JPH08106352A - Spatial coordinate detecting device - Google Patents

Spatial coordinate detecting device

Info

Publication number
JPH08106352A
JPH08106352A JP24150594A JP24150594A JPH08106352A JP H08106352 A JPH08106352 A JP H08106352A JP 24150594 A JP24150594 A JP 24150594A JP 24150594 A JP24150594 A JP 24150594A JP H08106352 A JPH08106352 A JP H08106352A
Authority
JP
Grant status
Application
Patent type
Prior art keywords
light
receiving element
side
receiving
spot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24150594A
Other languages
Japanese (ja)
Other versions
JP3416291B2 (en )
Inventor
Ichiro Morishita
Junichi Saito
Arao Satou
Yuichi Umeda
Yuichi Yasuda
荒尾 佐藤
勇一 安田
潤一 斉藤
裕一 梅田
一郎 森下
Original Assignee
Alps Electric Co Ltd
アルプス電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Abstract

PURPOSE: To detect not only the relative tilt angles and rotational angles of both a light emission part and a detection part to the axis connecting them, but also the relative distances of both the parts in a Z-axial direction and a Y-axial direction with high precision through simple structure. CONSTITUTION: The detection part is arranged at an operation member which is manually operated by an operator. At the light emission part 10, two light sources 12 and 13 which emit mutually distinctive lights are arranged at a specific interval, and the detection part 11 is provided with two stop openings 15a and 15b which are arrayed at a specific interval in the Y-axial direction when a Z axis extending to before the detection part 1 and X-Y orthogonal coordinates crossing it at right angles are set, and 1st and 2nd light receiving elements 17 and 18 which face each other. The 1st light receiving element 17 has two light reception parts which are divided in the Y-axial direction, and they are irradiated with different spot lights. The 2nd light receiving element 18 has four light reception parts which are divided in the X-axial and Y-axial directions, and they are irradiated with different spot lights.

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【産業上の利用分野】本発明は、光源を有する発光部と、該光源からの光を受光検知する検出部とを備え、入力装置に用いて好適な空間座標検出装置に関する。 The present invention relates to a light emitting unit having a light source, and a detector for receiving detecting light from the light source, of a preferred spatial coordinate detection device using the input device.

【0002】 [0002]

【従来の技術】従来より、各種映像が表示される画面に対して外部から情報を入力する入力装置としては、ジョイスティックが付いたコントローラや、マトリクス配列されたスイッチ素子を有する平面的な座標入力装置等が主なものとなっている。 Conventionally, as the input device in which various video inputs information from the outside to the screen displayed, planar coordinate input device having a controller or the joystick is attached, the switch elements arranged in a matrix etc. has become the main thing. 前記ジョイスティックが付いたコントローラは、アクションゲームにおいて画面でのキャラクタの移動や動作指示を行う操作等を行う場合には適しているが、画面の任意の場所に現れる釦にカーソルマークを合わせる等の操作には不向きである。 Controller the joystick with is suitable in the case of performing an operation or the like for moving and operating instruction of the character on the screen in an action game, the operation of such hover mark buttons appearing anywhere on the screen it is not suitable for. また、この種のコントローラはコード式のものであるため、画面の近くでしか操作できないという難点がある。 The controller of this type since they are of code expression, there is a drawback that can be operated only in the vicinity of the screen. 一方、従来の平面的な座標入力装置は、画面の手前に平面的な指示盤を設置するスペースが広く必要になり、また、構造も複雑でコストの高いものとなっている。 On the other hand, the conventional planar coordinate input device, space for installing a planar indicia in front of the screen is widely required, also become a high structural complexity and cost.

【0003】そこで、最近では図10に示すような超音波を使用した入力装置が考えられている。 [0003] Therefore, the input device using ultrasound, as shown in FIG. 10 are considered recently. この入力装置は、機器本体の画面1の両側等に水平軸(X軸)方向に間隔を開けて配置された音源2a,2bが設けられている。 This input device, the horizontal axis on both sides like the screen 1 of the main body (X-axis) direction in spaced sound source 2a, 2b are provided. オペレータが手で持って操作する操作部材3には、 The operating member 3 operated by an operator by hand,
前記音源2aと2bから発せられる超音波を検知する検出部が設けられている。 Detector is provided for detecting the ultrasonic wave emitted from the sound source 2a and 2b. 音源2a,2bからは、超音波が互いに位相をずらしてパルス変調されて発せられる。 Source 2a, from 2b, ultrasound is emitted is pulse modulated out of phase with each other.
操作部材3の検出部では、音源2aと2bからの超音波を識別して受信し、受信された各超音波の位相差等から音源2aとの距離Laと音源2bとの距離Lbとが算出され、これにより、操作部材3の水平面(Hx−Hz Calculated by the detecting portion of the operation member 3, and received by identifying the ultrasonic wave from the sound source 2a and 2b, the distance Lb between the distance La and the sound source 2b the sound source 2a from the phase difference of each ultrasonic wave is received is, thereby, the horizontal plane of the operating member 3 (Hx-Hz
面)上での座標が検出されるようになっている。 Coordinates on the surface) is adapted to be detected. 操作部材3を水平面(Hx−Hz面)にて移動させ、必要に応じて操作釦を押すと、操作部材3にて受信された情報が有線または無線で機器本体に与えられ、機器本体ではH The operating member 3 is moved in a horizontal plane (Hx-Hz plane), and press the operation button as required, information received in the operation member 3 is provided to the apparatus main body by wire or wireless, H is in the device body
x−Hz面での操作部材3の位置が演算され、例えば機器本体の画面1に現れたカーソルマーク4が移動させられる。 Position of the operating member 3 in the x-Hz plane is calculated, for example, a cursor mark 4 appearing on the screen 1 of the apparatus body is moved.

【0004】 [0004]

【発明が解決しようとする課題】しかしながら、図10 The object of the invention is to, however, as shown in FIG. 10
に示す従来の入力装置では、水平面(Hx−Hz面)上での操作部材3の座標を検出し、その情報を機器本体に与えることは可能であるが、操作部材3をHx−Hz平面上のある位置に停止させた状態で、該操作部材3をθ The conventional input device shown, a horizontal plane to detect the coordinates of the operating member 3 on (Hx-Hz plane), it is possible to provide the information to the device body, the operating member 3 Hx-Hz plane in a state of stopping to a position, the operating member 3 theta
xあるいはθy方向へ傾けたとしても、その傾き角度を検出することはできない。 Even inclined to x or θy direction, it is impossible to detect the tilt angle. また、操作部材3のθz方向への回転角度を検出することも不可能であった。 It was also impossible to detect the rotation angle of the θz direction of the operation member 3. さらに、超音波は簡単な構成で実現できるが、温度に対する安定性が悪く、しかも外乱ノイズが多い等、信頼性の面で多くの問題が残されている。 Furthermore, although ultrasound can be realized with a simple structure, poor stability with respect to temperature, moreover disturbance noisy etc., many problems in terms of reliability remain. なお、超音波以外でも交流磁界を利用し、3次元空間での位置と角度を求める方法も提案されているが、このものは装置が大型化し、非常に高価である。 Incidentally, by using an AC magnetic field other than ultrasound, have also been proposed a method for determining the position and angle of the three-dimensional space, the ones apparatus becomes large in size, it is very expensive.

【0005】本発明は、このような従来技術の実情に鑑みてなされたものであり、その目的は、発光部と検出部との相対的な回転角度や距離を簡単な構造で高精度に検出できるようにした空間座標検出装置を提供することにある。 [0005] The present invention has such has been made in view of the circumstances of prior art, and its object is to accurately detect the relative rotation angle and the distance between the detector and the light emitting portion with a simple structure is to provide a spatial coordinate detecting apparatus capable.

【0006】 [0006]

【課題を解決するための手段】上記目的を達成するために、本発明は、発光部と検出部とが離れた位置に配置され、前記発光部には、識別可能な光を発する2個の光源が間隔を開けて配置され、前記検出部には、前記両光源から発せられた光を所定面積のスポット光に絞る複数の開口と、各開口に対向し前記スポット光を受光する複数組の受光素子とが設けられ、前記各開口は任意のX−Y To achieve the above object of the Invention The present invention is disposed in a position where the detecting portion and the light emitting portion is separated, the light emitting portion is two to emit distinguishable light light source is spaced, said the detection unit, the plurality of openings to narrow the light emitted from both the light source to a spot light having a predetermined area, a plurality of sets of opposite each opening for receiving the spotlight a light receiving element are provided, wherein each opening any X-Y
直交座標を設定した時にY軸方向に沿って配置され、前記各受光素子の1組は前記スポット光のY軸方向の移動を検出するY側受光素子であり、残りの組は前記スポット光のX軸とY軸方向の移動を検出するX−Y側受光素子であることを、最も主要な特徴としている。 Are arranged along the Y-axis direction when setting the orthogonal coordinate, a set of the respective light receiving elements are Y-side light-receiving element for detecting the movement of the Y-axis direction of the spot light, the remaining set of the spotlight that the X-Y-side light-receiving element for detecting the movement of the X-axis and Y-axis direction, and the most important features. 上記の空間座標検出装置には、前記Y側受光素子と前記X−Y側受光素子のY側受光部からの受光光量に基づいて、これらY側受光素子とX−Y側受光素子に照射される各スポット光の位置を求める演算部が設けられている。 The above spatial coordinate detecting device, based on the amount of light received from the Y-side light-receiving portion of the Y-side light-receiving element and the X-Y-side light-receiving element are irradiated to these Y-side light-receiving element and the X-Y-side light-receiving element arithmetic unit is provided for determining the position of each spot light that. また、 Also,
上記の空間座標検出装置には、前記X−Y側受光部のX The above spatial coordinate detector, X of the X-Y-side light-receiving part
側およびY側受光部からの受光光量に基づいて、該X− Based on the amount of light received from the side and Y-side light-receiving section, the X-
Y側受光素子に照射される両スポット光の位置を求める演算部が設けられている。 Calculation unit for determining the positions of both the spot light is provided which is irradiated on the Y-side light-receiving element. 前記Y側受光素子としてY軸方向に分割された2分割受光素子を、前記X−Y側受光素子としてX軸およびY軸方向に分割された4分割受光素子をそれぞれ用いることができ、このような分割受光素子を用いた場合は、前記開口は各分割受光素子にそれぞれ1個ずつ対応すれば良いため、合計2個の開口が必要となる。 The light receiving device which is divided in the Y-axis direction as the Y-side light-receiving element, the X-Y-side light-receiving element X-axis and Y-axis the four light-receiving elements that are divided into can be used respectively as a, such when using a Do-split light-receiving element, said openings for may be corresponding one by one to each light receiving element, it is necessary to sum two openings.

【0007】 [0007]

【作用】発光部にて間隔を開けて配置された2個の光源から識別可能な光が発せられ、これら光は検出部にて複数の開口を通過してそれぞれ所定の面積のスポット光となり、各スポット光が複数組の受光素子にて受光される。 [Action] distinguishable from the two light sources which are spaced at the light emitting portion light is emitted, these light respectively become a spot light having a predetermined area through a plurality of openings by the detector, each spot light is received by a plurality of sets of light receiving elements. これら受光素子の1組はスポット光のY軸方向の移動を検出するY側受光素子であり、残りの組はスポット光のX軸とY軸方向の移動を検出するX−Y側受光素子である。 A pair of light-receiving elements are Y-side light-receiving element for detecting the movement of the Y-axis direction of the spot light, remaining sets in X-Y-side light-receiving element for detecting the movement of the X-axis and Y-axis direction of the spot light is there. ここで、前記2個の光源と複数組の受光素子との組み合わせにより、両光源からの光がY側受光素子とX−Y側受光素子に照射される光学系と、両光源からの光がX−Y側受光素子に照射される光学系とに分けることができる。 Wherein said by the combination of two light sources and a plurality of sets of light receiving elements, an optical system which light from both light sources is irradiated onto the Y-side light-receiving element and the X-Y-side light-receiving element, the light from both light sources can be divided into an optical system is irradiated onto the X-Y-side light-receiving element.

【0008】前者の光学系では、Y側受光素子に照射される両スポット光のY軸方向の移動量と、X−Y側受光素子に照射される両スポット光のY軸方向の移動量とを検出し、その検出結果に基づいて、例えば検出部に設定した座標上での両光源の位置を求めることができる。 [0008] In the former optical system, the movement amount of the Y-axis direction of both the spot light irradiated on the Y-side light-receiving element, and the movement amount in the Y-axis direction of both the spot light irradiated onto the X-Y-side light-receiving element detects, based on the detection result, it is possible to determine the positions of both light sources on coordinates set to, for example, detection unit. 両光源の座標が決定されると、両光源を通る直線の傾きにより、発光部と検出部の相対角度θyが求められる。 When the coordinates of the two light sources is determined by the slope of the straight line through both light sources, the relative angle θy of the detector and the light emitting portion is determined. また、この角度θyと同じだけ回転させた回転座標を設定し、両光源の中点の座標を回転座標系に変換することにより、発光部と検出部の相対的なY軸方向のずれ量と、 Further, to set the same by the rotation coordinates is rotated with the angle [theta] y, by converting the coordinates of the midpoint of the two light sources in the rotating coordinate system, and the relative Y-axis direction displacement amount of the detection unit and the light emitting portion ,
発光部と検出部の相対的なZ軸方向のずれ量が求められる。 Shift amount of the relative Z-axis direction of the detection unit and the light emitting portion is determined.

【0009】後者の光学系では、X−Y側受光素子に照射される両スポット光のX軸方向の移動量とY軸方向の移動量とを検出し、その検出結果に基づいて、両スポット光の位置を求めることができる。 [0009] In the latter optical system to detect the amount of movement of the X-axis direction of both the spot light irradiated onto the X-Y-side light-receiving element and the Y-axis direction of the moving amount, based on the detection result, both the spot it is possible to obtain the position of the light. 両スポット光の位置から両スポット光の中心を通る直線の傾きが求められ、 The slope of the straight line passing through the centers of both the spot light from the positions of both the spot light is determined,
発光部と検出部を結ぶ線に対する両部の相対的な回転角度θzが求められる。 Relative rotation angle θz of both parts with respect to the line connecting the detector and the light emitting portion is determined. また、両スポット光の中点の座標をθzだけ回転した時の回転座標系に変換することにより、発光部と検出部の相対的な傾き角度θx,θyが求められる。 Further, by converting the coordinates of the midpoint of both the spot light to the rotating coordinate system when rotated by [theta] z, relative tilt angle θx of the detector and the light emitting portion, [theta] y is determined. さらに、両スポット光の位置と両光源間の距離から三角測量の原理により、発光部と検出部の相対的なZ軸方向のずれ量が求められる。 Furthermore, the principle of the distance from the triangulation between both the spot light position and both the light source, the amount of deviation of the relative Z-axis direction of the detection unit and the light emitting portion is determined.

【0010】 [0010]

【実施例】以下、本発明の実施例を図に基づいて説明する。 BRIEF DESCRIPTION OF THE PREFERRED embodiment of the present invention in FIG. 図1は本発明の実施例に係る空間座標検出装置の基本構造を示す斜視図、図2は該空間座標検出装置に備えられる1つの光学系を示す断面図、図3は該空間座標検出装置に備えられる他の光学系を示す断面図、図4は該空間座標検出装置に備えられる第1の受光素子の平面図、図5は該空間座標検出装置に備えられる第2の受光素子の平面図、図6は図3の光学系を模式的に示す説明図である。 Figure 1 is a perspective view showing a basic structure of a spatial coordinate detecting apparatus according to an embodiment of the present invention, FIG. 2 is a cross-sectional view of one of the optical system provided in the spatial coordinate detecting apparatus, FIG. 3 is spatial coordinate detecting device sectional view showing another optical system provided in a plan view of the first light receiving element 4 is provided in the space coordinate detecting device, the plane of the second light receiving element 5 is provided in the space coordinate detecting device FIG, 6 is an explanatory view schematically showing an optical system of FIG.

【0011】本実施例に係る空間座標検出装置は発光部10と検出部11とを備えており、この発光部10は例えばコンピュータやAV機器またはゲーム機本体等の表示画面を有する機器本体に設置され、一方、検出部11 [0011] spatial coordinate detection device according to this embodiment is provided with a detection unit 11 and the light emitting portion 10, the light emitting unit 10 is installed in the device body having a display screen such as, for example, a computer and AV equipment, or game machine main body is, on the other hand, the detection unit 11
は例えばリモートコントローラ等のオペレータが手で持って移動する操作部材に設置されている。 It is installed on the operating member to move by hand the operator of the remote controller or the like for example. 前記発光部1 The light-emitting portion 1
0は互いに識別可能な光を発する2個の光源12,13 0 two light sources 12 and 13 for emitting a distinguishable optical mutually
を有しており、これら光源12,13は所定の間隔を開けて配置されている。 The has, the light sources 12 and 13 are arranged at a predetermined interval. 各光源12,13は例えば赤外線発光ダイオードからなり、各光源12,13からは同じ周波数(周期)で且つ位相が180度ずれた変調光が出力される。 Each light source 12 and 13 for example, an infrared light emitting diode, from the light sources 12 and 13 modulated light and phase shifted 180 degrees at the same frequency (period) is output. これら各光源12,13は、発光部10の中心Oを通過する水平軸をX軸、中心Oを通過する垂直軸をY軸とした時に、Y軸上にて中心Oに対して等距離a Each of these light sources 12 and 13, when the X-axis horizontal axis passing through the center O of the light emitting portion 10, a vertical axis passing through the center O and the Y-axis, equidistant a with respect to the center O at the Y-axis
/2離れた位置に設けられている(図2,3参照)。 / 2 is provided at a remote position (see FIGS. 2 and 3). 前記検出部11は可視光カットフィルタ14と絞り板15 The detector 11 and the diaphragm plate 15 visible light cut filter 14
および受光素子群16とからなり、図2,3に示すように、これら可視光カットフィルタ14と絞り板15および受光素子群16は両光源12,13側から順に互いに並行に設けられている(ただし、図1は可視光カットフィルタ14を省略してある)。 And it made from the light receiving element group 16. As shown in FIGS. 2 and 3, these visible-light cut filter 14 and the diaphragm plate 15 and the light receiving element group 16 is provided in parallel with each other in order from both source 12 side ( However, FIG. 1 is omitted visible light cut filter 14).

【0012】前記受光素子群16の受光面に垂直となる軸をZ軸とし、検出部11にてこのZ軸に直交するX− [0012] The axis is perpendicular to the light receiving surface of the light receiving element group 16 and Z-axis, perpendicular to the Z-axis by the detector 11 X-
Y直交座標を設定すると、前記絞り板15には矩形状の第1および第2の絞り口15a,15bがY軸方向に所定の間隔を保って開設されている。 Setting Y orthogonal coordinates, rectangular first and second throttle opening 15a in the diaphragm plate 15, 15b is opened with a predetermined distance in the Y-axis direction. 一方、前記受光素子群16は前記各絞り口15a,15bに対向する第1および第2の受光素子17,18より構成され、これら各受光素子17,18は例えばピンホトダイオードからなる。 Meanwhile, the light receiving element group 16 is composed of first and second light receiving elements 17 and 18 facing each throttle opening 15a, to 15b, each of these light-receiving elements 17 and 18 consists of a pin photodiode, for example. 図4に示すように、上方の絞り口15aに対向する第1の受光素子17はY軸方向に2分割された分割受光部17a,17bを有する。 As shown in FIG. 4 has a first light receiving element 17 is split light receiving portion 17a which is divided into two in the Y-axis direction opposing the upper diaphragm port 15a, a 17b. また、図5に示すように、 Further, as shown in FIG. 5,
下方の絞り口15bに対向する第2の受光素子18は4 Second light receiving element 18 that faces the lower diaphragm port 15b is 4
分割された分割受光部18a,18b,18c,18d Divided light receiving portions 18a, 18b, 18c, 18d
を有し、分割受光部の18a,18bの組と18c,1 Has, light receiving portions of the 18a, 18b of the pair and 18c, 1
8dの組とはY軸方向分割され、18a,18cの組と18b,18dの組とはX軸方向に分割されている。 The 8d set of the Y-axis direction splitting, 18a, 18c of the set and 18b, are divided into X-axis direction and 18d pairs.

【0013】前記各光源12,13からそれぞれ異なるタイミング(異なる周期)で発せられた赤外光は、前記可視光カットフィルタ14を透過した後、前記絞り板1 [0013] The infrared light emitted at different timings from each light source 12, 13 (different periods) is transmitted through the visible light cut filter 14, the diaphragm plate 1
5の各絞り口15a,15bにより絞られ、第1および第2の受光素子17,18の受光面上にそれぞれ矩形スポット光として照射される。 Each stop opening 15a of 5, throttled by 15b, is irradiated as each rectangular spot light on the light receiving surface of the first and second light receiving elements 17, 18. その際、可視光カットフィルタ14が設けられることにより、受光素子群16において赤外光の矩形スポット以外の外光ノイズ成分が可能な限り遮断されるようになっている。 At that time, by the visible light cut filter 14 is provided, so that the external light noise component other than the rectangular spot of the infrared light is blocked as much as possible in the light receiving element group 16. 図4では、光源1 In Figure 4, the light source 1
2から発せられた赤外光スポット光をS12Aで示し、 The infrared spot light emitted from the 2 shown in S12A,
光源13から発せられた赤外光スポット光をS13Aで示している。 It is indicated by S13A infrared spot light emitted from the light source 13. 図5では、光源12から発せられた赤外光スポット光をS12Bで示し、光源13から発せられた赤外光スポット光をS13Bで示している。 In Figure 5, shows the infrared spot light emitted from the light source 12 at S12B, shows an infrared spot light emitted from the light source 13 at S13B.

【0014】第1および第2の受光素子17,18のそれぞれの分割受光部では、スポット光の照射面積と照射光強度に基づいて光電変換された検出電流が得られる。 [0014] In each of the divided light receiving portions of the first and second light receiving elements 17 and 18, the detection current obtained by photoelectric conversion based on the irradiation light intensity and irradiation area of ​​the spot light can be obtained.
処理回路については後述するが、この検出電流は電圧に変換されて演算処理される。 Although will be described later processing circuit, the detection current is processing is converted into a voltage. そこで、第1の受光素子1 Therefore, the first light-receiving element 1
7の分割受光部17a,17bでのスポット光S12 7 of light receiving portions 17a, spotlight S12 in at 17b
A,S13Aの照射面積に基づく検出出力を、図4においてU,Dで示し、第2の受光素子18の各分割受光部18a〜18dでのスポット光S12B,S13Bの照射面積に基づく検出出力を、図5においてLu,Ru, A, a detection output based on irradiation area of ​​S13A, U 4, indicated by D, the spot light at the light receiving portions 18a~18d of the second light receiving element 18 S12B, the detection output based on irradiation area of ​​the S13B , Lu in FIG. 5, Ru,
Ld,Rdで示す。 Ld, indicated by Rd. 前述したように、各光源12,13 As described above, the light sources 12 and 13
からは異なるタイミングで赤外光が発せられるため、第1の受光素子17にてスポット光S12Aが検出される時刻とスポット光S13Aが検出される時刻が異なり、 Unlike different for infrared light is emitted at a timing, a time the time the spot light S13A spotlight S12A is detected by the first light receiving element 17 is detected from,
処理回路にて時分割することによりスポット光S12 Spot light S12 by time division in the processing circuit
A,S13Aごとに前記U,Dの検出出力が得られる。 A, the U, the detection output of the D is obtained for each S13A.
同様に、第2の受光素子18に照射されるスポット光S Likewise, the spot light S is irradiated to the second light receiving element 18
12B,S13Bごとに前記Lu,Ru,Ld,Rdの検出出力が得られる。 12B, the per S13B Lu, Ru, Ld, the detection output of Rd is obtained.

【0015】このように構成された空間座標検出装置は、機能的に見ると図2と図3に示す2つの光学系に分けることができ、以下、それぞれの光学系について検出原理を説明する。 [0015] Such spatial coordinate detecting apparatus constructed as above, functionally seen when can be divided into two optical systems shown in FIGS. 2 and 3, will be described below detection principle for each of the optical systems.

【0016】まず、図2の光学系について説明すると、 [0016] First, the description will be given optical system of Figure 2,
両光源12,13からそれぞれ異なるタイミングで発せられた赤外光は、絞り口15bにより絞られた後、図5 Infrared light emitted at different timings from both light sources 12 and 13, after being throttled by the throttle opening 15b, FIG. 5
に示すように、第2の受光素子18の各分割受光部18 As shown, each light receiving portion of the second light receiving element 18 18
a〜18dにそれぞれスポット光S12B,S13Bとして照射される。 Each spot light S12B to A~18d, is irradiated as S13B. 図5において、検出部11側のX−Y In Figure 5, the detector 11 side X-Y
直交座標上での光源12からのスポット光S12Bの中心座標をI 1 (X 1 ,Y 1 )、光源13からのスポット光S13Bの中心座標をI 2 (X 2 ,Y 2 )、発光部10の中心Oと絞り口15bの中心とを結ぶ直線Ojが第2の受光素子18の受光面で交わる交点の座標をOa The center coordinates of the spot light S12B from the light source 12 on the orthogonal coordinate I 1 (X 1, Y 1 ), the center coordinates of the spot light S13B from the light source 13 I 2 (X 2, Y 2), the light emitting portion 10 Oa straight Oj connecting the centers of O and throttle opening 15b is the coordinates of an intersection which intersects the light receiving surface of the second light receiving element 18 of the
(X 0 ,Y 0 )とすると、OaはI 1とI 2の中間に位置する。 When (X 0, Y 0) to, Oa is positioned midway between I 1 and I 2. 図5の検出状態は、検出部11側のX−Y直交座標のY軸に対し、光源12と13とが配置された発光部1 FIG detection state 5, the detection unit with respect to the Y axis of 11 of the X-Y orthogonal coordinates, the light source 12 and 13 and the light emitting portion 1 is arranged
0側のY軸が角度θzだけ相対的に回転した状態を示しており、この場合、Z軸まわりの回転角θzはI 1とI 2 0 side of the Y axis represents the state where the relative rotational angle [theta] z, in this case, the rotation angle [theta] z around the Z-axis I 1 and I 2
を通る直線の傾きに等しく、 tanθz=(X 2 −X 1 )/(Y 2 −Y 1 ) であるから、 θz=tan~ 1 〔(X 2 −X 1 )/(Y 2 −Y 1 )〕……………… として表せられる。 Equal to the slope of the line passing through, tanθz = (X 2 -X 1 ) / from a (Y 2 -Y 1), θz = tan ~ 1 [(X 2 -X 1) / ( Y 2 -Y 1) ] it can be expressed as ................... ここで、上記式におけるX 1とX 2 Here, the X 1 in the formula X 2
は、スポット光S12BとS13Bに対し、X軸方向に分割された分割受光部18b,18dの組の受光光量と、分割受光部18a,18cの組の受光光量との差から求められる。 , Compared spotlight S12B and S13B, X-axis direction in the divided light receiving portion 18b, a pair of light receiving amount of 18 d, light receiving portion 18a, is determined from the difference between the set of received light quantity of 18c. また、Y 1とY 2は、スポット光S12B Further, Y 1 and Y 2, the spot light S12B
とS13Bに対し、Y軸方向に分割された分割受光部1 And to S13B, light receiving portions is divided in the Y-axis direction 1
8a,18bの組の受光光量と、分割受光部18c,1 8a, a set of the received light amount of 18b, light receiving unit 18c, 1
8dの組の受光光量との差から求められる。 It is determined from the difference between the set of the amount of light received 8d. すなわち、 That is,
各分割受光部18a〜18dでの受光出力Lu,Ru, Receiving output Lu in each light receiving portions 18a to 18d, Ru,
Ld,Rdと座標X 1 ,X 2 ,Y 1 ,Y 2とは比例関係にあり、 X 1 ,X 2 ∝〔(Ru+Rd)−(Lu+Ld)〕/(Ru+Lu+Rd+Ld)〕 Y 1 ,Y 2 ∝〔(Ru+Lu)−(Rd+Ld)〕/(Ru+Lu+Rd+Ld)〕 …………………… として表せられる。 Ld, and Rd and coordinates X 1, X 2, Y 1 , Y 2 are in a proportional relationship, X 1, X 2 α [(Ru + Rd) - (Lu + Ld) ] / (Ru + Lu + Rd + Ld) ] Y 1, Y 2 α [ (Ru + Lu) - (Rd + Ld)] / (Ru + Lu + Rd + Ld)] is expressed as ......................... したがって、第2の受光素子18の各分割受光部18a〜18dからの受光出力Lu,R Therefore, the light receiving output Lu from the light receiving portions 18a~18d of the second light receiving element 18, R
u,Ld,Rdに対して上記式の演算を施し、さらに上記式の計算を行うことにより、検出部11のZ軸に対する相対的な回転角度θzを求めることができる。 u, Ld, performing an operation of the expression for Rd, may be further by performing the calculation of the above formula to determine the relative rotation angle θz with respect to the Z axis of the detection unit 11.

【0017】また、図2において、前述した直線OjとZ軸とがなす傾き角度のX方向およびY方向成分をそれぞれθx(ラジアン),θy(ラジアン)とし、発光部10側のX−Y直交座標を基準とした座標Oa(X 0 Further, in FIG. 2, respectively in the X direction and the Y direction component of the inclination angle between the straight line Oj and Z-axis as described above [theta] x (radian), and [theta] y (radian), X-Y orthogonal of the light emitting portion 10 side coordinates Oa (X 0 relative to the coordinates,
0 )のX軸方向とY軸方向の位置ずれ量をそれぞれΔ Y 0) are X-axis direction and the Y-axis direction of the positional deviation amount of Δ
x,Δyとし、さらに、絞り板15と受光素子群16の受光面までの距離をdとすると、dは微少であるから、 Δx=d・tanθx≒d・θx Δy=d・tanθy≒d・θy となり、 θx=Δx/d θy=Δy/d……………… として表せる。 x, and [Delta] y, further, when the distance between the diaphragm plate 15 to the light receiving surface of the light receiving element group 16 and d, d is because it is very small, Δx = d · tanθx ≒ d · θx Δy = d · tanθy ≒ d · θy next, θx = Δx / d θy = Δy / d .................. expressed as. ここで、図5の検出状態は、検出部11 Here, the detection state of FIG. 5, the detection unit 11
がZ軸に対して相対的に角度θzだけ回転した状態であるため、検出部11側のX−Y直交座標は発光部10側のX−Y直交座標(空間に対して固定されたX−Y直交座標)に対して角度θzだけ回転している。 X- but because it is a state of being rotated relatively by angle θz with respect to the Z-axis, X-Y orthogonal coordinate detection unit 11 side is fixed to the X-Y orthogonal coordinate (space of the light emitting portion 10 side is rotated by the angle θz to the Y orthogonal coordinates). そこで、図5において、検出部11側に固定されたX−Y直交座標に対して角度θzだけ回転した回転座標を設定すると、 Therefore, in FIG. 5, by setting the rotational coordinates is rotated by the angle θz against fixed to the detector 11 side X-Y orthogonal coordinates,
この回転座標上でのΔx,Δyは、 Δx=X 0 cosθz+Y 0 sinθz Δy=−X 0 sinθz [Delta] x on the rotating coordinate, [Delta] y is, Δx = X 0 cosθz + Y 0 sinθz Δy = -X 0 sinθz
+Y 0 cosθz……………………… となる。 + Y 0 cosθz ........................... become. また、X 0とY 0は、 X 0 =(X 1 +X 2 )/2 Y 0 =(Y 1 +Y 2 )/2………… として求められる。 Further, X 0 and Y 0 is, X 0 = (X 1 + X 2) / 2 Y 0 = (Y 1 + Y 2) / 2 is obtained as ............. これら〜式においてdは既知であるため、第2の受光素子18の各分割受光部18a〜 Since in these to Formula d are known, each of the divided light receiving portions of the second light receiving element 18. 18a
18dの受光出力Lu,Ru,Ld,Rdから上記式によりX 1 ,X 2 ,Y 1 ,Y 2を演算し、その演算結果に基づいて上記〜式の計算を行うことにより、発光部1 18d of the light receiving output Lu, Ru, Ld, the above formulas Rd calculates the X 1, X 2, Y 1 , Y 2, by performing the calculation of the ~ expression based on the calculation result, the light emitting portion 1
0側のX−Y直交座標に対するZ軸の傾きθxとθyを求めることができる。 It can be obtained inclination θx and θy of the Z-axis with respect to 0 side of the X-Y orthogonal coordinates.

【0018】さらに、図2において、発光部10と検出部11とのZ軸方向の距離をL、第2の受光素子18の受光面でのI 1とI 2間の距離をbとすると、これらL, Furthermore, in FIG. 2, the distance in the Z axis direction of the detection unit 11 and the light emitting portion 10 L, and the distance between I 1 and I 2 on the light receiving surface of the second light receiving element 18 is b, these L,
bと前述したa(両光源12,13間の距離),d(絞り板15と受光素子群16の受光面までの距離)との関係は、 L/d=a/b であるから、 L=a・d/b……………… として表せる。 b and the above-mentioned a (distance between the two light sources 12, 13), the relationship between the d (distance between the diaphragm plate 15 to the light receiving surface of the light receiving element group 16), because it is L / d = a / b, L = a · d / b .................. expressed as. この式において、aとdは既知であり、bは検出部11側のX−Y直交座標上のI 1 (X 1 In this formula, a and d are known, b is I 1 (X 1 on X-Y orthogonal coordinate detection unit 11 side,
1 )とI 2 (X 2 ,Y 2 )の位置から、 b=√〔(X 1 −X 22 +(Y 1 −Y 22 〕…………… として表せる。 Y 1) and from the position of I 2 (X 2, Y 2 ), b = √ [(X 1 -X 2) 2 + (Y 1 -Y 2) 2 ] expressed as ................ したがって、第2の受光素子18の各分割受光部18a〜18dの受光出力Lu,Ru,Ld, Therefore, the light receiving output Lu of each divided light receiving portions 18a~18d of the second light receiving element 18, Ru, Ld,
Rdから上記式によりX 1 ,X 2 ,Y 1 ,Y 2を演算し、 From Rd by the formula calculates the X 1, X 2, Y 1 , Y 2,
その演算結果に基づいて上記式によりbを求め、さらに上記式から距離Lを求めることができる。 Seeking b by the formula based on the calculation result, it is possible to further obtain a distance L from the above equation. また、この距離LがL 1からL 2に変化した時の変位量ΔLは、 ΔL=L 2 −L 1として求めることができる。 Further, the displacement amount [Delta] L when the distance L is changed from L 1 to L 2 can be determined as [Delta] L = L 2 -L 1.

【0019】次に、図3の光学系について説明すると、 [0019] Next, a description will be given of an optical system of FIG. 3,
両光源12,13からそれぞれ異なるタイミングで発せられた赤外光は、絞り口15a,15bにより絞られた後、第1の受光素子17の両分割受光部17a,17b Infrared light emitted at different timings from both light sources 12 and 13, diaphragm opening 15a, after being throttled by 15b, both light receiving portion 17a of the first light-receiving element 17, 17b
にスポット光S12A,S13Aとして照射され、第2 Spot light S12A, is irradiated as S13A, the second
の受光素子18の各分割受光部18a〜18dにスポット光S12B,S13Bとして照射される。 Spot light S12B to the divided light receiving portions 18a~18d of the light receiving element 18 of, and is irradiated as S13B. 図6は検出部11がある姿勢にある時の図3の光学系を模式的に示すものであり、ここでは便宜上、検出部11側にZ−Y Figure 6 shows an optical system of Figure 3 when in the position where there is a detection unit 11 schematically here for convenience, Z-Y in the detection unit 11 side
直交座標を設定してある。 An orthogonal coordinate is set.

【0020】図6において、検出部11側のZ−Y直交座標上での光源12の座標をP 1 (Z 1 ,Y 1 )、光源1 [0020] In FIG. 6, the coordinates of the light source 12 on the Z-Y orthogonal coordinate detection unit 11 side P 1 (Z 1, Y 1), the light source 1
3の座標をP 2 (Z 2 ,Y 2 )、第1の受光素子17と第2の受光素子18のY軸方向の間隔をm、両光源12, The third coordinate P 2 (Z 2, Y 2), and the first light receiving element 17 a distance in the Y-axis direction of the second light receiving element 18 m, both the light source 12,
13から発せられた赤外光の光軸とY軸とがなす角度をそれぞれα 1 ,α 2 ,β 1 ,β 2とすると、スポット光S1 Each alpha 1 the angle the emitted infrared light optical axis and the Y axis is formed from 13, α 2, β 1, when the beta 2, the spot light S1
2Aからα 1 、スポット光S12Bからα 2 、スポット光S13Aからβ 1 、スポット光S13Bからβ 2がそれぞれ求められる。 Alpha 1 from 2A, 2 from the spot light S12B alpha, beta 1 from the spot light S13A, 2 from the spot light S13B beta are determined, respectively. すなわち、図4に示す第1の受光素子1 That is, the first light receiving element shown in FIG. 4 1
7上でのスポット光S12Aとスポット光S13Aの位置ずれ量Δyは、 Δy∝(U−D)/(U+D) として表せられるため、α 1 =Δy/d,β 1 =Δy/d Positional deviation amount [Delta] y of the spot light S12A and spot light S13A of over 7, because it is represented as Δyα (U-D) / ( U + D), α 1 = Δy / d, β 1 = Δy / d
の式中に、第1の受光素子17の両分割受光部17a, Of the formula, both light receiving portion 17a of the first light-receiving element 17,
17bの受光出力U,Dと既知のdを代入することにより、角度α 1とβ 1を求めることができる。 17b of the light receiving output U, by substituting D and known d, it is possible to determine the angle alpha 1 and beta 1. また、図5に示す第2の受光素子18上でのスポット光S12Bとスポット光S13Bの位置ずれ量Δyは、 Δy∝〔(Ru+Lu)−(Rd+Ld)〕/(Ru+Lu+Rd+Ld)〕 として表せられるため、α 2 =Δy/d,β 2 =Δy/d Further, positional displacement amount Δy of the spot light S12B and spot light S13B of on the second light receiving element 18 shown in FIG. 5, Derutawaiarufa [(Ru + Lu) - (Rd + Ld)] / (Ru + Lu + Rd + Ld) because it is expressed as], α 2 = Δy / d, β 2 = Δy / d
の式中に、第2の受光素子18の各分割受光部18a〜 In the formula of each light receiving portion of the second light receiving element 18. 18a
18dの受光出力Lu,Ru,Ld,Rdと既知のdを代入することにより、角度α 2とβ 2を求めることができる。 18d of the light receiving output Lu, Ru, Ld, by substituting Rd and known d, it is possible to obtain the angle alpha 2 and beta 2. このようにしてα 1 ,α 2 ,β 1 ,β 2が求められると、既知のmとα 1 ,α 2の値から三角測量の原理によりP 1 (Z 1 ,Y 1 )の座標が求められ、同様にm,β 1 ,β Alpha 1 in this manner, alpha 2, beta 1, the beta 2 is obtained, determined the coordinates of P 1 (Z 1, Y 1 ) by the principle of triangulation from known m the alpha 1, alpha 2 value is likewise m, beta 1, beta
2の値からP 2 (Z 2 ,Y 2 )の座標が求められる。 Coordinates from second value P 2 (Z 2, Y 2 ) are obtained.

【0021】このようにしてP 1とP 2の座標が決定されると、発光部10と検出部11の相対角度θyと、両部10,11の相対的なY軸方向のずれ量Q、および両部10,11の相対的なZ軸方向のずれ量Lが求められる。 [0021] In this way, the coordinates P 1 and P 2 are determined, and the relative angle θy of the light emitting portion 10 and the detection unit 11, the relative Y-axis direction of the shift amount Q of both parts 10, 11, and relative Z-axis direction of the shift amount L of both portions 10, 11 are determined. まず、θyはP 1とP 2を通る直線の傾きに等しく、 tanθy=(Y 1 −Y 2 )/(Z 1 −Z 2 ) であるから、 θy=tan~ 1 〔(Y 1 −Y 2 )/(Z 1 −Z 2 )〕…………… として表せられる。 First, [theta] y is equal to the slope of the straight line passing through P 1 and P 2, tanθy = (Y 1 -Y 2) / from a (Z 1 -Z 2), θy = tan ~ 1 [(Y 1 -Y 2 ) / (Z 1 -Z 2)] is expressed as ................ したがって、この式に第1の受光素子17の受光出力U,Dと第2の受光素子18の受光出力Lu,Ru,Ld,Rdから演算されたZ 1 ,Z 2 Thus, Z 1, Z 2 the first reception output U of the light receiving element 17, D and the light receiving output Lu of the second light receiving element 18, which is calculated Ru, Ld, from Rd in the formula,
1 ,Y 2の値を代入することにより、発光部10と検出部11の相対角度θyが求められる。 By substituting the value of Y 1, Y 2, relative angle θy of the light emitting portion 10 and the detection unit 11 is calculated. また、P 1とP 2の中点の座標をP 0 (Z 0 ,Y 0 )とすると、 Z 0 =(Z 1 +Z 2 )/2,Y 0 =(Y 1 +Y 2 )/2 として表せられる。 Further, when the coordinates of the midpoint of P 1 and P 2 and P 0 (Z 0, Y 0 ), expressed as Z 0 = (Z 1 + Z 2) / 2, Y 0 = (Y 1 + Y 2) / 2 It is. したがって、QとLの値は回転座標系に変換すると、 Q=−Z 0 sinθy+Y 0 cosθy L=Z 0 cosθy+ Therefore, the value of Q and L are converted into the rotational coordinate system, Q = -Z 0 sinθy + Y 0 cosθy L = Z 0 cosθy +
0 sinθy…………………………… となり、この式に前述したZ 1 ,Z 2 ,Y 1 ,Y 2から演算されたZ 0 ,Y 0と、上記式で演算されたθyの値を代入することにより、発光部10と検出部11の相対的なY軸方向のずれ量Qと、両部10,11の相対的なZ Y 0 sinθy ................................. next, and Z 1, Z 2, Y 1 , Y 2 Z 0 which is calculated from, Y 0 as described above in this equation, which is calculated by the above formula θy by substituting the values, the relative Y-axis direction of the shift amount Q of the light emitting portion 10 and the detection unit 11, the relative Z of both parts 10, 11
軸方向のずれ量Lが求められる。 Axial offset amount L is obtained.

【0022】図7と図8は上記実施例に係る空間座標検出装置において使用される回路構成について示している。 FIG. 7 and FIG. 8 shows a circuit configuration used in the spatial coordinate detecting device according to the embodiment. 前記両光源12,13からは、互いに位相が180 It said from both light sources 12 and 13, phase with each other 180
度相違した赤外光が同じ周波数にて間欠発光する。 Degrees different the infrared light is intermittent light emission at the same frequency. したがって、第1の受光素子17の各分割受光部17a,1 Therefore, the light receiving portions 17a of the first light-receiving element 17, 1
7bまたは第2の受光素子18の各分割受光部18a〜 7b or each light receiving section of the second light receiving element 18. 18a
18dでは、前記パルス周期に対応したほぼサイン曲線変化の受光出力が得られる。 In 18 d, the light receiving output of approximately sine curve varies corresponding to the pulse period are obtained.

【0023】図7に示すように、それぞれの分割受光部には電流・電圧変換器19が接続され、各分割受光部での受光出力の電流値が電圧値に変換される。 As shown in FIG. 7, each of the light receiving portion is connected a current-voltage converter 19, the current value of the light reception output of each light receiving portion is converted into a voltage value. それぞれの出力電圧はバンドパスフィルタ20を通過し、パルス発光(間欠発光)の周波数成分が除かれる。 Each output voltage is passed through a bandpass filter 20, the frequency component of the pulse light emission (intermittent light emission) is removed. そして、増幅器21によりそれぞれの検出電圧が電圧増幅され、検波器22によりそれぞれ検波され、各分割受光部の受光光量に応じた電圧がDC成分として取り出される。 Then, each of the detected voltage by the amplifier 21 is a voltage amplified, detected respectively by detector 22, a voltage corresponding to the received light amount of each light receiving portion is extracted as a DC component. また、 Also,
各検波器22からの電圧出力が加算器23により電圧値として加算され、オートゲインコントロール回路24に与えられ、このオートゲインコントロール回路24より増幅器21の増幅率が制御される。 Voltage output from the detector 22 is added as a voltage value by the adder 23 is given to the automatic gain control circuit 24, the amplification factor of the amplifier 21 from the automatic gain control circuit 24 is controlled.

【0024】検波器22からの各検出電圧は、例えば図8に示されるアナログ・デジタル変換器25によりデジタル値に変換され、デジタル演算器26により和、差、 [0024] Each detected voltage from the detector 22, for example, by an analog-digital converter 25 shown in FIG. 8 is converted into a digital value, the sum by the digital calculator 26, the difference,
商、積の各演算が行われる。 Quotient, each operation of multiplication is performed. すなわち、上記〜式に示された各演算はデジタル演算器26にて行われ、このデジタル演算器26が本発明の演算部に相当する。 That is, each operation shown in the above-equation is performed by the digital calculator 26, the digital calculator 26 is equivalent to the arithmetic unit of the present invention.

【0025】図9は前述した空間座標検出装置を適用した入出装置の概略構成を示し、この入出装置は固定側が機器本体27であり、この機器本体27はコンピュータやAV機器またはゲーム機本体等からなり、CRT画面28を有している。 [0025] Figure 9 shows a schematic configuration of the input and apparatus using the spatial coordinate detecting apparatus described above, the input and apparatus is a fixed side apparatus main body 27, the device body 27 from the computer and AV equipment or a game machine body, etc. it has a CRT screen 28. また、移動側は操作部材29であり、この操作部材29はリモートコントローラとして機能し、オペレータが手で持って移動できる程度の大きさに形成されている。 Further, the movable an operation member 29, the operating member 29 functions as a remote controller, and is formed in a size that the operator can move by hand. 前記発光部10は機器本体27の任意位置に設置され、前記検出部11は操作部材29の前面に設置されている。 The light emitting unit 10 is installed at an arbitrary position of the apparatus body 27, the detection unit 11 is installed in front of the operating member 29. また、上記〜式に示された各演算は、操作部材29内で行われ、その結果が有線または無線で機器本体27に伝達され、あるいは、検出部1 Further, each operation shown in the above-equation is performed in the operating member 29, the result is transmitted to the apparatus main body 27 by wire or wireless, or detector 1
1の受光検出出力のみが機器本体27に伝達され、機器本体27側で上記の演算が行われる。 Only 1 of the light receiving detection output is transmitted to the apparatus main body 27, the above operation is performed in the apparatus body 27 side.

【0026】図9では、両光源12,13の中心が画面28の中心の(イ)の位置に示されているが、実際の装置では、両光源12,13の中心は画面28から外れた例えば(ロ)で示す位置に設置される。 [0026] In Figure 9, the centers of the light sources 12 and 13 is shown at (b) of the center of the screen 28, in the actual apparatus, the center of both light sources 12, 13 off the screen 28 for example, placed in the position shown in (b). この場合、検出部11の前方に延びるZ軸が画面28の中心に向けられた時に、検出部11の中心と発光部10の中心とを結ぶ線J 0と、Z軸との間にオフセット角θ 0が生じるため、 In this case, when the Z axis extending in front of the detector 11 is directed to the center of the screen 28, the center of the detector 11 and the line J 0 connecting the center of the light emitting portion 10, an offset angle between the Z axis since the θ 0 occurs,
検出部11にて検出されたY方向の検出角度から前記オフセット角θ 0を除算すれば、画面28に対するZ軸の向き(対向角度)θyを算出することができる。 If dividing said offset angle theta 0 from the detected angle detected Y-direction by the detector 11, it is possible to calculate the direction (opposite angle) [theta] y of the Z-axis relative to the screen 28. あるいは、両光源12,13の中心を画面28の中心に位置させ、この中心を通るY軸上にて画面28から外れた上下位置(ハ)に両光源12,13を配置すれば、前記オフセット角θ 0を除算する必要はなくなる。 Alternatively, the centers of the light sources 12, 13 is positioned in the center of the screen 28, by arranging the two light sources 12, 13 in the vertical position out of the screen 28 in the Y-axis passing through the center (C), the offset is no need to divide the angle θ 0.

【0027】この入力装置では、操作部材29がZ軸に対して角度θzだけ回転しても、その回転角度θzを加味して、機器本体27側のX−Y座標(空間での固定座標)に対するX方向とY方向の傾きθx,θyを検出することができる。 [0027] In this input apparatus, even the operating member 29 is rotated by the angle [theta] z with respect to the Z axis, in consideration of the rotation angle [theta] z, X-Y coordinates of the main body 27 side (fixed coordinates in space) X and Y directions of inclination θx respect, it is possible to detect the [theta] y. このため、手で持った操作部材29が角度θzだけ回転した姿勢であっても、機器本体27に対してθxとθyの傾き量の情報を与えることができ、 Therefore, even in the attitude in which the operation member 29 having a hand is rotated by the angle [theta] z, it can give θx and θy inclination amount of information to the device main body 27,
例えば画面28上に表示されるカーソルマークをX−Y For example the cursor mark displayed on the screen 28 X-Y
座標上にて移動させることができる。 It can be moved in the coordinates. すなわち、空間内にて操作部材29を自由に動かして画面28での画像処理、例えば線を描いたり、画面28上の釦表示にカーソルマークを合わせてスイッチ操作し、画面を切換える等の入力が可能となり、この場合、手で持った操作部材2 That is, the image processing in the freely move with the screen 28 the operating member 29 in the space, for example, or draw a line, and switch operation by the cursor mark button display on the screen 28, an input such as switching the screen possible and becomes the operating member 2 in this case, having a hand
9がZ軸に対して回転したとしても、この回転によってX−Y座標に対する入力動作が狂うことはない。 Even 9 is rotated with respect to the Z-axis, the input operation for the X-Y coordinate will not be mad by this rotation.

【0028】また、この入力装置では、Z軸に対する操作部材29の回転角度θzを、機器本体27の画面28 Further, in the input device, the rotation angle θz of the operating member 29 with respect to the Z-axis, the screen 28 of the main body 27
での表示に対する指示情報として利用できる。 It can be used as an indication information with respect to the display in. 例えば操作部材29を角度θzだけ回転させることにより、画面28に表われた画像を機器本体27側のX−Y座標内にて回転させる等の操作ができ、これは描画処理やゲームソフトでのキャラクタの回転動作等に利用できる。 For example by rotating the operation member 29 by the angle [theta] z, operations such as rotating the image we displayed on the screen 28 in the apparatus body 27 side of the X-Y coordinate can be, which in the drawing process and game software available to the rotation operation or the like of the character.

【0029】また、この入力装置では、機器本体27と操作部材29の相対的なY軸方向の移動量Qを検出できるため、この移動量Qを機器本体27の画面28での表示に対する指示情報として利用できる。 Further, in the input device, it is possible to detect the movement amount Q of the relative Y-axis direction of the main body 27 and the operation member 29, instruction information for displaying the moving amount Q screen 28 of the main body 27 It can be used as a.

【0030】さらに、機器本体27側に操作部材29までの距離Lの情報を与えることができるため、操作部材29が画面28に近づいている時と、操作部材29が画面28から離れている時とで操作感触に違いを感じさせないようにすることができる。 Furthermore, it is possible to give information of the distance L to the operating member 29 to the apparatus body 27 side, and when the operation member 29 is close to the screen 28, when the operation member 29 is away from the screen 28 it is possible to ensure that does not feel the difference in the operation feeling in the. すなわち、操作部材29 That is, the operation member 29
をθxとθy方向の傾き角度のみに基づいて画面28上でカーソルマークを移動させた場合、例えば操作部材2 When moving the cursor mark on the screen 28 based only on the inclination angle of θx and θy direction, for example, the operation member 2
9を画面28に近づけた位置でθx方向へ傾けた時と、 And when tilted to the θx direction 9 was closer to the screen 28 position,
操作部材29を画面28から十分に離した位置でθx方向へ同じ角度だけ傾けた時とで、この傾き角度θxの情報に基づく画面28上でのカーソルマークの移動量は同じ距離になるため、画面28から離れた位置で操作部材29を傾けた時に画面28上でカーソルマークがあまり動いていないような感触となる。 Since the operating member 29 between when tilted by the same angle to the θx direction sufficiently apart position from the screen 28, the amount of movement of the cursor mark on the screen 28 based on the information of the tilt angle θx is the same distance, cursor mark on the screen 28 when tilting the operating member 29 at a position away from the screen 28 is like feel not very moving. そこで、上記式または式により演算された距離Lを加味し、例えば発光部10と検出部11との距離Lが長くなるにしたがって、 Therefore, in consideration of the distance L calculated by the above equation or formula, for example, as the distance L between the detector 11 and the light emitting portion 10 becomes longer,
操作部材29のθxまたはθy方向の傾きに対し、画面28上でのカーソルマークの移動距離を長くするような補正を行うと、操作部材29が画面28に近づいた場合と離れた場合とでの操作感触の違いを補正することができる。 To θx or θy direction of inclination of the operating member 29, when the correction as to increase the moving distance of the cursor mark on the screen 28, the operation member 29 in the case of remote and when approaching the screen 28 it is possible to correct the difference of operation feeling.

【0031】あるいは、これとは逆に操作部材29が画面28からかなり遠くに離れた時には、上記補正により操作部材29がわずかに傾いただけで画面28上のカーソルマークが大きく動き、手振れによる操作入力の狂いが生じるおそれもある。 [0031] Alternatively, this and when the operating member 29 conversely spaced quite far from the screen 28, the correction by the operation member 29 by simply tilted slightly motion large cursor mark on the screen 28, operation input by the camera shake there is also a possibility that the deviation of the results. この場合には、前記と逆の補正を行い、距離Lが長くなった時には、操作部材29のθ In this case, it performs the reverse of the correction, when the distance L becomes long, the operating member 29 theta
xおよびθyの傾きに対し画面28上でのカーソルマークの移動距離を短く抑えるようにすれば良い。 Slope of x and θy respect it is sufficient to suppress short moving distance of the cursor mark on the screen 28.

【0032】なお、上記実施例では、第2の受光素子1 [0032] In the above embodiment, the second light receiving element 1
8として、XおよびY方向に分割された分割受光部18 As 8, light receiving portion 18 which is divided into X and Y directions
a〜18dを有する4分割受光素子を例示したが、X方向に分割された2分割受光素子とY方向に分割された2 Was exemplified 4-split light receiving element having a A~18d, is divided into the light receiving device and the Y direction are divided in the X direction 2
分割受光素子とを用い、これら両2分割受光素子をきわめて接近した距離に配置しても良い。 Using a light receiving element may be arranged both these light receiving device extremely distance approached. この場合、両光源12,13からのスポット光をそれぞれの2分割受光素子に照射する必要があるため、絞り口の数は1つ増えて合計で3個となる。 In this case, it is necessary to irradiate the spot light from both light sources 12 and 13 to each of the light receiving device, the number of the aperture opening is 3 in total to one more.

【0033】 [0033]

【発明の効果】以上説明したように、本発明の空間座標検出装置によれば、発光部と検出部を結ぶ軸に対する両部の相対的な傾き角度や回転角度のみならず、両部のZ As described in the foregoing, according to the spatial coordinates detecting device of the present invention, not only the relative inclination angle and rotation angle of both parts with respect to the axis connecting the detector and the light emitting portion, both portions of the Z
軸方向とY軸方向の相対的な距離検出を簡単な構造で高精度に検出することができる。 It can be detected with high accuracy in the axial direction and the Y-axis direction of the relative distance detected by the simple structure. したがって、この空間座標検出装置を入力装置に応用した場合には、手で持った操作部材の直交座標の回転成分を加味した状態で、画面上のカーソルマークを上記傾き角度に対応して移動制御することができ、しかも、上記Z軸方向とY軸方向の距離を加味することにより、発光部と検出部間の距離変動に伴う操作感触の違いを補正することができる。 Therefore, this when the spatial coordinate detecting device is applied to the input device, while taking into account the rotational components of the orthogonal coordinates of the operating member having a hand movement control cursor mark on the screen in correspondence with the inclination angle it can be, moreover, can be by adding the distance of the Z-axis direction and the Y-axis direction, to correct the difference in the operation feeling due to distance variation between the detector and the light emitting portion.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】本発明の実施例に係る空間座標検出装置の基本構造を示す斜視図である。 1 is a perspective view showing a basic structure of a spatial coordinate detecting apparatus according to an embodiment of the present invention.

【図2】該空間座標検出装置図に備えられる1つの光学系を示す断面図である。 2 is a cross-sectional view of one of the optical system provided in the coordinate detector showing the space.

【図3】該空間座標検出装置に備えられる他の光学系を示す断面図である。 3 is a cross-sectional view showing another optical system provided in the spatial coordinate detecting device.

【図4】該空間座標検出装置図に備えられる第1の受光素子の平面図である。 4 is a plan view of the first light receiving element provided to the coordinate detecting device view the space.

【図5】該空間座標検出装置に備えられる第2の受光素子の平面図である。 5 is a plan view of a second light receiving element provided in the space coordinate detecting device.

【図6】図3の光学系を模式的に示す説明図である。 6 is an explanatory view schematically showing an optical system of FIG.

【図7】該空間座標検出装置に備えられる回路構成を示すブロック図である。 7 is a block diagram showing a circuit configuration provided in the space coordinate detecting device.

【図8】図7の回路の後段を示すブロック図である。 8 is a block diagram illustrating a subsequent stage of the circuit of FIG.

【図9】図1の空間座標検出装置を適用した入力装置の斜視図である。 9 is a perspective view of the applied input device spatial coordinates detecting device of FIG.

【図10】従来の入力装置を示す斜視図である。 10 is a perspective view showing a conventional input device.

【符号の説明】 DESCRIPTION OF SYMBOLS

10 発光部 11 検出部 12,13 光源 14 可視光カットフィルタ 15 絞り板 15a,15b 絞り口 16 受光素子群 17 第1の受光素子 17a,17b 分割受光部 18 第2の受光素子 18a,18b,18c,18d 分割受光部 S12A,S12b,S13A,S13B スポット光 27 機器本体 28 画面 29 操作部材 10 light emitting unit 11 detecting portions 12 and 13 the light source 14 the visible light cut filter 15 the diaphragm plate 15a, 15b stop opening 16 receiving element group 17 first light receiving element 17a, 17b light receiving portion 18 and the second light receiving elements 18a, 18b, 18c , 18 d light receiving portion S12A, S12b, S13A, S13B spotlight 27 apparatus main body 28 screen 29 operating member

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐藤 荒尾 東京都大田区雪谷大塚町1番7号 アルプ ス電気株式会社内 (72)発明者 斉藤 潤一 東京都大田区雪谷大塚町1番7号 アルプ ス電気株式会社内 ────────────────────────────────────────────────── ─── front page of the continuation (72) inventor Sato Arao, Ota-ku, Tokyo Yukigayaotsuka-cho, No. 1, No. 7 Alps in electric Co., Ltd. (72) inventor Junichi Saito Tokyo No. 1 No. 7 Alp Ota Yukigayaotsuka-cho scan in electric Co., Ltd.

Claims (5)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 発光部と検出部とが離れた位置に配置され、前記発光部には、識別可能な光を発する2個の光源が間隔を開けて配置され、前記検出部には、前記両光源から発せられた光を所定面積のスポット光に絞る複数の開口と、各開口に対向し前記スポット光を受光する複数組の受光素子とが設けられ、前記各開口は任意のX−Y 1. A are arranged on the detector and the light emitting portion has left position, the the light emitting part, two light sources that emit discernable light is spaced, on the detector, the a plurality of openings to narrow the light emitted from both the light source to a spot light having a predetermined area, a plurality of sets of light-receiving elements opposite each opening for receiving the spot light is provided, wherein each opening any X-Y
    直交座標を設定した時にY軸方向に沿って配置され、前記各受光素子の1組は前記スポット光のY軸方向の移動を検出するY側受光素子であり、残りの組は前記スポット光のX軸とY軸方向の移動を検出するX−Y側受光素子であることを特徴とする空間座標検出装置。 Are arranged along the Y-axis direction when setting the orthogonal coordinate, a set of the respective light receiving elements are Y-side light-receiving element for detecting the movement of the Y-axis direction of the spot light, the remaining set of the spotlight spatial coordinates detecting device characterized in that it is a X-Y-side light-receiving element for detecting the movement of the X-axis and Y-axis direction.
  2. 【請求項2】 請求項1の記載において、前記Y側受光素子と前記X−Y側受光素子のY側受光部からの受光光量に基づいて、これらY側受光素子とX−Y側受光素子に照射される各スポット光の位置を求める演算部が設けられていることを特徴とする空間座標検出装置。 2. A device according to claim 1, based on the amount of light received from the Y-side light-receiving portion of the Y-side light-receiving element and the X-Y-side light-receiving element, these Y-side light-receiving element and the X-Y-side light-receiving element spatial coordinates detecting device characterized by computing unit for determining the position of each spot light is provided to be irradiated to.
  3. 【請求項3】 請求項1の記載において、前記X−Y側受光部のX側およびY側受光部からの受光光量に基づいて、該X−Y側受光素子に照射される両スポット光の位置を求める演算部が設けられていることを特徴とする空間座標検出装置。 3. A device according to claim 1, wherein based on the amount of light received from the X-side and Y-side light-receiving portion of the X-Y-side light-receiving unit, both the spot light irradiated on the X-Y-side light-receiving element spatial coordinate detecting device, characterized in that the calculation unit is provided for determining the position.
  4. 【請求項4】 請求項1〜3のいずれかの記載において、前記検出部には、2つの開口と、一方の開口を通過したスポット光を検出するY軸方向に分割された2分割受光素子と、他方の開口を通過したスポット光を検出するX軸およびY軸方向に分割された4分割受光素子とが設けられていることを特徴とする空間座標検出装置。 4. A either of claims 1-3, wherein the detection unit includes two openings and, the light receiving device which is divided in the Y-axis direction to detect a spot light passing through one of the openings When the spatial coordinates detecting device characterized in that it is divided into X-axis and Y-axis direction to detect a spot light passing through the other opening and the four light-receiving element is provided.
  5. 【請求項5】 請求項1〜4のいずれかの記載において、前記発光部は画面を有する機器本体側に配設され、 5. Any of the of claims 1 to 4, wherein the light emitting portion is disposed in the apparatus main body having a screen,
    前記検出部はオペレータによって手動操作される操作部材側に配設されていることを特徴とする空間座標検出装置。 The detector spatial coordinate detecting device, characterized in that disposed on the operating member side which is manually operated by an operator.
JP24150594A 1994-10-05 1994-10-05 Spatial coordinate detection device Expired - Fee Related JP3416291B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24150594A JP3416291B2 (en) 1994-10-05 1994-10-05 Spatial coordinate detection device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP24150594A JP3416291B2 (en) 1994-10-05 1994-10-05 Spatial coordinate detection device
GB9510424A GB2289756B (en) 1994-05-26 1995-05-23 Space coordinates detecting device and input apparatus using same
US08452453 US5627565A (en) 1994-05-26 1995-05-26 Space coordinates detecting device and input apparatus using same

Publications (2)

Publication Number Publication Date
JPH08106352A true true JPH08106352A (en) 1996-04-23
JP3416291B2 JP3416291B2 (en) 2003-06-16

Family

ID=17075332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24150594A Expired - Fee Related JP3416291B2 (en) 1994-10-05 1994-10-05 Spatial coordinate detection device

Country Status (1)

Country Link
JP (1) JP3416291B2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007226397A (en) * 2006-02-22 2007-09-06 Sharp Corp Apparatus, method and program for pointing, and recording medium recorded with pointing program
JP2010204994A (en) * 2009-03-04 2010-09-16 Epson Imaging Devices Corp Optical position detecting device, display device with position detecting function, and electronic apparatus
JP2011090682A (en) * 2009-10-26 2011-05-06 Pixart Imaging Inc Controller and control method for image display
US8834271B2 (en) 2005-08-24 2014-09-16 Nintendo Co., Ltd. Game controller and game system
US8870655B2 (en) 2005-08-24 2014-10-28 Nintendo Co., Ltd. Wireless game controllers
US8888576B2 (en) 1999-02-26 2014-11-18 Mq Gaming, Llc Multi-media interactive play system
US8907889B2 (en) 2005-01-12 2014-12-09 Thinkoptics, Inc. Handheld vision based absolute pointing system
US8913003B2 (en) 2006-07-17 2014-12-16 Thinkoptics, Inc. Free-space multi-dimensional absolute pointer using a projection marker system
US8913011B2 (en) 2001-02-22 2014-12-16 Creative Kingdoms, Llc Wireless entertainment device, system, and method
US8937594B2 (en) 2004-04-30 2015-01-20 Hillcrest Laboratories, Inc. 3D pointing devices with orientation compensation and improved usability
US8961260B2 (en) 2000-10-20 2015-02-24 Mq Gaming, Llc Toy incorporating RFID tracking device
US9011248B2 (en) 2005-08-22 2015-04-21 Nintendo Co., Ltd. Game operating device
US9039533B2 (en) 2003-03-25 2015-05-26 Creative Kingdoms, Llc Wireless interactive game having both physical and virtual elements
US9149717B2 (en) 2000-02-22 2015-10-06 Mq Gaming, Llc Dual-range wireless interactive entertainment device
US9176598B2 (en) 2007-05-08 2015-11-03 Thinkoptics, Inc. Free-space multi-dimensional absolute pointer with improved performance
US9261978B2 (en) 2004-04-30 2016-02-16 Hillcrest Laboratories, Inc. 3D pointing devices and methods
USRE45905E1 (en) 2005-09-15 2016-03-01 Nintendo Co., Ltd. Video game system with wireless modular handheld controller
US9272206B2 (en) 2002-04-05 2016-03-01 Mq Gaming, Llc System and method for playing an interactive game
US9446319B2 (en) 2003-03-25 2016-09-20 Mq Gaming, Llc Interactive gaming toy
US9616334B2 (en) 2002-04-05 2017-04-11 Mq Gaming, Llc Multi-platform gaming system using RFID-tagged toys

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9731194B2 (en) 1999-02-26 2017-08-15 Mq Gaming, Llc Multi-platform gaming systems and methods
US9468854B2 (en) 1999-02-26 2016-10-18 Mq Gaming, Llc Multi-platform gaming systems and methods
US9186585B2 (en) 1999-02-26 2015-11-17 Mq Gaming, Llc Multi-platform gaming systems and methods
US9861887B1 (en) 1999-02-26 2018-01-09 Mq Gaming, Llc Multi-platform gaming systems and methods
US8888576B2 (en) 1999-02-26 2014-11-18 Mq Gaming, Llc Multi-media interactive play system
US9474962B2 (en) 2000-02-22 2016-10-25 Mq Gaming, Llc Interactive entertainment system
US9149717B2 (en) 2000-02-22 2015-10-06 Mq Gaming, Llc Dual-range wireless interactive entertainment device
US9814973B2 (en) 2000-02-22 2017-11-14 Mq Gaming, Llc Interactive entertainment system
US9579568B2 (en) 2000-02-22 2017-02-28 Mq Gaming, Llc Dual-range wireless interactive entertainment device
US8915785B2 (en) 2000-02-22 2014-12-23 Creative Kingdoms, Llc Interactive entertainment system
US9713766B2 (en) 2000-02-22 2017-07-25 Mq Gaming, Llc Dual-range wireless interactive entertainment device
US9931578B2 (en) 2000-10-20 2018-04-03 Mq Gaming, Llc Toy incorporating RFID tag
US9320976B2 (en) 2000-10-20 2016-04-26 Mq Gaming, Llc Wireless toy systems and methods for interactive entertainment
US8961260B2 (en) 2000-10-20 2015-02-24 Mq Gaming, Llc Toy incorporating RFID tracking device
US9480929B2 (en) 2000-10-20 2016-11-01 Mq Gaming, Llc Toy incorporating RFID tag
US9162148B2 (en) 2001-02-22 2015-10-20 Mq Gaming, Llc Wireless entertainment device, system, and method
US9737797B2 (en) 2001-02-22 2017-08-22 Mq Gaming, Llc Wireless entertainment device, system, and method
US8913011B2 (en) 2001-02-22 2014-12-16 Creative Kingdoms, Llc Wireless entertainment device, system, and method
US9393491B2 (en) 2001-02-22 2016-07-19 Mq Gaming, Llc Wireless entertainment device, system, and method
US9272206B2 (en) 2002-04-05 2016-03-01 Mq Gaming, Llc System and method for playing an interactive game
US10010790B2 (en) 2002-04-05 2018-07-03 Mq Gaming, Llc System and method for playing an interactive game
US9616334B2 (en) 2002-04-05 2017-04-11 Mq Gaming, Llc Multi-platform gaming system using RFID-tagged toys
US9463380B2 (en) 2002-04-05 2016-10-11 Mq Gaming, Llc System and method for playing an interactive game
US9993724B2 (en) 2003-03-25 2018-06-12 Mq Gaming, Llc Interactive gaming toy
US9707478B2 (en) 2003-03-25 2017-07-18 Mq Gaming, Llc Motion-sensitive controller and associated gaming applications
US9039533B2 (en) 2003-03-25 2015-05-26 Creative Kingdoms, Llc Wireless interactive game having both physical and virtual elements
US9770652B2 (en) 2003-03-25 2017-09-26 Mq Gaming, Llc Wireless interactive game having both physical and virtual elements
US9393500B2 (en) 2003-03-25 2016-07-19 Mq Gaming, Llc Wireless interactive game having both physical and virtual elements
US9446319B2 (en) 2003-03-25 2016-09-20 Mq Gaming, Llc Interactive gaming toy
US8961312B2 (en) 2003-03-25 2015-02-24 Creative Kingdoms, Llc Motion-sensitive controller and associated gaming applications
US10022624B2 (en) 2003-03-25 2018-07-17 Mq Gaming, Llc Wireless interactive game having both physical and virtual elements
US9261978B2 (en) 2004-04-30 2016-02-16 Hillcrest Laboratories, Inc. 3D pointing devices and methods
US9946356B2 (en) 2004-04-30 2018-04-17 Interdigital Patent Holdings, Inc. 3D pointing devices with orientation compensation and improved usability
US8937594B2 (en) 2004-04-30 2015-01-20 Hillcrest Laboratories, Inc. 3D pointing devices with orientation compensation and improved usability
US9298282B2 (en) 2004-04-30 2016-03-29 Hillcrest Laboratories, Inc. 3D pointing devices with orientation compensation and improved usability
US9575570B2 (en) 2004-04-30 2017-02-21 Hillcrest Laboratories, Inc. 3D pointing devices and methods
US9675878B2 (en) 2004-09-29 2017-06-13 Mq Gaming, Llc System and method for playing a virtual game by sensing physical movements
US8907889B2 (en) 2005-01-12 2014-12-09 Thinkoptics, Inc. Handheld vision based absolute pointing system
US9498728B2 (en) 2005-08-22 2016-11-22 Nintendo Co., Ltd. Game operating device
US9700806B2 (en) 2005-08-22 2017-07-11 Nintendo Co., Ltd. Game operating device
US9011248B2 (en) 2005-08-22 2015-04-21 Nintendo Co., Ltd. Game operating device
US9227138B2 (en) 2005-08-24 2016-01-05 Nintendo Co., Ltd. Game controller and game system
US9498709B2 (en) 2005-08-24 2016-11-22 Nintendo Co., Ltd. Game controller and game system
US8834271B2 (en) 2005-08-24 2014-09-16 Nintendo Co., Ltd. Game controller and game system
US8870655B2 (en) 2005-08-24 2014-10-28 Nintendo Co., Ltd. Wireless game controllers
US9044671B2 (en) 2005-08-24 2015-06-02 Nintendo Co., Ltd. Game controller and game system
USRE45905E1 (en) 2005-09-15 2016-03-01 Nintendo Co., Ltd. Video game system with wireless modular handheld controller
JP2007226397A (en) * 2006-02-22 2007-09-06 Sharp Corp Apparatus, method and program for pointing, and recording medium recorded with pointing program
US8913003B2 (en) 2006-07-17 2014-12-16 Thinkoptics, Inc. Free-space multi-dimensional absolute pointer using a projection marker system
US9176598B2 (en) 2007-05-08 2015-11-03 Thinkoptics, Inc. Free-space multi-dimensional absolute pointer with improved performance
JP2010204994A (en) * 2009-03-04 2010-09-16 Epson Imaging Devices Corp Optical position detecting device, display device with position detecting function, and electronic apparatus
JP2011090682A (en) * 2009-10-26 2011-05-06 Pixart Imaging Inc Controller and control method for image display

Also Published As

Publication number Publication date Type
JP3416291B2 (en) 2003-06-16 grant

Similar Documents

Publication Publication Date Title
US5528505A (en) Position-marking method for a machine that measures in three dimensions, and apparatus for implementing the method
US5298919A (en) Multi-dimensional input device
US6844871B1 (en) Method and apparatus for computer input using six degrees of freedom
US4409479A (en) Optical cursor control device
US6164808A (en) Three-dimensional data input device
US5686942A (en) Remote computer input system which detects point source on operator
US5164713A (en) Cursor position controller for use with mouse and display systems
US20020067348A1 (en) Apparatus and method to improve resolution of infrared touch systems
US7372456B2 (en) Method and apparatus for calibrating an interactive touch system
US7522151B2 (en) Coordinate-based display object movement restriction method
US4987411A (en) Pointing apparatus
US5521617A (en) Three-dimensional image special effect apparatus
EP0457541A1 (en) Control devices
US4583909A (en) Industrial robot
US5657012A (en) Finger operable control device
US6504526B1 (en) Wireless pointing system
US6014129A (en) Coordinate position of moving light source by using separated groups of detectors each group having an iris
JPH1020992A (en) Coordinate input device
US5574479A (en) Optical system for determining the roll orientation of a remote unit relative to a base unit
JP2000270237A (en) Selector for image display device
EP0429391A1 (en) Three-dimensional computer input device
US4191916A (en) Table positioning system including optical reference position measuring transducer
US20040200947A1 (en) Multi-dimensional measuring system
WO2010138741A1 (en) Position measurement systems using position sensitive detectors
US6982699B1 (en) Graphical display input device with magnetic field sensors

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees