JP2002043097A - Accelerator and charged particle accelerating method using the same - Google Patents

Accelerator and charged particle accelerating method using the same

Info

Publication number
JP2002043097A
JP2002043097A JP2000224252A JP2000224252A JP2002043097A JP 2002043097 A JP2002043097 A JP 2002043097A JP 2000224252 A JP2000224252 A JP 2000224252A JP 2000224252 A JP2000224252 A JP 2000224252A JP 2002043097 A JP2002043097 A JP 2002043097A
Authority
JP
Japan
Prior art keywords
voltage
cavity
accelerating
accelerator
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000224252A
Other languages
Japanese (ja)
Inventor
Yukio Kumada
幸生 熊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2000224252A priority Critical patent/JP2002043097A/en
Publication of JP2002043097A publication Critical patent/JP2002043097A/en
Pending legal-status Critical Current

Links

Landscapes

  • Particle Accelerators (AREA)

Abstract

PROBLEM TO BE SOLVED: To control instability of a beam by reducing a flat top voltage in an accelerator center region part. SOLUTION: In an accelerator provided with an accelerating cavity 22, where an accelerating voltage of a designated frequency is applied to accelerate electrically charged particles 8 and a flat top(FT) cavity 24, where a flat top(FT) voltage of n times of the frequency of the accelerating voltage (n is an odd number of 3 or larger) is applied to level an accelerating electric field, in parallel between counterposing magnetic poles 10, an accelerator center side tip 24A of the FT cavity 24 is shorted to a ground plate 11 of the magnetic pole 10.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、加速器、及び、こ
れを用いた荷電粒子の加速方法に係り、特に、対向する
磁極ポール間に、荷電粒子を加速するための、所定周波
数の加速電圧が印加される加速空洞と、加速電場を平坦
化するために、前記加速電圧のn倍(nは3以上の奇
数)の周波数を有するフラットトップ電圧が印加される
フラットトップ空洞とが並設された加速器、及び、これ
を用いた荷電粒子の加速方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an accelerator and a method for accelerating charged particles using the same. More particularly, the present invention relates to an accelerating voltage of a predetermined frequency for accelerating charged particles between opposing magnetic poles. The accelerating cavity to be applied and the flat-top cavity to which a flat-top voltage having a frequency of n times (n is an odd number of 3 or more) the accelerating voltage is applied in order to flatten the accelerating electric field are arranged side by side. The present invention relates to an accelerator and a method for accelerating charged particles using the accelerator.

【0002】[0002]

【従来の技術】荷電粒子を加速するための加速器の一つ
に、角度方向に変化する磁場を持つAVF(Azimuthal
Varied Field)型サイクロトロンがある。これは、例
えば図1に示す如く、対向する丸い一対の磁極ポール1
0間に、荷電粒子8を収束させるために磁極のギャップ
長を変えて、山部12と谷部14を作っている(AVF
の原理)。
2. Description of the Related Art One of accelerators for accelerating charged particles is an AVF (Azimuthal) having an angularly changing magnetic field.
Varied Field) type cyclotron. This is, for example, as shown in FIG.
In the meantime, the gap 12 of the magnetic pole is changed to converge the charged particles 8 to form the peak 12 and the valley 14 (AVF).
Principle).

【0003】又、加速するための手段として、図2に示
す如く、高周波電場を発生させるディー電極16とアー
スに接地したダミーディー電極18の間に、電界を集中
させ、このディーとダミーディーの間を通過する時に荷
電粒子8を加速している。
As a means for accelerating, as shown in FIG. 2, an electric field is concentrated between a dee electrode 16 for generating a high-frequency electric field and a dummy dee electrode 18 grounded to the ground, and the dee and the dummy dee are connected to each other. When passing through the gap, the charged particles 8 are accelerated.

【0004】更に、図3に平面図を示す如く、加速電圧
の3倍の周波数を有するフラットトップ(FT)電圧が
印加されるフラットトップ(FT)空洞24を設け、図
4に示す如く、加速電圧Vaと、例えばその3倍の周波
数を有するFT電圧Vftを合成することによって、合
成電圧Vcの頂点を平坦化するようにしたものがある。
これにより、サイクロトロンの加速位相のアクセプタン
スが広がり、加速粒子の強度を3〜5倍程度に高めるこ
とができる。
Further, as shown in a plan view of FIG. 3, a flat top (FT) cavity 24 to which a flat top (FT) voltage having a frequency three times the acceleration voltage is applied is provided, and as shown in FIG. There is one in which the peak of the combined voltage Vc is flattened by combining the voltage Va and an FT voltage Vft having, for example, a frequency three times that of the voltage Va.
Thereby, the acceptance of the acceleration phase of the cyclotron is broadened, and the intensity of the accelerated particles can be increased to about 3 to 5 times.

【0005】しかしながら、従来のFT空洞は、スイス
のPSIや大阪大学のサイクロトロンに採用された単一
ギャップのFT空洞が主流であり、これらのサイクロト
ロンは、すべて、SSC(Separated Sector Cyclotr
on)と呼ばれる分離セクタ型のサイクロトロンであり、
単一円形磁極を持つAVF型サイクロトロンでは、FT
空洞は実現が難しく、ほとんど採用されていない。
[0005] However, the conventional FT cavities are mainly single-gap FT cavities employed in PSI in Switzerland and cyclotrons in Osaka University, and all of these cyclotrons are SSC (Separated Sector Cyclotr).
on), a separate-sector cyclotron called
In an AVF cyclotron with a single circular magnetic pole, the FT
Cavities are difficult to implement and are rarely employed.

【0006】即ち、従来のFT空洞では、図5(斜視
図)及び図6(先端断面図)に示す如く、FT空洞24
の加速器中心側先端24Aが相互に連結され、磁極ポー
ルに対しては開放されており、図7に測定例を示す如
く、FT空洞の先端24Aに電圧が発生する構造になっ
ている。図において、26は電極、30は、高調波を発
生するための同軸共振器、32は、その内筒、34は、
その外筒、36は、その共振周波数を調整するための可
動ショート板である。
That is, in the conventional FT cavity, as shown in FIG. 5 (perspective view) and FIG.
Are connected to each other and open to the magnetic pole, so that a voltage is generated at the tip 24A of the FT cavity as shown in a measurement example in FIG. In the figure, 26 is an electrode, 30 is a coaxial resonator for generating harmonics, 32 is its inner cylinder, 34 is
The outer cylinder 36 is a movable short plate for adjusting the resonance frequency.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、FT空
洞24の先端24AでFT電圧が発生すると、回転粒子
8が軌道中心部で高い電圧を受けることになる。又、A
VFサイクロトロンでは、図8に示すように、中心付近
では、バンプ磁場から等時性磁場に移行する部分で、磁
場の平坦な部分が存在する。この部分では、ベータトロ
ン振動数νr=1となり、非対称な電場で加減速される
とビームが不安定になり加速できないことが知られてい
る。特に、エネルギの低い加速粒子は不安定になり、機
器配置の関係でFT空洞24を加速器中心に関して対称
位置に配置できず、非対称な位置に配置せざるを得なく
てエネルギの非対称性がある場合に、図9に示す如く、
ビームの中心がずれていく現象が起こりやすいという問
題点を有していた。特にサイクロトロンでは、FT空洞
が発生する非対称な加速電場は、致命的な共鳴現象を引
き起こすことがある。
However, when an FT voltage is generated at the tip 24A of the FT cavity 24, the rotating particles 8 receive a high voltage at the center of the orbit. Also, A
In the VF cyclotron, as shown in FIG. 8, near the center, there is a portion where the magnetic field transitions from the bump magnetic field to the isochronous magnetic field, and there is a flat portion of the magnetic field. In this part, it is known that the betatron frequency νr = 1, and if the beam is accelerated / decelerated by an asymmetric electric field, the beam becomes unstable and cannot be accelerated. In particular, when the accelerating particles having low energy become unstable, the FT cavity 24 cannot be arranged at a symmetric position with respect to the center of the accelerator due to the arrangement of the equipment, and must be arranged at an asymmetric position. Then, as shown in FIG.
There is a problem that a phenomenon that the center of the beam is shifted easily occurs. Particularly in a cyclotron, the asymmetric accelerating electric field generated by the FT cavity may cause a fatal resonance phenomenon.

【0008】又、FT空洞24では、加速周波数の3倍
の高調波を発生させるために、前記可動ショート板36
が設けられているが、従来のFT空洞では、この可動シ
ョート板36の位置が中心近くになり、機械的に製造が
困難であるという問題点も有していた。
In the FT cavity 24, the movable short plate 36 is used to generate a harmonic three times the acceleration frequency.
However, the conventional FT cavity has a problem that the position of the movable short plate 36 is near the center, and it is difficult to manufacture mechanically.

【0009】本発明は、前記従来の問題点を解消するべ
くなされたもので、FT空洞が非対称に配置される場合
であっても、中心領域でFT電圧による非対称性を発生
させないようにしながら、加速領域では十分なFT電圧
を発生させる、理想的な加速電圧分布を得ることが可能
な加速器を提供することを第一の課題とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned conventional problems. Even if the FT cavities are arranged asymmetrically, the asymmetry due to the FT voltage is prevented from being generated in the central region. A first object is to provide an accelerator that can generate a sufficient FT voltage in an acceleration region and can obtain an ideal acceleration voltage distribution.

【0010】本発明は、又、前記加速器を用いた荷電粒
子の加速方法を提供することを第二の課題とする。
A second object of the present invention is to provide a method for accelerating charged particles using the accelerator.

【0011】[0011]

【課題を解決するための手段】本発明は、対向する磁極
ポール間に、荷電粒子を加速するための、所定周波数の
加速電圧が印加される加速空洞と、加速電場を平坦化す
るための、前記加速電圧のn倍(nは3以上の奇数)の
周波数を有するフラットトップ電圧が印加されるフラッ
トトップ空洞とが並設された加速器において、前記フラ
ットトップ空洞の加速器中心側先端を磁極ポールにショ
ートすることにより、前記第一の課題を解決したもので
ある。
SUMMARY OF THE INVENTION According to the present invention, there is provided an accelerating cavity for applying an accelerating voltage of a predetermined frequency for accelerating charged particles between opposing magnetic pole poles, and for accelerating an accelerating electric field. In an accelerator provided with a flat top cavity to which a flat top voltage having a frequency of n times (n is an odd number of 3 or more) of the acceleration voltage is applied, a tip of the flat top cavity on the center side of the accelerator is a magnetic pole pole. The first problem has been solved by short-circuiting.

【0012】又、前記フラットトップ電圧の周波数を可
変とするための可動ショート板を、前記フラットトップ
空洞外側部の同軸共振器内に配設したものである。
In addition, a movable short plate for making the frequency of the flat top voltage variable is disposed in a coaxial resonator outside the flat top cavity.

【0013】本発明は、又、前記加速器を用いて、荷電
粒子を加速することにより、前記第二の課題を解決した
ものである。
The present invention also solves the second problem by accelerating charged particles using the accelerator.

【0014】[0014]

【発明の実施の形態】以下、図面を参照して、本発明の
実施形態を詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0015】本実施形態に係る加速器においては、図1
0(FT空洞の斜視図)及び図11(FT空洞先端部の
断面図)に示す如く、従来例と同様の加速器において、
FT空洞24の加速器中心側先端24Aを開放せずに、
磁極ポール10のアース板11に電気的にショートさせ
て、そこの発生電圧を0としたものである。
In the accelerator according to this embodiment, FIG.
As shown in FIG. 0 (a perspective view of the FT cavity) and FIG. 11 (a cross-sectional view of the tip of the FT cavity), in an accelerator similar to the conventional example,
Without opening the accelerator center-side tip 24A of the FT cavity 24,
The ground plate 11 of the magnetic pole 10 is electrically short-circuited, and the voltage generated there is reduced to zero.

【0016】前記FT空洞24のスパン角は、例えば、
加速空洞22のスパン角の1/3とされている。
The span angle of the FT cavity 24 is, for example,
The span angle is set to 1 / of the span angle of the acceleration cavity 22.

【0017】本実施形態により、先端開放時に図12に
破線Aで示す如くであったFT空洞の電極26の電圧
が、同じく実線Bで示す如く、外側へ向かって上昇する
分布になるため、粒子を引き出す最外周では、最大電圧
を発生するような、理想的な電圧分布を得ることができ
る。
According to this embodiment, when the tip is opened, the voltage of the electrode 26 of the FT cavity, which is indicated by the broken line A in FIG. At the outermost periphery from which the maximum voltage is generated, an ideal voltage distribution can be obtained.

【0018】更に、先端をアースすることにより、周波
数可変用のショート板36の位置が、図13に示す測定
例からも明らかなように外側に移動し、機械的に実現可
能な位置に配置することができる。
Further, by grounding the tip, the position of the frequency-variable short plate 36 moves outward as is apparent from the measurement example shown in FIG. 13 and is located at a position that can be mechanically realized. be able to.

【0019】なお、本発明は、FT空洞が非対称に配置
される場合に特に有効なものであるが、FT空洞が対称
に配置されている場合であっても、ショート板の位置を
外側に出せるので、有効である。
The present invention is particularly effective when the FT cavities are asymmetrically arranged. However, even when the FT cavities are symmetrically arranged, the position of the short plate can be extended outward. So effective.

【0020】又、前記実施形態においては、本発明が、
AVF型サイクロトロンに適用されていたが、本発明の
適用対象は、これに限定されない。FT電圧の周波数
も、加速電圧の3倍に限定されず、5以上の奇数であっ
ても良い。
In the above embodiment, the present invention
Although the present invention has been applied to the AVF cyclotron, the application target of the present invention is not limited to this. The frequency of the FT voltage is not limited to three times the acceleration voltage, and may be an odd number of 5 or more.

【0021】[0021]

【発明の効果】本発明によれば、FT空洞の先端部をシ
ョートすることにより、中心領域部でのFT電圧を低く
して、ビームの不安定性を抑えることができる。
According to the present invention, by short-circuiting the tip of the FT cavity, the FT voltage in the central region can be reduced, and the instability of the beam can be suppressed.

【0022】又、必要な高い周波数を得るためのショー
ト板位置が外側に来るため、機械的に実現可能な構成と
なる。
Further, since the short plate position for obtaining the required high frequency is located on the outside, the structure can be realized mechanically.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の適用対象の一例であるAVF型サイク
ロトロンの原理的な構成を示す平面図
FIG. 1 is a plan view showing a principle configuration of an AVF cyclotron as an example to which the present invention is applied;

【図2】同じくFT空洞が無い場合の加速方法を示す説
明図
FIG. 2 is an explanatory diagram showing an acceleration method when there is no FT cavity.

【図3】AVF型サイクロトロンの加速空洞とFT空洞
の配置例を示す平面図
FIG. 3 is a plan view showing an arrangement example of an acceleration cavity and an FT cavity of an AVF cyclotron.

【図4】前記AVFサイクロトロンにおける加速電圧と
FT電圧の合成状態の例を示す線図
FIG. 4 is a diagram showing an example of a combined state of an acceleration voltage and an FT voltage in the AVF cyclotron.

【図5】従来型FT空洞の全体構成を示す、一部を切り
欠いて示す斜視図
FIG. 5 is a partially cutaway perspective view showing the entire configuration of a conventional FT cavity.

【図6】同じく先端部の断面図FIG. 6 is a cross-sectional view of the same tip.

【図7】図6のFT空洞における電圧分布の測定例を示
す線図
FIG. 7 is a diagram showing a measurement example of a voltage distribution in the FT cavity of FIG. 6;

【図8】図6のFT空洞によって形成される平均磁場強
度の分布を示す線図
FIG. 8 is a diagram showing the distribution of the average magnetic field intensity formed by the FT cavity of FIG. 6;

【図9】従来の問題点を説明するための平面図FIG. 9 is a plan view for explaining a conventional problem.

【図10】本発明の実施形態におけるFT空洞の全体構
成を示す、一部を切り欠いて示す斜視図
FIG. 10 is a partially cutaway perspective view showing the entire configuration of the FT cavity according to the embodiment of the present invention.

【図11】同じく先端部の断面図FIG. 11 is a cross-sectional view of the same tip.

【図12】従来例と本発明の実施形態におけるFT空洞
の電圧分布を比較して示す線図
FIG. 12 is a diagram showing a comparison between a voltage distribution of an FT cavity in a conventional example and an embodiment of the present invention.

【図13】前記実施形態におけるFT空洞の電圧分布の
測定例を示す線図
FIG. 13 is a diagram showing a measurement example of a voltage distribution of the FT cavity in the embodiment.

【符号の説明】[Explanation of symbols]

8…荷電粒子 10…磁極ポール 11…アース板 22…加速空洞 24…フラットトップ(FT)空洞 24A…先端 30…同軸共振器 36…可動ショート板 Reference Signs List 8 charged particle 10 magnetic pole 11 ground plate 22 accelerating cavity 24 flat top (FT) cavity 24A tip 30 coaxial resonator 36 movable short plate

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】対向する磁極ポール間に、荷電粒子を加速
するための、所定周波数の加速電圧が印加される加速空
洞と、加速電場を平坦化するための、前記加速電圧のn
倍(nは3以上の奇数)の周波数を有するフラットトッ
プ電圧が印加されるフラットトップ空洞とが並設された
加速器において、 前記フラットトップ空洞の加速器中心側先端を磁極ポー
ルにショートさせたことを特徴とする加速器。
An accelerating cavity for applying an accelerating voltage of a predetermined frequency for accelerating charged particles between opposing magnetic pole poles and an n of said accelerating voltage for flattening an accelerating electric field.
In an accelerator provided with a flat-top cavity having a frequency of twice (n is an odd number of 3 or more) to which a flat-top voltage is applied, an accelerator center-side tip of the flat-top cavity is short-circuited to a magnetic pole. A featured accelerator.
【請求項2】前記フラットトップ電圧の周波数を可変と
するための可動ショート板が、前記フラットトップ空洞
外側部の同軸共振器内に配設されていることを特徴とす
る加速器。
2. The accelerator according to claim 1, wherein a movable short plate for changing the frequency of the flat top voltage is provided in a coaxial resonator outside the flat top cavity.
【請求項3】請求項1又は2に記載の加速器を用いて、
荷電粒子を加速することを特徴とする荷電粒子の加速方
法。
3. An accelerator according to claim 1 or 2,
A method for accelerating charged particles, comprising accelerating charged particles.
JP2000224252A 2000-07-25 2000-07-25 Accelerator and charged particle accelerating method using the same Pending JP2002043097A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000224252A JP2002043097A (en) 2000-07-25 2000-07-25 Accelerator and charged particle accelerating method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000224252A JP2002043097A (en) 2000-07-25 2000-07-25 Accelerator and charged particle accelerating method using the same

Publications (1)

Publication Number Publication Date
JP2002043097A true JP2002043097A (en) 2002-02-08

Family

ID=18718244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000224252A Pending JP2002043097A (en) 2000-07-25 2000-07-25 Accelerator and charged particle accelerating method using the same

Country Status (1)

Country Link
JP (1) JP2002043097A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2455801C1 (en) * 2011-02-01 2012-07-10 Объединенный Институт Ядерных Исследований Method of reducing energy spread of particle beam in cyclotron
KR101411378B1 (en) 2012-11-28 2014-06-25 한국원자력의학원 An apparatus for drawing proton beam from a particle accelerator
JP2014160613A (en) * 2013-02-20 2014-09-04 Sumitomo Heavy Ind Ltd Cyclotron
JP2014186855A (en) * 2013-03-22 2014-10-02 Sumitomo Heavy Ind Ltd Cyclotron
CN109089373A (en) * 2018-07-13 2018-12-25 中国原子能科学研究院 For weakening influence method of the high-frequency signal to ion source
JP2020107532A (en) * 2018-12-28 2020-07-09 国立大学法人大阪大学 Cyclotron and cyclotron acceleration method
CN113677083A (en) * 2021-08-12 2021-11-19 中国原子能科学研究院 Design method of asymmetric acceleration gap structure for central area of cyclotron

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2455801C1 (en) * 2011-02-01 2012-07-10 Объединенный Институт Ядерных Исследований Method of reducing energy spread of particle beam in cyclotron
KR101411378B1 (en) 2012-11-28 2014-06-25 한국원자력의학원 An apparatus for drawing proton beam from a particle accelerator
JP2014160613A (en) * 2013-02-20 2014-09-04 Sumitomo Heavy Ind Ltd Cyclotron
JP2014186855A (en) * 2013-03-22 2014-10-02 Sumitomo Heavy Ind Ltd Cyclotron
CN109089373A (en) * 2018-07-13 2018-12-25 中国原子能科学研究院 For weakening influence method of the high-frequency signal to ion source
JP2020107532A (en) * 2018-12-28 2020-07-09 国立大学法人大阪大学 Cyclotron and cyclotron acceleration method
JP7112083B2 (en) 2018-12-28 2022-08-03 国立大学法人大阪大学 Cyclotron and cyclotron acceleration method
CN113677083A (en) * 2021-08-12 2021-11-19 中国原子能科学研究院 Design method of asymmetric acceleration gap structure for central area of cyclotron

Similar Documents

Publication Publication Date Title
CN102651942B (en) Circular accelerator and operating method therefor
US4181894A (en) Heavy ion accelerating structure and its application to a heavy-ion linear accelerator
US4286192A (en) Variable energy standing wave linear accelerator structure
JP2015065102A (en) Circular accelerator
CN106971929B (en) The controllable Relativistic backward-wave oscillator of across the wave band multifrequency of one kind
JP2002043097A (en) Accelerator and charged particle accelerating method using the same
CN108684132A (en) Synchrocyclotron and its high-intensity magnetic field and higher frequency adjustment curve matching process
JP3736343B2 (en) DC electron beam accelerator and DC electron beam acceleration method thereof
Wang et al. High power angular radial staggered vane backward wave oscillator at W-band
CN107211523B (en) Radio frequency cavity
CN106783512A (en) A kind of system of selection of the quality selection device and cluster particle of cluster
CN206877965U (en) A kind of across wave band controllable Relativistic backward-wave oscillator of multifrequency
Skalyga et al. High-Current Pulsed ECR Ion Sources
JP3333421B2 (en) Flat magnetron
JPS63274098A (en) Standing wave linear accelerator
US2559582A (en) Microwave generator
JP3010169B1 (en) High electric field small standing wave linear accelerator
US20080116807A1 (en) Magnetron
JP3131350B2 (en) Standing wave accelerator
US2590612A (en) High-frequency electron discharge device and circuits therefor
JP2015133241A (en) Circular accelerator, circular acceleration system, and particle acceleration method
CN104393372A (en) Method for restraining medium surface secondary electron multiplying in transverse magnetic electromagnetic field mode
JPH05258898A (en) Multi-stage high-frequency quadruple accelerator
CN114501770B (en) Spiral electrode structure for improving focusing force of central area of cyclotron
US2567406A (en) Electric discharge device for highfrequency oscillations