第7項に記
載の定在波型加速管において仕切板の移動による結合孔
の大きさの違いでの共振周波数の変化を無くすための調
整スペースを備えた。
The standing wave type acceleration tube according to claim 1 is a side-coupled standing wave type acceleration tube in which the coupling cavity is not on the central axis of the acceleration cavity. Only with a coaxial coupling cavity. A standing wave type accelerating tube according to a second aspect includes the coaxial coupling cavity according to the first aspect, in which a plurality of coupling holes on one side of the coupling cavity coaxial with the acceleration cavity are provided. The standing wave type acceleration tube according to claim 3 is one of a plurality of coupling holes in the standing wave type acceleration tube according to claim 2.
It is equipped with a partition plate that makes only one effective. The standing wave type accelerating tube according to claim 4 is the standing wave type accelerating tube according to claim 3, wherein a step due to an edge of the partition plate is formed on an inner surface of the cavity when the partition plate is moved in the coupling cavity. Lost. The standing wave type accelerating tube according to claim 5 is the standing wave type accelerating tube according to claim 4, in order to eliminate the change in the resonance frequency due to the difference in the size of the coupling hole due to the movement of the partition plate. Equipped with adjustment space. In the standing wave type acceleration tube according to claim 6, in the standing wave type acceleration tube according to claim 1, a plurality of coupling holes are arranged in the same partition plate. In the standing wave type acceleration tube according to claim 7, in the standing wave type acceleration tube according to claim 6, a step is eliminated on the inner surface of the coupling cavity due to the movement of the partition plate. The standing wave type accelerating tube according to claim 8 eliminates the change in the resonance frequency due to the difference in the size of the coupling hole due to the movement of the partition plate in the standing wave type accelerating tube according to the seventh aspect. The adjustment space for

【0009】[0009]

【作用】この発明における定在波型加速管は加速空洞に
備えた同軸の結合空洞によりマイクロ波の加速電解強度
を変化させる。
In the standing wave type accelerating tube according to the present invention, the accelerating electrolytic intensity of microwaves is changed by the coaxial coupling cavity provided in the accelerating cavity.

【0010】[0010]

【実施例】【Example】

実施例1.以下、この発明の一実施例を図について説明
する。図1において、9は結合空洞、10は結合孔、図
4において、11は結合孔をふさぐ仕切板、図5におい
て、12は仕切板移動による真空封じのベローズであ
る。その他の番号は図12の相当するものと同じであ
る。図2は結合空洞9の断面図、図3は加速空洞2’よ
り結合空洞9を見た図、図4は結合空洞2’’より9を
見た図である。
Example 1. An embodiment of the present invention will be described below with reference to the drawings. In FIG. 1, 9 is a coupling cavity, 10 is a coupling hole, 11 is a partition plate that closes the coupling hole, and 12 is a vacuum sealing bellows by moving the partition plate in FIG. Other numbers are the same as the corresponding ones in FIG. 2 is a cross-sectional view of the coupling cavity 9, FIG. 3 is a view of the coupling cavity 9 from the acceleration cavity 2 ′, and FIG. 4 is a view of 9 from the coupling cavity 2 ″.

【0011】次に動作について説明する。エネルギー変
化を起こさせるために、結合空洞9前後での加速空洞2
の加速電界3を変化させるには、結合空洞9の結合孔を
図3、図4とすることで1つの結合空洞にて複数の加速
電界変化を起こさせることができる。(図4では2つの
結合孔であるが、3つ以上も可能である。)図3は図1
での加速空洞2’より結合空洞を見た図であり、第4は
加速空洞2’’より見た図である。図5は図4の仕切板
の移動方法を示している。仕切板11を入れ、11’を
抜いた場合、結合孔としては10と10’’を使いマイ
クロ波が伝播されるために、10’’を適当な大きさに
選ぶことにより図13の従来と同様の電界分布を得るこ
とができ、仕切板11’を入れ、11を抜いた場合、結
合孔としては10と10’を使いマイクロ波が伝播され
るために、10’を適当な大きさに選ぶことにより、図
14の従来と同様の電界分布を得ることができる。以上
のように、この方式では1つの結合空洞により電界分布
を変えることができ、また未使用の結合孔はふさぐため
に、マイクロ波の伝播は常に1通りしかないために、加
速効率の低下は生じない。また、一般的に加速空洞と同
軸の結合空洞を持った定在波型加速管では結合空洞分、
加速空洞が短くなるために、加速効率が低下するが、
1,2カ所のみに使っても加速効率の低下はほとんど無
い。
Next, the operation will be described. Acceleration cavities 2 before and after the coupling cavity 9 to cause energy changes
In order to change the accelerating electric field 3 of the above, by setting the coupling holes of the coupling cavity 9 as shown in FIGS. 3 and 4, it is possible to cause a plurality of accelerating electric field changes in one coupling cavity. (In FIG. 4, there are two coupling holes, but three or more coupling holes are possible.) FIG.
4 is a view of the coupling cavity from the acceleration cavity 2 ′ in FIG. 4, and FIG. 4 is a view of the coupling cavity from the acceleration cavity 2 ″. FIG. 5 shows a method of moving the partition plate of FIG. When the partition plate 11 is inserted and 11 'is removed, 10 and 10''are used as the coupling holes and the microwave is propagated. A similar electric field distribution can be obtained, and when partition plate 11 'is inserted and 11 is removed, 10 and 10' are used as coupling holes and microwaves are propagated, so 10 'is set to an appropriate size. By selecting it, it is possible to obtain the same electric field distribution as that of the related art shown in FIG. As described above, in this method, the electric field distribution can be changed by one coupling cavity, and since unused coupling holes are blocked, there is always only one microwave propagation, and therefore the acceleration efficiency is not reduced. Does not happen. In addition, generally, in a standing wave type acceleration tube having a coupling cavity coaxial with the acceleration cavity,
Although the acceleration cavity is shortened, the acceleration efficiency is reduced,
Even if it is used only at one or two places, there is almost no decrease in acceleration efficiency.

【0012】実施例2.図6は図5において、仕切板の
出し入れに際し、結合空洞内面に仕切板のエッジによる
段差を無くし、マイクロ波伝播時の結合空洞内に電界が
誘起されたときに、突起部での放電が生じないようにし
た構造である。
Embodiment 2 FIG. FIG. 6 shows that in FIG. 5, when the partition plate is taken in and out, a step due to the edge of the partition plate is eliminated on the inner surface of the coupling cavity, and when an electric field is induced in the coupling cavity during microwave propagation, discharge occurs at the protruding portion. It is a structure that does not exist.

【0013】実施例3.図7の12は共振周波数を調整
するためのスペースであり、図4に示す結合孔の大きさ
が異なる穴が2個ある場合、ふさぐ穴により結合空洞の
共振周波数が変化するのを防ぐための調整スペースを設
けた。大、小の2つの結合孔がある場合、小さな結合孔
の穴をふさぐ仕切板には小さなスペースを設け、大きな
穴をふさぐ仕切板には大きなスペースを設け周波数の低
下を等しくしている。
Embodiment 3. Reference numeral 12 in FIG. 7 is a space for adjusting the resonance frequency, and when there are two holes having different coupling hole sizes shown in FIG. 4, the space for preventing the resonance frequency of the coupling cavity from changing due to the blocking holes. Adjustment space is provided. When there are two large and small coupling holes, a small space is provided in the partition plate that closes the holes of the small coupling holes, and a large space is provided in the partition plate that blocks the large holes to equalize the frequency drop.

【0014】実施例4.図8は図4の2個の結合孔を同
列に並べた場合であり、13及び13’は結合孔、14
は仕切板、15は仕切板に設けた窓である。13’の結
合孔を使う場合は仕切板を中まで入れ、15と13’を
合わすことで、13’の孔は結合空洞と加速空洞が継が
り、13の孔は仕切板でふたをされる。また、13の孔
を使う場合は仕切板を上げることで、13が継がり、1
3’はふたをされる。
Example 4. FIG. 8 shows a case where the two coupling holes of FIG. 4 are arranged in the same row, and 13 and 13 ′ are coupling holes and 14
Is a partition plate, and 15 is a window provided in the partition plate. When using the 13 'coupling hole, insert the partition plate to the inside, and combine 15 and 13', so that the 13 'hole is connected to the coupling cavity and the acceleration cavity, and the 13 hole is covered by the partition plate. . Also, when using 13 holes, 13 can be joined by raising the partition plate.
3'is covered.

【0015】実施例5.図9は結合空洞内の内面に突起
を少なくするために、段差を無くした構造である。ま
た、この構造では13の孔をふさぐための位置精度が仕
切板と結合空洞の壁との接触で決まるので、精度が高く
なる。
Example 5. FIG. 9 shows a structure in which steps are eliminated in order to reduce protrusions on the inner surface of the coupling cavity. Further, in this structure, the positional accuracy for closing the 13 holes is determined by the contact between the partition plate and the wall of the coupling cavity, so that the accuracy becomes high.

【0016】実施例6.図10は使用する結合孔の大き
さによる共振周波数のずれを補正するためのスペース1
6を設けた構造であり、13’の孔が13の孔より大き
いとすると、13’使用時は周波数が低下し、13使用
時には増加する。そこで13使用時のみにスペース16
を設けることで周波数を低下させる。その結果、13,
13’どちらを使っても周波数は同じとなる。
Example 6. FIG. 10 shows a space 1 for correcting the deviation of the resonance frequency due to the size of the coupling hole used.
6 is provided, and if the holes of 13 'are larger than the holes of 13, the frequency decreases when 13' is used and increases when 13 is used. There is space 16 only when 13 is used
The provision reduces the frequency. As a result, 13,
The frequency will be the same regardless of which 13 'is used.

【0017】実施例7.以上はマイクロ波入口側に1個
の結合孔を設け出口側に2個の結合孔を設けた場合であ
るが、図11の様に出口側に4個設ければ電界パターン
は4通りとなり、また、マイクロ波入口側に2個、出口
側に2個設ければ同じく電界パターンは4通りとなる。
さらに入口側2個、出口側4個では8通り、入口側4個
出口側4個では16通りとなり、1つの結合空洞で無数
の電界パターンを作ることができる。
Embodiment 7. The above is the case where one coupling hole is provided on the microwave inlet side and two coupling holes are provided on the outlet side. However, if four coupling holes are provided on the outlet side as shown in FIG. 11, there are four electric field patterns, Further, if two microwaves are provided on the microwave inlet side and two microwaves are provided on the microwave outlet side, there are four electric field patterns.
Further, the number of electric field patterns is 2 in the inlet side and 4 in the outlet side, and 8 in the inlet side and 4 in the outlet side, and 16 in the outlet side.

【0018】[0018]

【発明の効果】以上のように、請求項1の定在波型加速
管によれば未使用結合空洞は完全に空洞を無くすことが
できるため加速性能の向上となる。請求項2、請求項3
の定在波型加速管によれば、上記に加え結合孔が複数付
き、電界パターンが複数個になっても、1つの結合空洞
で作ることができるため、安価であり構造がシンプルで
ある。請求項4の定在波型加速管によれば、上記に加え
結合空洞内の突起部での放電が生じない。請求項5の定
在波型加速管によれば、上記に加え結合空洞の共振周波
数が変化するのを防ぐ。請求項6の定在波型加速管によ
れば、請求項1の効果に加え電界パターンを複数得られ
る。請求項7の定在波型加速管によれば、請求項6の効
果に加え結合空洞の共振周波数が変化するのを防ぐ。請
求項8の定在波型加速管によれば、請求項6の効果に加
え電界パターンを複数得られる。
As described above, according to the standing wave type accelerating tube of claim 1, the unused coupling cavity can be completely eliminated, so that the acceleration performance is improved. Claim 2 and claim 3
In addition to the above, the standing wave type acceleration tube of (1) is inexpensive and has a simple structure because it can be made with one coupling cavity even if it has a plurality of coupling holes and a plurality of electric field patterns. According to the standing wave type acceleration tube of claim 4, in addition to the above, electric discharge does not occur at the protrusion in the coupling cavity. According to the standing wave type acceleration tube of claim 5, in addition to the above, the resonance frequency of the coupling cavity is prevented from changing. According to the standing wave type acceleration tube of claim 6, in addition to the effect of claim 1, a plurality of electric field patterns can be obtained. According to the standing wave type acceleration tube of claim 7, in addition to the effect of claim 6, the resonance frequency of the coupling cavity is prevented from changing. According to the standing wave type acceleration tube of claim 8, in addition to the effect of claim 6, a plurality of electric field patterns can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】 この発明の一実施例による定在波型加速管全
体図である。
FIG. 1 is an overall view of a standing wave type acceleration tube according to an embodiment of the present invention.

【図2】 この発明の一実施例による結合空洞部断面1
である。
FIG. 2 is a sectional view 1 of a coupling cavity portion according to an embodiment of the present invention.
Is.

【図3】 この発明の一実施例による結合空洞部断面2
である。
FIG. 3 is a sectional view 2 of a coupling cavity portion according to an embodiment of the present invention.
Is.

【図4】 この発明の一実施例による結合空洞部断面3
である。
FIG. 4 is a sectional view of a coupling cavity portion 3 according to an embodiment of the present invention.
Is.

【図5】 この発明の他の実施例による結合空洞部断面
である。
FIG. 5 is a cross-sectional view of a coupling cavity portion according to another embodiment of the present invention.

【図6】 この発明の他の実施例による結合空洞部断面
である。
FIG. 6 is a cross-sectional view of a coupling cavity portion according to another embodiment of the present invention.

【図7】 この発明の他の実施例による結合空洞部断面
である。
FIG. 7 is a cross-sectional view of a coupling cavity portion according to another embodiment of the present invention.

【図8】 この発明の他の実施例による結合空洞部断面
である。
FIG. 8 is a cross-sectional view of a coupling cavity portion according to another embodiment of the present invention.

【図9】 この発明の他の実施例による結合空洞部断面
である。
FIG. 9 is a cross-sectional view of a coupling cavity portion according to another embodiment of the present invention.

【図10】 この発明の他の実施例による結合空洞部断
面である。
FIG. 10 is a cross-sectional view of a coupling cavity portion according to another embodiment of the present invention.

【図11】 この発明の他の実施例による結合空洞部断
面である。
FIG. 11 is a cross-sectional view of a coupling cavity portion according to another embodiment of the present invention.

【図12】 従来の定在波型加速管の全体図である。FIG. 12 is an overall view of a conventional standing wave type acceleration tube.

【図13】 電界パターン図である。FIG. 13 is an electric field pattern diagram.

【図14】 電界パターン図である。FIG. 14 is an electric field pattern diagram.

【符号の説明】[Explanation of symbols]

1 荷電粒子、2 加速空洞、3 加速電界、4 結合
空洞、5 結合孔、6ショート棒付結合空洞、7 ショ
ート棒、8 マイクロ波、9 結合空洞、10 結合
孔、11 仕切板、12 ベローズ、13 結合孔、1
4 仕切板、15 スリット、16 スペース。
1 charged particle, 2 acceleration cavity, 3 acceleration electric field, 4 coupling cavity, 5 coupling hole, 6 coupling cavity with short rod, 7 short rod, 8 microwave, 9 coupling cavity, 10 coupling hole, 11 partition plate, 12 bellows, 13 coupling holes, 1
4 dividers, 15 slits, 16 spaces.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 結合空洞が加速空洞の中心軸上にないサ
イドカップル型定在波型加速管において、任意の上記加
速空洞位置のみに同軸の結合空洞を備えた定在波型加速
管。
1. A side-coupled standing-wave accelerating tube in which the coupling cavity is not on the central axis of the accelerating cavity, the standing-wave accelerating tube having a coaxial coupling cavity only at any of the accelerating cavity positions.
【請求項2】 加速空洞と同軸の結合空洞の片側の結合
孔を複数としたことを特徴とする請求項第1項に記載の
定在波型加速管。
2. The standing wave type acceleration tube according to claim 1, wherein a plurality of coupling holes on one side of the coupling cavity coaxial with the acceleration cavity are provided.
【請求項3】 複数個の結合孔の内1つのみを有効とす
る仕切板を備えたことを特徴とする請求項第2項に記載
の定在波型加速管。
3. The standing wave type accelerating tube according to claim 2, further comprising a partition plate which makes only one of the plurality of coupling holes effective.
【請求項4】 結合空洞内で仕切板を移動させたときの
空洞内面に上記仕切板のエッジによる段差を無くしたこ
とを特徴とする請求項第3項に記載の定在波型加速管。
4. The standing wave type accelerating tube according to claim 3, wherein a step due to an edge of the partition plate is eliminated on the inner surface of the cavity when the partition plate is moved in the coupling cavity.
【請求項5】 仕切板の移動による結合孔の大きさの違
いでの共振周波数の変化を無くすために調整スペースを
備えたことを特徴とする請求項第4項に記載の定在波型
加速管。
5. The standing wave type acceleration according to claim 4, wherein an adjusting space is provided to eliminate a change in the resonance frequency due to a difference in the size of the coupling hole due to the movement of the partition plate. tube.
【請求項6】 複数個の結合孔を同一仕切板内にならべ
たことを特徴とする請求項第1項に記載の定在波型加速
管。
6. The standing wave type accelerating tube according to claim 1, wherein a plurality of coupling holes are arranged in the same partition plate.
【請求項7】 仕切板の移動による結合空洞内面に段差
を無くしたことを特徴とする請求項第6項に記載の定在
波型加速管。
7. The standing wave type accelerating tube according to claim 6, wherein a step is eliminated on the inner surface of the coupling cavity due to the movement of the partition plate.
【請求項8】 仕切板の移動による結合孔の大きさの違
いでの共振周波数の変化を無くすための調整スペースを
備えたことを特徴とする請求項第7項に記載の定在波型
加速管。
8. The standing wave type acceleration according to claim 7, further comprising an adjusting space for eliminating a change in the resonance frequency due to a difference in the size of the coupling hole due to the movement of the partition plate. tube.
JP06239110A 1994-10-03 1994-10-03 Standing wave accelerator Expired - Fee Related JP3131350B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06239110A JP3131350B2 (en) 1994-10-03 1994-10-03 Standing wave accelerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06239110A JP3131350B2 (en) 1994-10-03 1994-10-03 Standing wave accelerator

Publications (2)

Publication Number Publication Date
JPH08106997A true JPH08106997A (en) 1996-04-23
JP3131350B2 JP3131350B2 (en) 2001-01-31

Family

ID=17039954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06239110A Expired - Fee Related JP3131350B2 (en) 1994-10-03 1994-10-03 Standing wave accelerator

Country Status (1)

Country Link
JP (1) JP3131350B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103260332A (en) * 2013-05-29 2013-08-21 山东新华医疗器械股份有限公司 Cross coupling standing wave accelerating tube
CN107333382A (en) * 2017-08-07 2017-11-07 沈阳东软医疗系统有限公司 A kind of side coupled standing wave accelerator tube and standing wave accelerator
CN109496052A (en) * 2018-12-28 2019-03-19 上海联影医疗科技有限公司 A kind of accelerating tube and linear accelerator

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102109754B1 (en) 2018-10-08 2020-05-13 김정하 Elastic slipper

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103260332A (en) * 2013-05-29 2013-08-21 山东新华医疗器械股份有限公司 Cross coupling standing wave accelerating tube
CN107333382A (en) * 2017-08-07 2017-11-07 沈阳东软医疗系统有限公司 A kind of side coupled standing wave accelerator tube and standing wave accelerator
CN109496052A (en) * 2018-12-28 2019-03-19 上海联影医疗科技有限公司 A kind of accelerating tube and linear accelerator

Also Published As

Publication number Publication date
JP3131350B2 (en) 2001-01-31

Similar Documents

Publication Publication Date Title
US4286192A (en) Variable energy standing wave linear accelerator structure
US6407505B1 (en) Variable energy linear accelerator
US4181894A (en) Heavy ion accelerating structure and its application to a heavy-ion linear accelerator
US4746839A (en) Side-coupled standing-wave linear accelerator
US20090302785A1 (en) Slot resonance coupled standing wave linear particle accelerator
US9380695B2 (en) Traveling wave linear accelerator with RF power flow outside of accelerating cavities
US5469022A (en) Extended interaction output circuit using modified disk-loaded waveguide
EP0417205B1 (en) High performance extended interaction output circuit
JP2742770B2 (en) High frequency particle accelerator
JPH08106997A (en) Standing wave type accelerating tube
US5039910A (en) Standing-wave accelerating structure with different diameter bores in bunching and regular cavity sections
WO1989004051A1 (en) Microwave tube with directional coupling of an input locking signal
US6313710B1 (en) Interaction structure with integral coupling and bunching section
JPS63274098A (en) Standing wave linear accelerator
Lawson et al. Reflections on the university of Maryland’s program investigating gyro-amplifiers as potential sources for linear colliders
CA1085054A (en) Accelerating structure for a linear charged particle accelerator
Tallerico Design considerations for the high-power multicavity klystron
JP2002043097A (en) Accelerator and charged particle accelerating method using the same
JP2583692B2 (en) Accelerator
JP3707932B2 (en) High frequency electron gun
Chin et al. The 120 MW X-band klystron development at KEK
Mohamadian et al. Equivalent Circuit Model of Cyclotron RF System
JPH08330809A (en) Band pass filter
JP3328586B2 (en) Airtight high-frequency window
US2878412A (en) Travelling wave oscillator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees