JPH0895704A - Spatial coordinate detecting device - Google Patents

Spatial coordinate detecting device

Info

Publication number
JPH0895704A
JPH0895704A JP6233234A JP23323494A JPH0895704A JP H0895704 A JPH0895704 A JP H0895704A JP 6233234 A JP6233234 A JP 6233234A JP 23323494 A JP23323494 A JP 23323494A JP H0895704 A JPH0895704 A JP H0895704A
Authority
JP
Japan
Prior art keywords
light
light receiving
light source
spatial coordinate
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6233234A
Other languages
Japanese (ja)
Inventor
Ichiro Morishita
一郎 森下
Yuichi Yasuda
勇一 安田
Yuichi Umeda
裕一 梅田
Arao Satou
荒尾 佐藤
Junichi Saito
潤一 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP6233234A priority Critical patent/JPH0895704A/en
Priority to GB9510424A priority patent/GB2289756B/en
Priority to US08/452,453 priority patent/US5627565A/en
Publication of JPH0895704A publication Critical patent/JPH0895704A/en
Pending legal-status Critical Current

Links

Landscapes

  • Position Input By Displaying (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

PURPOSE: To provide the spatial coordinate detecting device which can easily detect the relative tilt angle and distance of the shaft connecting a light source and a detection part with high precision. CONSTITUTION: The light source 10 is arranged on the screen of an equipment main body and the detection part 11 is arranged at an operation member which is manually operated. When X-Y orthogonal coordinates which cross a Z axis that extends forward are set, three stop openings 13a-13c which are arrayed in a Y-axial direction and two Y-side photodetecting elements 15 and 17 and an X-side photodetecting element 16 which face the respective stop openings are provided at the detection part 11; and the Y-side photodetecting elements 15 and 17 each have two Y-axially divided photodetection parts and the X-side element 16 has two X-axially divided photodetection parts. The light from the light source is stopped down by the respective stop openings respectively to irradiate the opposite photodetecting elements respectively. For the tilt angle θ of the line connecting the centers of the light source 10 and detection part 11 to the Z axis, θx is found from the output of the X-side photodetection part and θy is found from the output of one Y-side photodetecting element or the mean value of the outputs of both the Y side photodetecting elements. Further, the relative distance between the light source 10 and detection part 11 is found from the outputs of both the Y-side photodetection parts by triangulation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、識別可能な光を発する
光源と、該光源からの光を受光検知する検出部とを備
え、これら光源と検出部を結ぶ軸に対する両者の相対的
な傾き角度や、光源と検出部間の距離検出を可能にした
空間座標検出装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention comprises a light source that emits identifiable light and a detector for detecting the light from the light source, and the inclination of the light source and the detector relative to the axis connecting the detectors. The present invention relates to a spatial coordinate detection device capable of detecting an angle and a distance between a light source and a detection unit.

【0002】[0002]

【従来の技術】従来より、各種映像が表示される画面に
対して外部から情報を入力する入力装置としては、ジョ
イスティックが付いたコントローラや、マトリクス配列
されたスイッチ素子を有する平面的な座標入力装置等が
主なものとなっている。前記ジョイスティックが付いた
コントローラは、アクションゲームにおいて画面でのキ
ャラクタの移動や動作指示を行う操作等を行う場合には
適しているが、画面の任意の場所に現れる釦にカーソル
マークを合わせる等の操作には不向きである。また、こ
の種のコントローラはコード式のものであるため、画面
の近くでしか操作できないという難点がある。一方、従
来の平面的な座標入力装置は、画面の手前に平面的な指
示盤を設置するスペースが広く必要になり、また、構造
も複雑でコストの高いものとなっている。
2. Description of the Related Art Conventionally, a controller having a joystick or a planar coordinate input device having switch elements arranged in a matrix is used as an input device for inputting information from the outside to a screen on which various images are displayed. Etc. are the main ones. The controller with the joystick is suitable for moving characters on the screen in the action game and for performing operation instructions, but operations such as matching the cursor mark to a button appearing anywhere on the screen Not suitable for. Further, since this type of controller is of a cord type, it has a drawback that it can be operated only near the screen. On the other hand, the conventional planar coordinate input device requires a large space for installing a planar pointing panel in front of the screen, and has a complicated structure and high cost.

【0003】そこで、最近では図9に示すような超音波
を使用した入力装置が考えられている。この入力装置
は、機器本体の画面1の両側等に水平軸(X軸)方向に
間隔を開けて配置された音源2a,2bが設けられてい
る。オペレータが手で持って操作する操作部材3には、
前記音源2aと2bから発せられる超音波を検知する検
出部が設けられている。音源2a,2bからは、超音波
が互いに位相をずらしてパルス変調されて発せられる。
操作部材3の検出部では、音源2aと2bからの超音波
を識別して受信し、受信された各超音波の位相差等から
音源2aとの距離Laと音源2bとの距離Lbとが算出
され、これにより、操作部材3の水平面(Hx−Hz
面)上での座標が検出されるようになっている。操作部
材3を水平面(Hx−Hz面)にて移動させ、必要に応
じて操作釦を押すと、操作部材3にて受信された情報が
有線または無線で機器本体に与えられ、機器本体ではH
x−Hz面での操作部材3の位置が演算され、例えば機
器本体の画面1に現れたカーソルマーク4が移動させら
れる。
Therefore, recently, an input device using ultrasonic waves as shown in FIG. 9 has been considered. This input device is provided with sound sources 2a and 2b arranged on both sides of the screen 1 of the device body at intervals along the horizontal axis (X axis). The operation member 3 that the operator holds and operates by hand,
A detection unit for detecting the ultrasonic waves emitted from the sound sources 2a and 2b is provided. From the sound sources 2a and 2b, ultrasonic waves are emitted by being pulse-modulated with their phases shifted from each other.
The detection unit of the operation member 3 identifies and receives the ultrasonic waves from the sound sources 2a and 2b, and calculates the distance La from the sound source 2a and the distance Lb from the sound source 2b from the phase difference between the received ultrasonic waves. As a result, the horizontal plane of the operating member 3 (Hx-Hz
The coordinates on the surface are detected. When the operation member 3 is moved on the horizontal plane (Hx-Hz surface) and the operation button is pressed as necessary, the information received by the operation member 3 is given to the device body by wire or wirelessly, and the device body H
The position of the operation member 3 on the x-Hz plane is calculated, and for example, the cursor mark 4 appearing on the screen 1 of the device body is moved.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、図9に
示す従来の入力装置では、水平面(Hx−Hz面)上で
の操作部材3の座標を検出し、その情報を機器本体に与
えることは可能であるが、操作部材3をHx−Hz平面
上のある位置に停止させた状態で、該操作部材3をθx
あるいはθy方向へ傾けたとしても、その傾き角度を検
出することはできないという問題がある。また、超音波
は簡単な構成で実現できるが、温度に対する安定性が悪
く、しかも外乱ノイズが多い等、信頼性の面で多くの問
題が残されている。なお、超音波以外でも交流磁界を利
用し、3次元空間での位置と角度を求める方法も提案さ
れているが、このものは装置が大型化し、非常に高価で
ある。
However, in the conventional input device shown in FIG. 9, it is possible to detect the coordinates of the operating member 3 on the horizontal plane (Hx-Hz plane) and give the information to the device body. However, with the operating member 3 stopped at a certain position on the Hx-Hz plane, the operating member 3 is moved to θx.
Alternatively, there is a problem that the tilt angle cannot be detected even if tilted in the θy direction. Further, although ultrasonic waves can be realized with a simple configuration, there are still many problems in terms of reliability such as poor stability with respect to temperature and a large amount of disturbance noise. It should be noted that there has been proposed a method of obtaining a position and an angle in a three-dimensional space by utilizing an AC magnetic field other than ultrasonic waves, but this is very expensive because the device is large.

【0005】本発明は、このような従来技術の実情に鑑
みてなされたものであり、その目的は、光源と検出部を
結ぶ軸に対する両者の相対的な傾き角度や、光源と検出
部間の距離検出を簡単な構造で高精度に検出できるよう
にした空間座標検出装置を提供することにある。
The present invention has been made in view of the circumstances of the prior art as described above, and an object of the present invention is to provide a relative tilt angle between the light source and the detection unit with respect to an axis connecting the detection unit and the light source and the detection unit. It is an object of the present invention to provide a spatial coordinate detection device capable of detecting distance detection with high accuracy with a simple structure.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、光源と検出部とが離れた位置に配置さ
れ、前記検出部には、前記光源から発せられた光を所定
面積のスポット光に絞る3個の開口と、各スポット光を
受光する3組の受光部とが設けられ、前記各開口は任意
のX−Y直交座標を設定した時にY軸方向に沿って配置
され、前記各受光部の1組は前記スポット光のX軸方向
の移動に伴って受光光量が変化するX側受光部であり、
残りの2組の受光部は前記スポット光のY軸方向の移動
に伴って受光光量が変化するY側受光部であることを特
徴とするものである。上記の空間座標検出装置には、前
記両Y側受光部の少なくとも一方と前記X側受光部との
受光光量に基づいて、前記光源および検出部を結ぶ方向
とX−Y直交座標に交叉するZ軸との傾き角度を求める
角度算出部が設けられている。また、上記の空間座標検
出装置には、前記両Y側受光部のそれぞれの受光光量に
基づいて、前記光源と検出部との距離を求める距離算出
部が設けられている。
In order to achieve the above object, the present invention provides a light source and a detection unit which are arranged at a distance from each other, and the detection unit has a predetermined area for the light emitted from the light source. Of three spot lights and three sets of light receiving portions for receiving each spot light are provided, and each aperture is arranged along the Y-axis direction when arbitrary XY orthogonal coordinates are set. , One set of each of the light receiving units is an X-side light receiving unit whose amount of received light changes with the movement of the spot light in the X-axis direction,
The remaining two sets of light-receiving parts are Y-side light-receiving parts whose amount of received light changes as the spot light moves in the Y-axis direction. In the above spatial coordinate detection device, Z that intersects the direction connecting the light source and the detection unit with the XY orthogonal coordinates based on the amount of light received by at least one of the Y-side light receiving units and the X-side light receiving unit. An angle calculator is provided to obtain the tilt angle with the axis. Further, the above-mentioned spatial coordinate detection device is provided with a distance calculation unit that obtains the distance between the light source and the detection unit based on the amount of light received by each of the Y-side light reception units.

【0007】[0007]

【作用】光源から発せられた光は、検出部にて3個の開
口を通過してそれぞれ所定の面積のスポット光となり、
これら各スポット光が3組の受光部にて受光される。こ
れら受光部は1組のX側受光部と2組のY側受光部であ
り、X側受光部はそこに照射されるスポット光のX軸方
向の移動量を検出し、両Y側受光部はそこに照射される
スポット光のY軸方向の移動量をそれぞれ検出する。光
源および検出部を結ぶ方向とX−Y直交座標に交叉する
Z軸との相対的な傾き角度のうち、X軸方向の角度をθ
x、Y軸方向の角度をθyとすると、角度算出部がX側
受光部からの出力を演算することによりθxが求めら
れ、角度算出部が一方のY側受光部からの出力または両
方のY側受光部からの出力の平均値を演算することによ
りθyが求められる。光源と検出部との相対距離をLと
すると、両方のY側受光部に照射されるスポット光の位
置はLの大きさに応じて変化するため、距離算出部が両
Y側受光部からの出力を演算することによりLが求めら
れる。
The light emitted from the light source passes through the three openings in the detection section to become spot light of a predetermined area,
Each of these spot lights is received by the three light receiving units. These light receiving parts are one set of X side light receiving parts and two sets of Y side light receiving parts, and the X side light receiving parts detect the amount of movement of the spot light radiated thereto in the X axis direction, and both Y side light receiving parts. Detects the amount of movement of the spot light with which it is irradiated in the Y-axis direction. Of the relative tilt angles of the direction connecting the light source and the detector and the Z axis intersecting the XY orthogonal coordinates, the angle in the X axis direction is θ.
If the angle in the x-axis and Y-axis directions is θy, θx is obtained by calculating the output from the X-side light receiving unit by the angle calculation unit, and the angle calculation unit outputs from one Y-side light receiving unit or both Ys. Θy can be obtained by calculating the average value of the output from the side light receiving unit. If the relative distance between the light source and the detection unit is L, the position of the spot light irradiated on both Y-side light receiving units changes according to the size of L. L is obtained by calculating the output.

【0008】[0008]

【実施例】以下、本発明の実施例を図に基づいて説明す
る。図1は本発明の実施例に係る空間座標検出装置の基
本構造を示す斜視図、図2は該空間座標検出装置の断面
図、図3は該空間座標検出装置に備えられる受光部の平
面図、図4は該空間座標検出装置の角度検出原理を示す
説明図、図5は該空間座標検出装置の距離検出原理を示
す説明図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a perspective view showing a basic structure of a spatial coordinate detecting device according to an embodiment of the present invention, FIG. 2 is a sectional view of the spatial coordinate detecting device, and FIG. 3 is a plan view of a light receiving portion provided in the spatial coordinate detecting device. FIG. 4 is an explanatory diagram showing the angle detection principle of the spatial coordinate detection device, and FIG. 5 is an explanatory diagram showing the distance detection principle of the spatial coordinate detection device.

【0009】本実施例に係る空間座標検出装置は光源1
0と検出部11とを備えており、この光源10は例えば
コンピュータやAV機器またはゲーム機本体等の表示画
面を有する機器本体に設置され、一方、検出部11は例
えばリモートコントローラ等のオペレータが手で持って
移動する操作部材に設置されている。前記光源10は例
えば赤外線発光ダイオードからなり、この光源10から
識別可能な光が発せられる。前記検出部11は可視光カ
ットフィルタ12と絞り板13および受光素子群14と
からなり、図2に示すように、これら可視光カットフィ
ルタ12と絞り板13および受光素子群14は光源10
側から順に互いに並行に設けられている(ただし、図1
は可視光カットフィルタ12を省略してある)。
The spatial coordinate detecting apparatus according to the present embodiment includes a light source 1
0 and a detection unit 11, the light source 10 is installed in a device body having a display screen such as a computer, an AV device, or a game machine body, while the detection unit 11 is operated by an operator such as a remote controller. It is installed on an operation member that you can carry around with. The light source 10 is, for example, an infrared light emitting diode, and the light source 10 emits identifiable light. The detection unit 11 comprises a visible light cut filter 12, a diaphragm plate 13 and a light receiving element group 14, and as shown in FIG. 2, the visible light cut filter 12, the diaphragm plate 13 and the light receiving element group 14 are the light source 10
They are provided in parallel with each other in order from the side (however, in FIG.
Indicates that the visible light cut filter 12 is omitted).

【0010】前記受光素子群14の受光面に垂直となる
軸をZ軸とし、検出部11にてこのZ軸に直交するX−
Y直交座標を設定すると、前記絞り板13には3個の矩
形状の絞り口13a,13b,13cがY軸方向に所定
の間隔を保って開設されている。一方、前記受光素子群
14は前記各絞り口13a,13b,13cに対向する
3個の受光素子15,16,17より構成され、これら
各受光素子15,16,17は例えばピンホトダイオー
ドからなる。図3(A)に示すように、上方の絞り口1
3aに対向する受光素子15はY軸方向に2分割された
分割受光部15a,15bを有し(以下、これを第1の
Y側受光素子という)、図3(B)に示すように、中央
の絞り口13bに対向する受光素子16はX軸方向に2
分割された分割受光部16a,16bを有し(以下、こ
れをX側受光素子という)、図3(C)に示すように、
下方の絞り口13cに対向する受光素子17はY軸方向
に2分割された分割受光部17a,17bを有する(以
下、これを第2のY側受光素子という)。
The axis perpendicular to the light-receiving surface of the light-receiving element group 14 is defined as the Z-axis, and the detector 11 uses X-axis orthogonal to the Z-axis.
When the Y orthogonal coordinates are set, the diaphragm plate 13 is provided with three rectangular diaphragm openings 13a, 13b, 13c at predetermined intervals in the Y-axis direction. On the other hand, the light receiving element group 14 is composed of three light receiving elements 15, 16 and 17 facing the apertures 13a, 13b and 13c, and these light receiving elements 15, 16 and 17 are, for example, pin photodiodes. As shown in FIG. 3 (A), the upper aperture 1
The light receiving element 15 facing 3a has divided light receiving portions 15a and 15b divided into two in the Y-axis direction (hereinafter, referred to as a first Y-side light receiving element), and as shown in FIG. The light receiving element 16 facing the central aperture 13b is 2 in the X-axis direction.
Having divided light receiving portions 16a and 16b (hereinafter, this is referred to as an X side light receiving element), as shown in FIG.
The light receiving element 17 facing the lower aperture 13c has divided light receiving portions 17a and 17b which are divided into two in the Y-axis direction (hereinafter, this is referred to as a second Y-side light receiving element).

【0011】前記光源10にて発せられた赤外光は、前
記可視光カットフィルタ12を透過した後、前記絞り板
13の各絞り口13a,13b,13cにより絞られ、
受光素子群14の受光面上にそれぞれ矩形スポット光と
して照射される。その際、可視光カットフィルタ12が
設けられることにより、受光素子群14において赤外光
の矩形スポット以外の外光ノイズ成分が可能な限り遮断
されるようになっている。図3では、第1のY側受光素
子15の分割受光部15a,15bに照射される赤外光
のスポット光をS15で示し、X側受光素子16の分割
受光部16a,16bに照射される赤外光のスポット光
をS16で示し、第2のY側受光素子17の分割受光部
17a,17bに照射される赤外光のスポット光をS1
7で示している。
The infrared light emitted from the light source 10 passes through the visible light cut filter 12, and is then narrowed down by the respective diaphragm openings 13a, 13b, 13c of the diaphragm plate 13,
The light receiving surface of the light receiving element group 14 is irradiated as rectangular spot light. At this time, the visible light cut filter 12 is provided so that external light noise components other than the rectangular spot of infrared light are blocked in the light receiving element group 14 as much as possible. In FIG. 3, the spot light of infrared light with which the divided light receiving portions 15a and 15b of the first Y-side light receiving element 15 are irradiated is indicated by S15, and is irradiated onto the divided light receiving portions 16a and 16b of the X-side light receiving element 16. The spot light of infrared light is indicated by S16, and the spot light of infrared light with which the divided light receiving portions 17a and 17b of the second Y-side light receiving element 17 are irradiated is S1.
It is shown by 7.

【0012】各受光素子15〜17のそれぞれの分割受
光部では、スポット光S15〜S17の照射面積および
照射光強度に基づいて光電変換された検出電流が得られ
る。処理回路については後述するが、この検出電流は電
圧に変換されて演算処理される。図3では、スポット光
S15とS17の照射面積に基づく検出出力をそれぞれ
U,Dで示し、スポット光S16の照射面積に基づく検
出出力をL,Rで示している。前述したように、第1お
よび第2のY側受光素子15,17の分割受光部15
a,15bと17a,17bはそれぞれY軸方向に2分
割されているため、スポット光S15とS17の中心が
両分割受光部の中央にある時UとDは等しくなり、スポ
ット光S15とS17の中心がY軸方向に位置ずれする
と、UとDは異なる値となる。また、X側受光素子16
の分割受光部16a,16bはX軸方向に2分割されて
いるため、スポット光S16の中心が両分割受光部の中
央にある時LとRは等しくなり、スポット光S16の中
心がX軸方向に位置ずれすると、LとRは異なる値とな
る。
In each of the divided light receiving portions of the respective light receiving elements 15 to 17, a detection current photoelectrically converted based on the irradiation area and the irradiation light intensity of the spot light S15 to S17 is obtained. Although the processing circuit will be described later, this detected current is converted into a voltage and processed. In FIG. 3, the detection outputs based on the irradiation areas of the spot lights S15 and S17 are indicated by U and D, respectively, and the detection outputs based on the irradiation area of the spot light S16 are indicated by L and R. As described above, the divided light receiving portions 15 of the first and second Y-side light receiving elements 15 and 17 are provided.
Since a, 15b and 17a, 17b are each divided into two in the Y-axis direction, U and D are equal when the centers of the spot lights S15 and S17 are at the centers of the two divided light receiving parts, and the spot lights S15 and S17 are equal to each other. When the center is displaced in the Y-axis direction, U and D have different values. In addition, the X-side light receiving element 16
Since the divided light-receiving portions 16a and 16b are divided into two in the X-axis direction, L and R are equal when the center of the spot light S16 is at the center of both divided light-receiving portions, and the center of the spot light S16 is in the X-axis direction. When the position shifts to, L and R have different values.

【0013】図4に示すように、前記光源10と前記検
出部11の中心とを結ぶ線をO、検出部11の前方に延
びるZ軸とこの線Oとがなす傾き角度をθ(ラジアン)
とすると、この傾き角度θのX方向およびY方向成分θ
x,θyは以下のようにして求めることができる。ま
ず、図3に示す各受光素子15〜17でのスポット光S
15〜S17の中心の位置ずれ量ΔxとΔyは、 Δx∝(R−L)/(R+L)……………… Δy∝(U−D)/(U+D)……………… として表せられる。この,式において、分母の(R
+L)または(U+D)で割ることにより、照射光強度
の変動を加味している。図4は検出部11がZ軸に対し
てY方向にθyだけ傾けられた状態を示しており、この
場合、第1のY側受光素子15の分割受光部15a,1
5bと第2のY側受光素子17の分割受光部17a,1
7bに対してスポット光S15,S17の中心はΔyず
れることになる。図4において、絞り板13と各受光素
子15〜17の受光面までの距離をdとすると、dは微
少であるから、 Δy=d・tanθy≒d・θy θy=Δy/d……………… となる。この式において、dは既知であり、Δyは上
記式中にUとDを与えることにより求められるため、
これらUとDの値からθyを演算することができる。た
だし、Δyは第1のY側受光素子15と第2のY側受光
素子17のいずれか一方に対応するUとDの値から求め
ても良く、あるいは両方のY側受光素子15,17のそ
れぞれに対応するUとDの平均値から求めても良い。ま
た、上記式中のΔyをΔxとすることにより、θx
は、 θx=Δx/d……………… となる。この式においても、dは既知であり、Δxは
上記式中にLとRを与えることにより求められるた
め、X側受光素子16に対応するLとRの値からθxを
演算することができる。
As shown in FIG. 4, the line connecting the light source 10 and the center of the detection unit 11 is O, and the inclination angle formed by this line O and the Z axis extending in front of the detection unit 11 is θ (radian).
Then, the X-direction and Y-direction components θ of this tilt angle θ
x and θy can be obtained as follows. First, the spot light S at each of the light receiving elements 15 to 17 shown in FIG.
The positional deviation amounts Δx and Δy of the centers of 15 to S17 can be expressed as Δx∝ (RL) / (R + L) ……………… Δy∝ (UD) / (U + D) …………. To be In this equation, the denominator (R
By dividing by + L) or (U + D), the fluctuation of the irradiation light intensity is taken into consideration. FIG. 4 shows a state in which the detection unit 11 is tilted by θy in the Y direction with respect to the Z axis. In this case, the divided light receiving units 15 a, 1
5b and divided light receiving portions 17a, 1 of the second Y-side light receiving element 17
The centers of the spot lights S15 and S17 deviate from Δ7b by Δy. In FIG. 4, assuming that the distance between the diaphragm plate 13 and the light receiving surfaces of the light receiving elements 15 to 17 is d, d is very small. Therefore, Δy = d · tan θy≈d · θy θy = Δy / d .... ...... becomes. In this equation, d is known and Δy is obtained by giving U and D in the above equation,
Θy can be calculated from these U and D values. However, Δy may be obtained from the values of U and D corresponding to either one of the first Y-side light receiving element 15 and the second Y-side light receiving element 17, or both Y-side light receiving elements 15 and 17 may be calculated. It may be obtained from the average value of U and D corresponding to each. Further, by setting Δy in the above equation to Δx, θx
Becomes θx = Δx / d .... Also in this equation, d is known, and Δx is obtained by giving L and R in the above equation. Therefore, θx can be calculated from the values of L and R corresponding to the X-side light receiving element 16.

【0014】一方、図5に示すように、前記光源10と
前記検出部11とのZ軸方向の距離をLとすると、距離
Lの変動に伴って、第1のY側受光素子15の分割受光
部15a,15bと第2のY側受光素子17の分割受光
部17a,17bに対するスポット光S15,S17の
中心がそれぞれΔyずつ逆方向にずれるため、距離Lは
以下のようにして求めることができる。まず、図5にお
いて、第1のY側受光素子15と第2のY側受光素子1
7の中心間距離をm、これら第1および第2のY側受光
素子15,17に照射されるスポット光S15とS17
の中心間距離をm′、上方の絞り口13aと下方の絞り
口13cの中心間距離をnとすると、 m′=m+2Δy……………… として表せられる。また、図5において、絞り板13を
底辺とする三角形と受光素子15〜17の受光面を底辺
とする三角形は相似形をなすため、三角測量の原理か
ら、 n:m′=L:(L+d) L=nd/(m′−n)……………… となる。この式において、n,m,dは既知であり、
m′は上記式に上記式で求めたΔyを代入すること
により求められるため、両方のY側受光素子15,17
のそれぞれに対応するUとDの値からLを演算すること
ができる。
On the other hand, as shown in FIG. 5, when the distance between the light source 10 and the detecting section 11 in the Z-axis direction is L, the first Y-side light receiving element 15 is divided as the distance L changes. Since the centers of the spot light S15 and S17 with respect to the light receiving portions 15a and 15b and the divided light receiving portions 17a and 17b of the second Y-side light receiving element 17 are shifted by Δy in opposite directions, the distance L can be obtained as follows. it can. First, in FIG. 5, the first Y-side light receiving element 15 and the second Y-side light receiving element 1
7 is m, and the spot lights S15 and S17 irradiated on the first and second Y-side light receiving elements 15 and 17 are m.
Is m ', and the center distance between the upper aperture 13a and the lower aperture 13c is n, then m' = m + 2Δy. Further, in FIG. 5, the triangle having the diaphragm plate 13 as the base and the triangle having the light receiving surfaces of the light receiving elements 15 to 17 as the base have similar shapes. Therefore, from the principle of triangulation, n: m ′ = L: (L + d ) L = nd / (m′−n) ………………. In this equation, n, m, d are known,
Since m ′ is obtained by substituting Δy obtained by the above equation into the above equation, both Y side light receiving elements 15 and 17 are obtained.
L can be calculated from the values of U and D corresponding to each of.

【0015】図6と図7は上記実施例に係る空間座標検
出装置において使用される回路構成について示してい
る。前記光源10からの発光は、一定のパルスに基づい
た間欠発光とする。したがって、各分割受光部15a,
15bと16a,16bおよび17a,17bでは、前
記パルス周期に対応したほぼサイン曲線変化の受光出力
が得られる。
6 and 7 show the circuit configuration used in the spatial coordinate detecting apparatus according to the above embodiment. The light emission from the light source 10 is intermittent light emission based on a constant pulse. Therefore, each divided light receiving unit 15a,
In 15b and 16a, 16b and 17a, 17b, the received light output having a substantially sine curve change corresponding to the pulse period is obtained.

【0016】図6ではそれぞれの分割受光部に電流・電
圧変換器18が接続され、各分割受光部での受光出力の
電流値が電圧値に変換される。それぞれの出力電圧はバ
ンドパスフィルタ19を通過し、パルス発光(間欠発
光)の周波数成分が除かれる。そして、増幅器20によ
りそれぞれの検出電圧が電圧増幅され、検波器21によ
りそれぞれ検波され、各分割受光部の受光光量に応じた
電圧がDC成分として取り出される。また、各検波器2
1からの電圧出力が加算器22により電圧値として加算
され、オートゲインコントロール回路23に与えられ
る。そして、ゲインコントロール回路23より増幅器2
0の増幅率が制御される。
In FIG. 6, a current / voltage converter 18 is connected to each of the divided light receiving portions, and the current value of the light reception output in each divided light receiving portion is converted into a voltage value. Each output voltage passes through the bandpass filter 19, and the frequency component of pulse emission (intermittent emission) is removed. Then, the detected voltage is amplified by the amplifier 20 and detected by the detector 21, and the voltage corresponding to the amount of received light of each divided light receiving unit is extracted as a DC component. In addition, each detector 2
The voltage output from 1 is added as a voltage value by the adder 22 and given to the automatic gain control circuit 23. Then, the gain control circuit 23 causes the amplifier 2
The amplification factor of 0 is controlled.

【0017】検波器21からの各検出電圧は、例えば図
7に示されるアナログ・デジタル変換器24によりデジ
タル値に変換され、デジタル演算器25により和、差、
商、積の各演算が行われる。すなわち、上記〜式に
示された各演算はデジタル演算器25にて行われ、この
デジタル演算器25が角度算出部と距離算出部に相当す
る。
Each detected voltage from the detector 21 is converted into a digital value by the analog / digital converter 24 shown in FIG. 7, and the sum, difference,
Each operation of quotient and product is performed. That is, each calculation shown in the above equations is performed by the digital calculator 25, and the digital calculator 25 corresponds to the angle calculator and the distance calculator.

【0018】図8は前述した空間座標検出装置を適用し
た入出装置の概略構成を示し、この入出装置は固定側が
機器本体26であり、この機器本体26はコンピュータ
やAV機器またはゲーム機本体等からなり、CRT画面
27を有している。また、移動側は操作部材28であ
り、この操作部材28はリモートコントローラとして機
能し、オペレータが手で持って移動できる程度の大きさ
に形成されている。前記光源10は機器本体26の任意
位置に設置され、前記検出部11は操作部材28の前面
に設置されている。また、上記〜式に示された各演
算は、操作部材28内で行われ、その結果が有線または
無線で機器本体26に伝達され、あるいは、検出部11
の受光検出出力のみが機器本体26に伝達され、機器本
体26側で上記の演算が行われる。
FIG. 8 shows a schematic structure of an entrance / exit device to which the above-described spatial coordinate detecting device is applied. The entrance / exit device has a device main body 26 on the fixed side, and the device main body 26 includes a computer, an AV device, a game console main body, or the like. And has a CRT screen 27. Further, the moving side is an operation member 28, and this operation member 28 functions as a remote controller and is formed in a size that an operator can hold and move by hand. The light source 10 is installed at an arbitrary position on the device body 26, and the detection unit 11 is installed on the front surface of the operation member 28. Further, each calculation shown in the above formulas is performed in the operation member 28, and the result is transmitted to the device body 26 by wire or wirelessly, or the detection unit 11
Only the received light detection output of is transmitted to the device body 26, and the above calculation is performed on the device body 26 side.

【0019】図8では、光源10の中心O1が画面27
の中心の(イ)の位置に示されているが、実際の装置で
は、光源10の中心O1は画面27から外れた例えば
(ロ)で示す位置に設置される。この場合、検出部11
の前方に延びるZ軸が画面27の中心に向けられた時
に、検出部11の中心と光源10の中心とを結ぶ線J0
と、Z軸との間にオフセット角θ0が生じるため、検出
部11にて検出されたY方向の検出角度から前記オフセ
ット角θ0を除算すれば、画面27に対するZ軸の向き
(対向角度)θyを算出することができる。
In FIG. 8, the center O1 of the light source 10 is displayed on the screen 27.
In the actual device, the center O1 of the light source 10 is placed at a position deviated from the screen 27, for example, as indicated by (B). In this case, the detection unit 11
A line J 0 connecting the center of the detection unit 11 and the center of the light source 10 when the Z axis extending in the front of the screen 27 is directed to the center of the screen 27.
Since an offset angle θ 0 is generated between the Z axis and the Z axis, if the offset angle θ 0 is divided from the detected angle in the Y direction detected by the detection unit 11, the direction of the Z axis with respect to the screen 27 (the facing angle). ) Θy can be calculated.

【0020】この入力装置では、機器本体26側に操作
部材28のθxとθyの傾き量の情報を与えることがで
きるため、機器本体26側においてこの情報に基づいて
画面27上のカーソルマークを移動させれば、操作部材
28の傾き操作によってカーソルマークが移動したよう
に感じることができ、操作部材28のリモコン操作によ
り画面27にカーソル指示入力が可能になる。
In this input device, since information about the inclination amounts of θx and θy of the operating member 28 can be given to the device body 26 side, the cursor mark on the screen 27 is moved based on this information on the device body 26 side. By doing so, it is possible to feel that the cursor mark has moved by tilting the operation member 28, and it becomes possible to input a cursor instruction on the screen 27 by operating the remote control of the operation member 28.

【0021】また、機器本体26側に操作部材28まで
の距離Lの情報を与えることができるため、操作部材2
8が画面27に近づいている時と、操作部材28が画面
27から離れている時とで操作感触に違いを感じさせな
いようにすることができる。すなわち、操作部材28を
θxとθy方向の傾き角度のみに基づいて画面27上で
カーソルマークを移動させた場合、例えば操作部材28
を画面27に近づけた位置でθx方向へ傾けた時と、操
作部材28を画面27から十分に離した位置でθx方向
へ同じ角度だけ傾けた時とで、この傾き角度θxの情報
に基づく画面27上でのカーソルマークの移動量は同じ
距離になるため、画面27から離れた位置で操作部材2
8を傾けた時に画面27上でカーソルマークがあまり動
いていないような感触となる。そこで、上記式により
演算された距離Lを加味し、例えば光源10と検出部1
1との距離Lが長くなるにしたがって、操作部材28の
θxまたはθy方向の傾きに対し、画面27上でのカー
ソルマークの移動距離を長くするような補正を行うと、
操作部材28が画面27に近づいた場合と離れた場合と
での操作感触の違いを補正することができる。
Further, since the information of the distance L to the operation member 28 can be given to the device body 26 side, the operation member 2
It is possible to prevent a difference in the operation feeling between when the operation member 28 is close to the screen 27 and when the operation member 28 is away from the screen 27. That is, when the cursor mark is moved on the screen 27 based on only the tilt angles of the operating member 28 in the θx and θy directions, for example, the operating member 28
Is tilted in the θx direction at a position close to the screen 27 and when the operating member 28 is tilted in the θx direction at a position sufficiently separated from the screen 27 by the same angle, a screen based on the information of the tilt angle θx. Since the moving amount of the cursor mark on 27 is the same distance, the operation member 2 is moved away from the screen 27.
When 8 is tilted, it feels as if the cursor mark does not move much on the screen 27. Therefore, taking into account the distance L calculated by the above equation, for example, the light source 10 and the detection unit 1
As the distance L from 1 increases, the inclination of the operation member 28 in the θx or θy direction is corrected by increasing the moving distance of the cursor mark on the screen 27.
It is possible to correct the difference in the operation feeling between when the operation member 28 approaches the screen 27 and when the operation member 28 moves away from the screen 27.

【0022】あるいは、これとは逆に操作部材28が画
面27からかなり遠くに離れた時には、上記補正により
操作部材28がわずかに傾いただけで画面27上のカー
ソルマークが大きく動き、手振れによる操作入力の狂い
が生じるおそれもある。この場合には、前記と逆の補正
を行い、距離Lが長くなった時には、操作部材28のθ
xおよびθyの傾きに対し画面27上でのカーソルマー
クの移動距離を短く抑えるようにすれば良い。
On the contrary, when the operating member 28 is separated from the screen 27 by a considerable distance, the above correction causes the operating member 28 to be slightly tilted and the cursor mark on the screen 27 to move largely, resulting in an operation input by hand shake. There is also a possibility that the madness of. In this case, the correction reverse to the above is performed, and when the distance L becomes long, the θ of the operation member 28 is changed.
The movement distance of the cursor mark on the screen 27 may be kept short with respect to the inclinations of x and θy.

【0023】[0023]

【発明の効果】以上説明したように、本発明の空間座標
検出装置によれば、光源と検出部を結ぶ軸に対する両者
の相対的な傾き角度のみならず、光源と検出部間の距離
検出を簡単な構造で高精度に検出することができる。し
たがって、この空間座標検出装置を入力装置に応用した
場合には、手で持った操作部材を傾けることにより、画
面上のカーソルマークを上記傾き角度に対応して移動制
御することができ、しかも、上記傾き角度に光源と検出
部間の距離を加味することにより、光源と検出部間の距
離変動に伴う操作感触の違いを補正することができる。
As described above, according to the spatial coordinate detecting apparatus of the present invention, not only the relative tilt angle of the light source and the detecting unit with respect to the axis connecting the detecting unit but also the distance between the light source and the detecting unit can be detected. Highly accurate detection is possible with a simple structure. Therefore, when this spatial coordinate detection device is applied to an input device, by tilting the operation member held by hand, the cursor mark on the screen can be moved and controlled in accordance with the tilt angle, and By adding the distance between the light source and the detection unit to the tilt angle, it is possible to correct the difference in the operation feeling due to the variation in the distance between the light source and the detection unit.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係る空間座標検出装置の基本
構造を示す斜視図である。
FIG. 1 is a perspective view showing a basic structure of a spatial coordinate detecting device according to an embodiment of the present invention.

【図2】該空間座標検出装置の断面図である。FIG. 2 is a cross-sectional view of the spatial coordinate detection device.

【図3】該空間座標検出装置に備えられる受光部の平面
図である。
FIG. 3 is a plan view of a light receiving unit provided in the spatial coordinate detecting device.

【図4】該空間座標検出装置の角度検出原理を示す説明
図である。
FIG. 4 is an explanatory diagram showing an angle detection principle of the spatial coordinate detection device.

【図5】該空間座標検出装置の距離検出原理を示す説明
図である。
FIG. 5 is an explanatory diagram showing a distance detection principle of the spatial coordinate detection device.

【図6】該空間座標検出装置に備えられる回路構成を示
すブロック図である。
FIG. 6 is a block diagram showing a circuit configuration provided in the spatial coordinate detection device.

【図7】図6の回路の後段を示すブロック図である。7 is a block diagram showing a latter stage of the circuit of FIG.

【図8】図1の空間座標検出装置を適用した入力装置の
斜視図である。
8 is a perspective view of an input device to which the spatial coordinate detection device of FIG. 1 is applied.

【図9】従来の入力装置を示す斜視図である。FIG. 9 is a perspective view showing a conventional input device.

【符号の説明】[Explanation of symbols]

10 光源 11 検出部 12 可視光カットフィルタ 13 絞り板 13a,13b,13c 絞り口(開口) 15 第1のY側受光素子 15a,15b 分割受光部 16 X側受光素子 16a,16b 分割受光部 17 第2のY側受光素子 17a,17b 分割受光部 S15〜S17 スポット光 26 機器本体 27 画面 28 操作部材 10 light source 11 detection unit 12 visible light cut filter 13 diaphragm plate 13a, 13b, 13c diaphragm aperture (opening) 15 first Y-side light receiving element 15a, 15b split light receiving unit 16 X side light receiving element 16a, 16b split light receiving unit 17th 2 Y side light receiving element 17a, 17b Split light receiving section S15 to S17 Spot light 26 Device body 27 Screen 28 Operation member

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐藤 荒尾 東京都大田区雪谷大塚町1番7号 アルプ ス電気株式会社内 (72)発明者 斉藤 潤一 東京都大田区雪谷大塚町1番7号 アルプ ス電気株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Sato Arao 1-7 Yukiya Otsuka-cho, Ota-ku, Tokyo Alps Electric Co., Ltd. (72) Inventor Junichi Saito 1-7 Yukiya-Otsuka-cho, Ota-ku, Tokyo Alp Su Electric Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 光源と検出部とが離れた位置に配置さ
れ、前記検出部には、前記光源から発せられた光を所定
面積のスポット光に絞る3個の開口と、各スポット光を
受光する3組の受光部とが設けられ、前記各開口は任意
のX−Y直交座標を設定した時にY軸方向に沿って配置
され、前記各受光部の1組は前記スポット光のX軸方向
の移動に伴って受光光量が変化するX側受光部であり、
残りの2組の受光部は前記スポット光のY軸方向の移動
に伴って受光光量が変化するY側受光部であることを特
徴とする空間座標検出装置。
1. A light source and a detection unit are arranged at positions distant from each other, and in the detection unit, three openings for narrowing the light emitted from the light source into spot light of a predetermined area, and each spot light are received. And three sets of light receiving portions are provided, and each of the openings is arranged along the Y-axis direction when arbitrary XY orthogonal coordinates are set, and one set of each of the light receiving portions is in the X-axis direction of the spot light. Is the X-side light receiving unit in which the amount of received light changes with the movement of
The spatial coordinate detecting device, wherein the remaining two sets of light receiving portions are Y-side light receiving portions whose amount of received light changes as the spot light moves in the Y-axis direction.
【請求項2】 請求項1の記載において、前記両Y側受
光部の少なくとも一方と前記X側受光部との受光光量に
基づいて、前記光源および検出部を結ぶ方向とX−Y直
交座標に交叉するZ軸との傾き角度を求める角度算出部
が設けられていることを特徴とする空間座標検出装置。
2. The method according to claim 1, wherein the direction connecting the light source and the detection unit and the XY orthogonal coordinates are based on the amount of light received by at least one of the two Y-side light receiving units and the X-side light receiving unit. A spatial coordinate detecting device, characterized in that an angle calculation unit for obtaining an inclination angle with respect to an intersecting Z axis is provided.
【請求項3】 請求項1の記載において、前記両Y側受
光部のそれぞれの受光光量に基づいて、前記光源と検出
部との距離を求める距離算出部が設けられていることを
特徴とする空間座標検出装置。
3. The distance calculation unit according to claim 1, further comprising: a distance calculation unit that calculates a distance between the light source and the detection unit based on the amount of light received by each of the Y-side light reception units. Spatial coordinate detection device.
【請求項4】 請求項1〜3のいずれかの記載におい
て、前記光源は画面を有する機器本体側に配設され、前
記検出部はオペレータによって手動操作される操作部材
側に配設されていることを特徴とする空間座標検出装
置。
4. The light source according to claim 1, wherein the light source is arranged on a device body side having a screen, and the detection section is arranged on an operation member side manually operated by an operator. A spatial coordinate detection device characterized by the above.
JP6233234A 1994-05-26 1994-09-28 Spatial coordinate detecting device Pending JPH0895704A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP6233234A JPH0895704A (en) 1994-09-28 1994-09-28 Spatial coordinate detecting device
GB9510424A GB2289756B (en) 1994-05-26 1995-05-23 Space coordinates detecting device and input apparatus using same
US08/452,453 US5627565A (en) 1994-05-26 1995-05-26 Space coordinates detecting device and input apparatus using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6233234A JPH0895704A (en) 1994-09-28 1994-09-28 Spatial coordinate detecting device

Publications (1)

Publication Number Publication Date
JPH0895704A true JPH0895704A (en) 1996-04-12

Family

ID=16951866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6233234A Pending JPH0895704A (en) 1994-05-26 1994-09-28 Spatial coordinate detecting device

Country Status (1)

Country Link
JP (1) JPH0895704A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8834271B2 (en) 2005-08-24 2014-09-16 Nintendo Co., Ltd. Game controller and game system
US8870655B2 (en) 2005-08-24 2014-10-28 Nintendo Co., Ltd. Wireless game controllers
US8888576B2 (en) 1999-02-26 2014-11-18 Mq Gaming, Llc Multi-media interactive play system
US8907889B2 (en) 2005-01-12 2014-12-09 Thinkoptics, Inc. Handheld vision based absolute pointing system
US8913011B2 (en) 2001-02-22 2014-12-16 Creative Kingdoms, Llc Wireless entertainment device, system, and method
US8913003B2 (en) 2006-07-17 2014-12-16 Thinkoptics, Inc. Free-space multi-dimensional absolute pointer using a projection marker system
US8937594B2 (en) 2004-04-30 2015-01-20 Hillcrest Laboratories, Inc. 3D pointing devices with orientation compensation and improved usability
US8961260B2 (en) 2000-10-20 2015-02-24 Mq Gaming, Llc Toy incorporating RFID tracking device
US9011248B2 (en) 2005-08-22 2015-04-21 Nintendo Co., Ltd. Game operating device
US9039533B2 (en) 2003-03-25 2015-05-26 Creative Kingdoms, Llc Wireless interactive game having both physical and virtual elements
US9149717B2 (en) 2000-02-22 2015-10-06 Mq Gaming, Llc Dual-range wireless interactive entertainment device
US9176598B2 (en) 2007-05-08 2015-11-03 Thinkoptics, Inc. Free-space multi-dimensional absolute pointer with improved performance
US9261978B2 (en) 2004-04-30 2016-02-16 Hillcrest Laboratories, Inc. 3D pointing devices and methods
USRE45905E1 (en) 2005-09-15 2016-03-01 Nintendo Co., Ltd. Video game system with wireless modular handheld controller
US9272206B2 (en) 2002-04-05 2016-03-01 Mq Gaming, Llc System and method for playing an interactive game
US9446319B2 (en) 2003-03-25 2016-09-20 Mq Gaming, Llc Interactive gaming toy
US9616334B2 (en) 2002-04-05 2017-04-11 Mq Gaming, Llc Multi-platform gaming system using RFID-tagged toys
US10159897B2 (en) 2004-11-23 2018-12-25 Idhl Holdings, Inc. Semantic gaming and application transformation

Cited By (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9731194B2 (en) 1999-02-26 2017-08-15 Mq Gaming, Llc Multi-platform gaming systems and methods
US10300374B2 (en) 1999-02-26 2019-05-28 Mq Gaming, Llc Multi-platform gaming systems and methods
US8888576B2 (en) 1999-02-26 2014-11-18 Mq Gaming, Llc Multi-media interactive play system
US9186585B2 (en) 1999-02-26 2015-11-17 Mq Gaming, Llc Multi-platform gaming systems and methods
US9468854B2 (en) 1999-02-26 2016-10-18 Mq Gaming, Llc Multi-platform gaming systems and methods
US9861887B1 (en) 1999-02-26 2018-01-09 Mq Gaming, Llc Multi-platform gaming systems and methods
US9579568B2 (en) 2000-02-22 2017-02-28 Mq Gaming, Llc Dual-range wireless interactive entertainment device
US10307671B2 (en) 2000-02-22 2019-06-04 Mq Gaming, Llc Interactive entertainment system
US9474962B2 (en) 2000-02-22 2016-10-25 Mq Gaming, Llc Interactive entertainment system
US9713766B2 (en) 2000-02-22 2017-07-25 Mq Gaming, Llc Dual-range wireless interactive entertainment device
US10188953B2 (en) 2000-02-22 2019-01-29 Mq Gaming, Llc Dual-range wireless interactive entertainment device
US8915785B2 (en) 2000-02-22 2014-12-23 Creative Kingdoms, Llc Interactive entertainment system
US9814973B2 (en) 2000-02-22 2017-11-14 Mq Gaming, Llc Interactive entertainment system
US9149717B2 (en) 2000-02-22 2015-10-06 Mq Gaming, Llc Dual-range wireless interactive entertainment device
US9931578B2 (en) 2000-10-20 2018-04-03 Mq Gaming, Llc Toy incorporating RFID tag
US10307683B2 (en) 2000-10-20 2019-06-04 Mq Gaming, Llc Toy incorporating RFID tag
US9480929B2 (en) 2000-10-20 2016-11-01 Mq Gaming, Llc Toy incorporating RFID tag
US9320976B2 (en) 2000-10-20 2016-04-26 Mq Gaming, Llc Wireless toy systems and methods for interactive entertainment
US8961260B2 (en) 2000-10-20 2015-02-24 Mq Gaming, Llc Toy incorporating RFID tracking device
US10179283B2 (en) 2001-02-22 2019-01-15 Mq Gaming, Llc Wireless entertainment device, system, and method
US9737797B2 (en) 2001-02-22 2017-08-22 Mq Gaming, Llc Wireless entertainment device, system, and method
US9162148B2 (en) 2001-02-22 2015-10-20 Mq Gaming, Llc Wireless entertainment device, system, and method
US8913011B2 (en) 2001-02-22 2014-12-16 Creative Kingdoms, Llc Wireless entertainment device, system, and method
US10758818B2 (en) 2001-02-22 2020-09-01 Mq Gaming, Llc Wireless entertainment device, system, and method
US9393491B2 (en) 2001-02-22 2016-07-19 Mq Gaming, Llc Wireless entertainment device, system, and method
US10507387B2 (en) 2002-04-05 2019-12-17 Mq Gaming, Llc System and method for playing an interactive game
US10010790B2 (en) 2002-04-05 2018-07-03 Mq Gaming, Llc System and method for playing an interactive game
US11278796B2 (en) 2002-04-05 2022-03-22 Mq Gaming, Llc Methods and systems for providing personalized interactive entertainment
US9616334B2 (en) 2002-04-05 2017-04-11 Mq Gaming, Llc Multi-platform gaming system using RFID-tagged toys
US9272206B2 (en) 2002-04-05 2016-03-01 Mq Gaming, Llc System and method for playing an interactive game
US9463380B2 (en) 2002-04-05 2016-10-11 Mq Gaming, Llc System and method for playing an interactive game
US10478719B2 (en) 2002-04-05 2019-11-19 Mq Gaming, Llc Methods and systems for providing personalized interactive entertainment
US10369463B2 (en) 2003-03-25 2019-08-06 Mq Gaming, Llc Wireless interactive game having both physical and virtual elements
US10022624B2 (en) 2003-03-25 2018-07-17 Mq Gaming, Llc Wireless interactive game having both physical and virtual elements
US9393500B2 (en) 2003-03-25 2016-07-19 Mq Gaming, Llc Wireless interactive game having both physical and virtual elements
US9993724B2 (en) 2003-03-25 2018-06-12 Mq Gaming, Llc Interactive gaming toy
US9039533B2 (en) 2003-03-25 2015-05-26 Creative Kingdoms, Llc Wireless interactive game having both physical and virtual elements
US9707478B2 (en) 2003-03-25 2017-07-18 Mq Gaming, Llc Motion-sensitive controller and associated gaming applications
US8961312B2 (en) 2003-03-25 2015-02-24 Creative Kingdoms, Llc Motion-sensitive controller and associated gaming applications
US10583357B2 (en) 2003-03-25 2020-03-10 Mq Gaming, Llc Interactive gaming toy
US11052309B2 (en) 2003-03-25 2021-07-06 Mq Gaming, Llc Wireless interactive game having both physical and virtual elements
US9770652B2 (en) 2003-03-25 2017-09-26 Mq Gaming, Llc Wireless interactive game having both physical and virtual elements
US9446319B2 (en) 2003-03-25 2016-09-20 Mq Gaming, Llc Interactive gaming toy
US9261978B2 (en) 2004-04-30 2016-02-16 Hillcrest Laboratories, Inc. 3D pointing devices and methods
US10514776B2 (en) 2004-04-30 2019-12-24 Idhl Holdings, Inc. 3D pointing devices and methods
US9946356B2 (en) 2004-04-30 2018-04-17 Interdigital Patent Holdings, Inc. 3D pointing devices with orientation compensation and improved usability
US9575570B2 (en) 2004-04-30 2017-02-21 Hillcrest Laboratories, Inc. 3D pointing devices and methods
US11157091B2 (en) 2004-04-30 2021-10-26 Idhl Holdings, Inc. 3D pointing devices and methods
US10782792B2 (en) 2004-04-30 2020-09-22 Idhl Holdings, Inc. 3D pointing devices with orientation compensation and improved usability
US9298282B2 (en) 2004-04-30 2016-03-29 Hillcrest Laboratories, Inc. 3D pointing devices with orientation compensation and improved usability
US8937594B2 (en) 2004-04-30 2015-01-20 Hillcrest Laboratories, Inc. 3D pointing devices with orientation compensation and improved usability
US9675878B2 (en) 2004-09-29 2017-06-13 Mq Gaming, Llc System and method for playing a virtual game by sensing physical movements
US11154776B2 (en) 2004-11-23 2021-10-26 Idhl Holdings, Inc. Semantic gaming and application transformation
US10159897B2 (en) 2004-11-23 2018-12-25 Idhl Holdings, Inc. Semantic gaming and application transformation
US8907889B2 (en) 2005-01-12 2014-12-09 Thinkoptics, Inc. Handheld vision based absolute pointing system
US10155170B2 (en) 2005-08-22 2018-12-18 Nintendo Co., Ltd. Game operating device with holding portion detachably holding an electronic device
US9498728B2 (en) 2005-08-22 2016-11-22 Nintendo Co., Ltd. Game operating device
US9700806B2 (en) 2005-08-22 2017-07-11 Nintendo Co., Ltd. Game operating device
US10661183B2 (en) 2005-08-22 2020-05-26 Nintendo Co., Ltd. Game operating device
US10238978B2 (en) 2005-08-22 2019-03-26 Nintendo Co., Ltd. Game operating device
US9011248B2 (en) 2005-08-22 2015-04-21 Nintendo Co., Ltd. Game operating device
US9044671B2 (en) 2005-08-24 2015-06-02 Nintendo Co., Ltd. Game controller and game system
US8834271B2 (en) 2005-08-24 2014-09-16 Nintendo Co., Ltd. Game controller and game system
US11027190B2 (en) 2005-08-24 2021-06-08 Nintendo Co., Ltd. Game controller and game system
US9227138B2 (en) 2005-08-24 2016-01-05 Nintendo Co., Ltd. Game controller and game system
US10137365B2 (en) 2005-08-24 2018-11-27 Nintendo Co., Ltd. Game controller and game system
US9498709B2 (en) 2005-08-24 2016-11-22 Nintendo Co., Ltd. Game controller and game system
US8870655B2 (en) 2005-08-24 2014-10-28 Nintendo Co., Ltd. Wireless game controllers
USRE45905E1 (en) 2005-09-15 2016-03-01 Nintendo Co., Ltd. Video game system with wireless modular handheld controller
US8913003B2 (en) 2006-07-17 2014-12-16 Thinkoptics, Inc. Free-space multi-dimensional absolute pointer using a projection marker system
US9176598B2 (en) 2007-05-08 2015-11-03 Thinkoptics, Inc. Free-space multi-dimensional absolute pointer with improved performance

Similar Documents

Publication Publication Date Title
JPH0895704A (en) Spatial coordinate detecting device
JP3416291B2 (en) Spatial coordinate detector
JP3059619B2 (en) Tilt detecting device and input device using the same
JP3217926B2 (en) Spatial coordinate detector
JPH07318332A (en) Angle detection apparatus and input device using it
US20220334655A1 (en) Apparatus for controlling contents of a computer-generated image using 3d measurements
JPH08122070A (en) Inclination detection device and input device using it
CN102460563B (en) The position measuring system of use location sensitive detectors
US6587092B2 (en) Remote coordinate input device and remote coordinate input method
JPH08211993A (en) Inclination detector
JPH0895539A (en) Presentation supporting device
US8384011B2 (en) Optical detection device and electronic equipment for detecting at least one of an X-coordinate and a Y-coordinate of an object
CN101366001B (en) Transmitter, receiver, ans system with relative position detecting functionality between transmitters and receivers
JP2008158842A (en) Map display device
JP3193605B2 (en) Position pointing device and system
US9098137B2 (en) Position detecting function-added projection display apparatus
JPH08210812A (en) Length measuring instrument
US20100073289A1 (en) 3d control of data processing through handheld pointing device
US11061378B2 (en) Processing apparatus and method of controlling processing apparatus using a touch-screen displaying an image-captured workpiece
US6982407B2 (en) Photoelectric conversion unit having a plurality of photoelectric conversion surfaces and systems and methods for measuring location and/or direction using the photoelectric conversion unit
JP2004110184A (en) Optical coordinate input system
JPH07287632A (en) Coordinate detector
JP3523583B2 (en) Three-dimensional position / posture measuring apparatus and method, and recording medium
JPH07104923A (en) Pointing device
JP2001041747A (en) Surveying device