JPH07318332A - Angle detection apparatus and input device using it - Google Patents

Angle detection apparatus and input device using it

Info

Publication number
JPH07318332A
JPH07318332A JP6138182A JP13818294A JPH07318332A JP H07318332 A JPH07318332 A JP H07318332A JP 6138182 A JP6138182 A JP 6138182A JP 13818294 A JP13818294 A JP 13818294A JP H07318332 A JPH07318332 A JP H07318332A
Authority
JP
Japan
Prior art keywords
light
light receiving
angle
divided
axis direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6138182A
Other languages
Japanese (ja)
Other versions
JP3204844B2 (en
Inventor
Ichiro Morishita
一郎 森下
Kazuhiro Katagiri
和宏 片桐
Takashi Nakayama
尚 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP13818294A priority Critical patent/JP3204844B2/en
Priority to GB9510424A priority patent/GB2289756B/en
Priority to US08/452,453 priority patent/US5627565A/en
Publication of JPH07318332A publication Critical patent/JPH07318332A/en
Application granted granted Critical
Publication of JP3204844B2 publication Critical patent/JP3204844B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an angle detection apparatus in which a detection part to detect light from a light source is installed, in which the relative angle of a light-emitting part to the detection part can be detected and which can be utilized for an input device. CONSTITUTION:A photodetector 23 which has four-split light-receiving parts 23a to 23d is installed in a detection part 20. Beams of light from two light sources which can be discriminated mutually are emitted from a light-emitting part. The beams of light from the respective light sources are narrowed down in a diaphragm port, and a light-receiving face on the photodetector 23 is irradiated with separate beams of rectangular spot light S16, S17. When the difference in a light-receiving output between the individual four-split light-receiving parts 23a to 23d is computed, the center I1 of the beam of rectangular spot light S16 and the center I2 of the beam of rectangular spot light S17 can be found. When an angle of inclination alpha on the X-Y orthogonal coordinates of a line (x) connecting both centers I1, I2 is computed, it is possible to know the angle of rotation with reference to the Z-axis of the light-emitting part and the detection part 20.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光源を有する発光部
と、光源からの光を受光検知する検出部とを有し、発光
部と検出部を結ぶ軸に対する両部の相対的な回転角度
や、この回転角度を加味した両部の相対的な傾き量の検
出を可能にした角度検出装置、およびこの角度検出装置
を使用した入力装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention has a light emitting portion having a light source and a detecting portion for receiving and detecting light from the light source, and a relative rotation angle of both portions with respect to an axis connecting the light emitting portion and the detecting portion. The present invention also relates to an angle detection device capable of detecting the relative amount of inclination of both parts in consideration of this rotation angle, and an input device using this angle detection device.

【0002】[0002]

【従来の技術】従来各種映像が表示される画面に対して
外部から情報を入力する入力装置としては、ジョイスチ
ックが付いたコントローラや、マトリクス配列されたス
イッチ素子を有する平面的な座標入力装置などが主なも
のとなっている。前記ジョイスチックが付いたコントロ
ーラは、アクションゲームにおいて画面でのキャラクタ
の移動や動作指示を行う操作などを行う場合には適して
いるが、画面の任意の場所に現れる釦にカーソルマーク
を合わせるなどの操作には不向きである。またこの種の
コントローラはコード式のものであるために、画面の近
くでしか操作できない。また従来の平面的な座標入力装
置は、画面の手前に平面的な指示盤を設置するスペース
が広く必要になり、また構造も複雑でコストの高いもの
となっている。
2. Description of the Related Art Conventionally, as an input device for inputting information from the outside to a screen on which various images are displayed, a controller having a joystick, a planar coordinate input device having switch elements arranged in a matrix, etc. Is the main one. The controller with the joystick is suitable for moving a character on the screen or performing an operation instruction for the action game, but it is possible to place a cursor mark on a button appearing anywhere on the screen. Not suitable for operation. Also, since this type of controller is of a cord type, it can only be operated near the screen. In addition, the conventional planar coordinate input device requires a large space for installing a planar pointing panel in front of the screen, and has a complicated structure and high cost.

【0003】そこで、最近では図12に示すような超音
波を使用した入力装置が考えられている。この入力装置
は、機器本体の画面1の両側などに水平軸(x軸)方向
に間隔を開けて配置された音源2a,2bが設けられて
いる。人が手で持って操作する操作部材3には、前記音
源2aと2bから発せられる超音波を検知する検出部が
設けられている。音源2a,2bからは、超音波が互い
に位相をずらしてパルス変調されて発せられる。操作部
材3の検出部では、音源2aと2bからの超音波を識別
して受信し、受信された各超音波の位相差などから音源
2aとの距離Laと音源2bとの距離Lbとが算出さ
れ、これにより、操作部材3の水平面(Hx−Hy面)
上での位置が検出できるようになっている。操作部材3
を水平面(Hx−Hy面)にて移動させ必要に応じて操
作釦を押すと、操作部材3にて受信された情報が有線で
または無線で機器本体に与えられ、機器本体ではHx−
Hy面での操作部材3の位置が演算され、例えば機器本
体の画面1に現れたカーソルマーク4が移動させられ
る。
Therefore, recently, an input device using ultrasonic waves as shown in FIG. 12 has been considered. This input device is provided with sound sources 2a and 2b arranged on both sides of the screen 1 of the main body of the device at intervals in the horizontal axis (x-axis) direction. The operation member 3 that is held and operated by a person is provided with a detection unit that detects ultrasonic waves emitted from the sound sources 2a and 2b. From the sound sources 2a and 2b, ultrasonic waves are emitted by being pulse-modulated with their phases shifted from each other. The detection unit of the operating member 3 identifies and receives the ultrasonic waves from the sound sources 2a and 2b, and calculates the distance La between the sound source 2a and the distance Lb between the sound source 2b from the phase difference between the received ultrasonic waves. As a result, the horizontal surface (Hx-Hy surface) of the operating member 3
The position above can be detected. Operation member 3
Is moved on a horizontal plane (Hx-Hy surface) and the operation button is pressed as necessary, the information received by the operation member 3 is given to the device body by wire or wirelessly, and Hx- is displayed on the device body.
The position of the operation member 3 on the Hy plane is calculated, and for example, the cursor mark 4 appearing on the screen 1 of the device body is moved.

【0004】[0004]

【発明が解決しようとする課題】図12に示す入力装置
では、水平面(Hx−Hy面)上での操作部材3の位置
を検出し、その情報を機器本体に与えることは可能であ
るが、操作部材3をHx−Hy平面上のある位置に停止
させてθx方向へ傾けたとしても、その傾き角度を検出
することはできない。さらに操作部材3のθy方向やθ
z方向への回転角度を検出することも不可能である。ま
た、超音波は簡単な構成で実現できるが、温度に対する
安定性が悪く、しかも外乱ノイズが多いなど、信頼性の
面で問題が多く残されている。超音波以外でも交流磁界
を利用し、3次元空間での位置と角度を求める方法も提
案されているが、装置が大型化し、非常に高価である。
With the input device shown in FIG. 12, it is possible to detect the position of the operating member 3 on the horizontal plane (Hx-Hy plane) and give the information to the device body. Even if the operation member 3 is stopped at a certain position on the Hx-Hy plane and tilted in the θx direction, the tilt angle cannot be detected. Further, the θy direction of the operation member 3 and θ
It is also impossible to detect the rotation angle in the z direction. Further, although ultrasonic waves can be realized with a simple configuration, they have many problems in terms of reliability, such as poor stability against temperature and a large amount of disturbance noise. A method of obtaining a position and an angle in a three-dimensional space by using an AC magnetic field other than ultrasonic waves has also been proposed, but the device becomes large and extremely expensive.

【0005】本発明は上記従来の課題を解決するもので
あり、発光部と検出部との相対的な回転角度などを簡単
な構造で高精度に検出できるようにした角度検出装置お
よびこの角度検出装置を使用した入力装置を提供するこ
とを目的としている。
The present invention solves the above-mentioned conventional problems, and an angle detecting device and a device for detecting the angle of relative rotation between a light emitting portion and a detecting portion with a simple structure and high accuracy. An object is to provide an input device using the device.

【0006】[0006]

【課題を解決するための手段】本発明による角度検出装
置は、発光部と検出部とが離れて配置され、前記発光部
には、識別可能な光を発する2個の光源が間隔を開けて
配置され、前記検出部には、それぞれの光を所定面積の
スポット光とする絞り口と、絞り口の中心を通る軸と交
叉するX−Y直交座標を設定したときにX軸方向に分割
された分割受光部とY軸方向に分割された分割受光部と
が設けられ、各スポット光に対するX軸方向の分割受光
部での受光光量の差とY軸方向の分割受光部での受光光
量の差からそれぞれのスポット光の位置を求め、両スポ
ット光の中心を結ぶ線の前記X−Y座標上での傾き角度
を求める算出部が設けられていることを特徴とするもの
である。
In an angle detecting device according to the present invention, a light emitting portion and a detecting portion are arranged apart from each other, and the light emitting portion is provided with two light sources which emit discriminable light. The detection unit is divided in the X-axis direction when the apertures that make each light a spot light of a predetermined area and the XY orthogonal coordinates that intersect the axis passing through the center of the aperture are set. The divided light receiving portion and the divided light receiving portion divided in the Y-axis direction are provided, and the difference between the amount of received light in the divided light receiving portion in the X axis direction and the amount of received light in the divided light receiving portion in the Y axis direction with respect to each spot light. It is characterized in that a calculation unit is provided for obtaining the position of each spot light from the difference and for obtaining the inclination angle of the line connecting the centers of both spot lights on the XY coordinates.

【0007】また、上記において、X−Y直交座標を前
記傾き角度だけ回転させた回転座標Xα−Yαを設定
し、算出部にて、Xα−Yα座標上での前記両スポット
光の中点の位置が求められるものである。
Further, in the above, the rotation coordinates Xα-Yα obtained by rotating the XY Cartesian coordinates by the inclination angle are set, and the calculation unit calculates the midpoint of the spot lights on the Xα-Yα coordinates. The position is required.

【0008】さらに、算出部にて、両スポット光の中心
間の距離と前記光源の配置間隔とから発光部と検出部と
の距離が求められるものである。
Further, the calculating section obtains the distance between the light emitting section and the detecting section from the distance between the centers of both spot lights and the arrangement interval of the light sources.

【0009】上記検出部は、1つの絞り口と、X軸方向
とY軸方向にそれぞれ分割された4分割受光部とを設け
ることにより構成でき、または、2つの絞り口と、一方
の絞り口を通過したスポットを検出するX軸方向に分割
された2分割受光部と、他方の絞り口を通過したスポッ
ト光を検出するY軸方向に分割された2分割受光部とが
設けることにより構成できる。
The detection unit can be constructed by providing one aperture and a four-division light receiving unit divided in the X-axis direction and the Y-axis direction respectively, or two apertures and one aperture. It can be configured by providing a two-divided light receiving portion divided in the X-axis direction for detecting a spot that has passed through and a two-divided light receiving portion divided in the Y-axis direction for detecting spot light that has passed through the other aperture. .

【0010】また本発明による角度検出装置は、発光部
と検出部とが離れて配置され、前記発光部からはほぼ直
線偏光の光が発せられ、前記検出部には、前記発光部か
ら発せられる光の偏光方向に対して互いに逆方向に傾い
た偏光成分を透過する2個のフィルタと、それぞれのフ
ィルタを透過した光を検出する受光部が設けられ、それ
ぞれのフィルタを透過した光の受光光量の差から、発光
部と検出部との回転角度を求める算出部が設けられてい
ることを特徴とするものである。
Further, in the angle detecting device according to the present invention, the light emitting portion and the detecting portion are arranged apart from each other, the light emitting portion emits light of substantially linear polarization, and the detecting portion emits light from the light emitting portion. Two filters that transmit polarized components that are inclined in opposite directions to the polarization direction of the light and a light receiving unit that detects the light transmitted through each filter are provided, and the received light amount of the light transmitted through each filter. It is characterized in that there is provided a calculating section for obtaining a rotation angle between the light emitting section and the detecting section from the difference.

【0011】上記において、発光部と検出部とを結ぶ軸
に交叉するX−Y直交座標を設定したときに、一方の受
光部はX軸方向へのスポット光の移動量を検知でき、他
方の受光部はY軸方向へのスポット光の移動量を検知で
きるものとすることが好ましい。
In the above, when the XY orthogonal coordinates intersecting with the axis connecting the light emitting section and the detecting section are set, one light receiving section can detect the amount of movement of the spot light in the X axis direction, and the other light receiving section. It is preferable that the light receiving section be capable of detecting the amount of movement of the spot light in the Y-axis direction.

【0012】さらに上記各構造の角度検出装置を使用し
て、固定された機器本体側と移動自在な操作部材側の一
方に発光部を他方に検出部を設け、発光部と検出部とを
結ぶ軸に対する両部の相対的な回転角度情報を操作部材
から機器本体に入力する入力装置とすることが可能であ
る。
Further, by using the angle detecting device having each of the above structures, a light emitting portion is provided on one of the fixed device body side and the movable operating member side, and the detecting portion is provided on the other side, and the light emitting portion and the detecting portion are connected. It is possible to provide an input device for inputting relative rotation angle information of both parts with respect to the axis from the operation member to the device body.

【0013】[0013]

【作用】前記第1の手段では、発光部にて間隔を開けて
配置された2個の光源から識別可能な光が発せられる。
例えば両光源から一定の周波数で変調した光を発生さ
せ、両光源からの発光タイミング(位相)をずらすこと
により、それぞれの光を検出部にて識別することができ
る。またそれぞれの光源から発せられる光の波長や変調
周波数を異ならせておき、検出部の受光部により検出さ
れた各検出出力をバンドパスフィルタにて分離し、両光
源からの光を識別できるようにしてもよい。
In the first means, the identifiable light is emitted from the two light sources arranged at the light emitting portion with a space.
For example, by generating light modulated at a constant frequency from both light sources and shifting the light emission timing (phase) from both light sources, each light can be identified by the detection unit. In addition, the wavelength and modulation frequency of the light emitted from each light source are made different, and each detection output detected by the light receiving part of the detection part is separated by a bandpass filter so that the light from both light sources can be distinguished. May be.

【0014】発光部の2個の光源から発せられた光は、
検出部にて絞り口を通過して所定の面積のスポット光と
なり、このスポット光が4分割受光部または2分割受光
部にて受光される。検出部にてX軸方向に分割された分
割受光部の受光光量の差をおよびY軸方向に分割された
分割受光部の受光光量の差を求めることにより、それぞ
れの光源から発せられた光のスポット光の位置を別々に
検出できる。両スポット光の位置から両スポット光の中
心を通る線を求めることができ、よって検出部のX−Y
直交座標上での前記線の角度を知ることができる。これ
により発光部と検出部を結ぶ線に対する両部の相対的な
回転角度を検出することができる。
The light emitted from the two light sources of the light emitting section is
The detection section passes through the aperture and becomes spot light of a predetermined area, and this spot light is received by the 4-split light receiving section or the 2-split light receiving section. By obtaining the difference in the amount of received light of the divided light receiving unit divided in the X-axis direction and the difference in the amount of received light of the divided light receiving unit divided in the Y-axis direction in the detection unit, the light emitted from each light source is detected. The position of the spot light can be detected separately. A line that passes through the centers of both spot lights can be obtained from the positions of both spot lights, and therefore the XY of the detection unit can be obtained.
The angle of the line on Cartesian coordinates can be known. This makes it possible to detect the relative rotation angle of both parts with respect to the line connecting the light emitting part and the detecting part.

【0015】また、検出部での前記X−Y直交座標を前
記回転角度と同じだけ回転させた回転座標Xα−Yαを
設定し、両スポット光の中点のXα−Yα座標上での位
置を検出することにより、発光部と検出部の相対的な回
転角度を加味した状態で、x軸方向とy軸方向への両部
の傾き角度を検出することができる。
Further, a rotation coordinate Xα-Yα obtained by rotating the XY orthogonal coordinate in the detection unit by the same angle as the rotation angle is set, and the position of the midpoint of both spot lights on the Xα-Yα coordinate is set. By detecting, the tilt angle of both parts in the x-axis direction and the y-axis direction can be detected in consideration of the relative rotation angle of the light emitting part and the detecting part.

【0016】また他の手段では、発光部から直線偏光の
光が発せられる。検出部には、発光部から発せられる光
の偏光方向に対して例えば+45度と−45度の逆向き
の角度の偏光成分をそれぞれ透過する一対のフィルタ
と、このフィルタを透過した光を検出する受光部が設け
られている。両受光部での受光光量を比較することによ
り、両フィルタの偏光方向に対する光源からの光の偏光
方向の傾き角度を知ることができ、これにより発光部と
検出部を結ぶ軸に対する両部の相対的な回転角度を検出
することができる。
According to another means, linearly polarized light is emitted from the light emitting section. The detection unit detects a pair of filters that respectively transmit polarization components of opposite angles of +45 degrees and −45 degrees with respect to the polarization direction of the light emitted from the light emitting unit, and the light transmitted through the filters. A light receiving section is provided. By comparing the amount of light received by both light receiving parts, it is possible to know the tilt angle of the polarization direction of the light from the light source with respect to the polarization direction of both filters, and thus the relative angle of both parts with respect to the axis connecting the light emitting part and the detection part. It is possible to detect the proper rotation angle.

【0017】また、発光部の2つの光源から識別可能な
光が発せられ、検出部の分割受光部にてそれぞれの光の
スポット光の位置が求められたときに、両スポット光の
中心間の距離と、発光部での光源の配置間隔とから、発
光部と検出部との距離を検出することも可能である。
Further, when identifiable light is emitted from the two light sources of the light emitting portion and the position of each spot light of the respective light is obtained by the split light receiving portion of the detection portion, it is between the centers of both spot light. It is also possible to detect the distance between the light emitting unit and the detecting unit from the distance and the arrangement interval of the light sources in the light emitting unit.

【0018】上記の角度検出装置の発光部と検出部を、
機器本体と操作部材とに別々に設置することにより、機
器本体に対する操作部材の向き(姿勢)を検出すること
ができる。よって操作部材をいずれかの姿勢に向けて操
作釦を押すなどすることにより、機器本体に対し三次元
的な位置情報を入力することが可能になる。
The light emitting portion and the detecting portion of the above angle detecting device are
By separately installing the device body and the operation member, the direction (posture) of the operation member with respect to the device body can be detected. Therefore, it becomes possible to input three-dimensional position information to the device body by pushing the operation button or the like with the operation member facing any posture.

【0019】上記角度検出装置または入力装置を使用す
ることにより、画面を有する機器に対して操作部材によ
り座標位置を入力することができ、または画面上に現れ
た押釦にカーソルマークを合せて操作することもでき
る。さらにバーチャルリアリティでの角度検出や位置ま
たは角度の入力として使用することも可能である。
By using the angle detecting device or the input device, the coordinate position can be input to the device having the screen by the operation member, or the push button appearing on the screen can be operated by moving the cursor mark. You can also Furthermore, it is possible to use it as an angle detection in virtual reality and as an input of a position or an angle.

【0020】[0020]

【実施例】以下、本発明の実施例を図面により説明す
る。図1は本発明の第1実施例による角度検出装置を使
用した入力装置を示す斜視図、図2ないし図6は角度検
出装置の基本的な構造およびその動作を説明するもので
ある。この入力装置は、固定側が機器本体10であり、
この機器本体10はコンピュータやAV機器またはゲー
ム機本体などであり、CRT画面11を有している。移
動側は操作部材12である。操作部材12はリモートコ
ントローラとして機能するものであり、手で保持できる
程度の大きさである。操作部材12と機器本体10はコ
ードにて有線接続され、あるいは操作部材12から機器
本体11に対し赤外線通信や電波通信により検出情報
(主に角度検出情報)や操作指示信号が与えられる。
Embodiments of the present invention will be described below with reference to the drawings. 1 is a perspective view showing an input device using an angle detecting device according to a first embodiment of the present invention, and FIGS. 2 to 6 are diagrams for explaining the basic structure and operation of the angle detecting device. In this input device, the fixed side is the device body 10,
The device body 10 is a computer, an AV device, a game machine body, or the like, and has a CRT screen 11. The moving side is the operation member 12. The operation member 12 functions as a remote controller and has a size that can be held by hand. The operation member 12 and the device main body 10 are connected to each other by a wire by a cord, or the operation member 12 gives detection information (mainly angle detection information) and an operation instruction signal to the device main body 11 by infrared communication or radio wave communication.

【0021】上記入力装置は角度検出装置を備えている
が、図1の実施例では、機器本体10側に発光部15が
設けられ、操作部材12側に検出部20が設けられてい
る。この発光部15と検出部20とで、本発明の角度検
出装置が構成される。発光部15の中心O1を通過する
水平軸をx軸とし、中心O1を通過する垂直軸をy軸と
したときに、x軸上にて中心O1に対して等距離a(図
2参照)離れた位置に一対の点光源16と17が設けら
れている。図1では、発光部15の中心O1が画面11
の中心の(イ)の位置に示され、点光源16と17が画
面11内に有るように示されている。
Although the input device is provided with an angle detecting device, in the embodiment shown in FIG. 1, the light emitting portion 15 is provided on the device body 10 side and the detecting portion 20 is provided on the operating member 12 side. The light emitting unit 15 and the detecting unit 20 constitute the angle detecting device of the present invention. When the horizontal axis that passes through the center O1 of the light emitting unit 15 is the x axis and the vertical axis that passes through the center O1 is the y axis, it is equidistant a (see FIG. 2) from the center O1 on the x axis. A pair of point light sources 16 and 17 are provided at different positions. In FIG. 1, the center O1 of the light emitting unit 15 is the screen 11
The point light sources 16 and 17 are shown in the screen 11 at the center (b) position.

【0022】ただし実際の装置では、発光部15の中心
O1は画面11から外れた例えば(ロ)で示す位置にあ
る。この場合、操作部材12の検出部20に対して垂直
(図2では水平)に延びるZ軸が画面11の中心に向け
られたときに、操作部材12の検出部20の中心と発光
部15の中心とを結ぶ線Joと、Z軸との間にオフセッ
ト角θ0が生じる。実際の入力装置および角度検出装置
では、操作部材12の検出部20にて検出されたY方向
の検出角度から前記オフセット角θ0が除算されること
により画面に対するZ軸の向き(対向角度)θyが算出
される。または、発光部15の中心O1を画面11の中
心に位置させ、この中心O1を通るx軸上にて画面11
から外れた左右側方位置((ハ)の位置)に点光源16
と17を配置すれば、前記オフセット角θ0を除算する
必要はなくなる。いずれにせよ以下においては、角度検
出装置の構成および動作の説明を容易にするために、発
光部15の中心O1が画面11の中心の(イ)の位置に
あるものと仮定して説明する。
However, in an actual device, the center O1 of the light emitting portion 15 is located off the screen 11 at a position indicated by (B), for example. In this case, when the Z axis extending vertically (horizontal in FIG. 2) to the detection unit 20 of the operation member 12 is directed to the center of the screen 11, the center of the detection unit 20 of the operation member 12 and the light emitting unit 15 are separated. An offset angle θ0 is generated between the line Jo connecting the center and the Z axis. In an actual input device and angle detection device, the offset angle θ0 is divided from the detection angle in the Y direction detected by the detection unit 20 of the operating member 12 to determine the Z-axis direction (opposite angle) θy with respect to the screen. It is calculated. Alternatively, the center O1 of the light emitting unit 15 is located at the center of the screen 11, and the screen 11 is displayed on the x-axis passing through the center O1.
Point light sources 16 at the left and right lateral positions (positions of (C))
By arranging and 17, it is not necessary to divide the offset angle θ0. In any case, in order to facilitate the description of the configuration and operation of the angle detection device, the following description will be made assuming that the center O1 of the light emitting unit 15 is located at the center (a) position of the screen 11.

【0023】前記2つの点光源16と17からは互いに
識別可能な光が発せられる。例えば各点光源16と17
は、赤外線発光ダイオードであり、両点光源16と17
からは、同じ周波数(周期)で且つ位相が180度ずれ
た変調光が出力される。図6(A)は一方の点光源16
を発光させる駆動パルスで、図6(B)は他方の点光源
17を発光させる駆動パルスである。各点光源16と1
7は共に、16〜40kHz程度の周波数の駆動パルス
により変調発光し、光源16と光源17とでは発光周期
が180度ずれ、光源16と光源17とで異なるタイミ
ングにて交互に赤外線が発光されるようになっている。
操作部材12に設けられた検出部20は、図2に示すよ
うに、発光部15に向く側から可視光カットフィルタ2
1、絞り板22、受光素子23の順に互いに平行に設け
られている。
Lights which can be distinguished from each other are emitted from the two point light sources 16 and 17. For example, each point light source 16 and 17
Is an infrared light emitting diode, and both point light sources 16 and 17
From, modulated light having the same frequency (cycle) and a phase shifted by 180 degrees is output. FIG. 6A shows one point light source 16
6B is a drive pulse for causing the other point light source 17 to emit light. Each point light source 16 and 1
Both 7 emit modulated light by a drive pulse having a frequency of about 16 to 40 kHz, the light source 16 and the light source 17 have a different light emission period by 180 degrees, and the light source 16 and the light source 17 alternately emit infrared light at different timings. It is like this.
As shown in FIG. 2, the detection unit 20 provided on the operation member 12 includes the visible light cut filter 2 from the side facing the light emitting unit 15.
1, the diaphragm plate 22, and the light receiving element 23 are provided in parallel in this order.

【0024】絞り板22には矩形状の絞り口22aが開
口している。この絞り口22aの中心を通り絞り板22
や受光素子23に垂直となる軸を前記Z軸とし、検出部
20にてこのZ軸に直交するX−Y直交座標を設定す
る。図3に示すように、前記受光素子23は4分割受光
部23a,23b,23c,23dを有するピンホトダ
イオードにより構成されている。前記X−Y直交座標に
おいて、分割受光部の23a,23bの組と23c,2
3dの組はY軸方向に分割され、23b,23dの組と
23a,23cの組はX方向に分割されている。
The diaphragm plate 22 has a rectangular aperture 22a. The diaphragm plate 22 passes through the center of this diaphragm port 22a.
An axis perpendicular to the light receiving element 23 is defined as the Z axis, and the detection unit 20 sets XY orthogonal coordinates orthogonal to the Z axis. As shown in FIG. 3, the light receiving element 23 is composed of a pin photodiode having four divided light receiving portions 23a, 23b, 23c and 23d. In the XY Cartesian coordinates, a pair of divided light receiving portions 23a and 23b and 23c and 2
The set of 3d is divided in the Y-axis direction, and the set of 23b and 23d and the set of 23a and 23c are divided in the X direction.

【0025】点光源16と17からそれぞれ異なるタイ
ミング(異なる周期)にて発せられる赤外光は、前記矩
形状の絞り口22aにより絞られ、受光素子23上に矩
形スポット光として照射される。図3では、光源16か
ら発せられた赤外光の矩形スポット光をS16で示し、
光源17から発せられた赤外光の矩形スポット光をS1
7で示している。絞り口22aの開口面積と各受光部2
3a,23b,23c,23dの受光面積、および受光
素子23の受光面と絞り板22の表面との距離m(図5
参照)により、操作部材12が一定の範囲内で各方向へ
傾いても、各矩形スポット光S16とS17は、4分割
受光部23a〜23dの受光検知領域から外れないよう
に設定されている。また可視光カットフィルタ21が設
けられることにより、受光素子23において、赤外光の
矩形スポットS16,S17以外の外光ノイズ成分が可
能な限り遮断されるようになっている。
Infrared light emitted from the point light sources 16 and 17 at different timings (different periods) is narrowed down by the rectangular aperture 22a, and irradiated onto the light receiving element 23 as rectangular spot light. In FIG. 3, the rectangular spot light of infrared light emitted from the light source 16 is indicated by S16,
The rectangular spot light of infrared light emitted from the light source 17 is S1.
It is shown by 7. The aperture area of the aperture 22a and each light receiving portion 2
The light receiving areas of 3a, 23b, 23c, and 23d, and the distance m between the light receiving surface of the light receiving element 23 and the surface of the diaphragm plate 22 (see FIG.
Even if the operating member 12 tilts in each direction within a certain range, the rectangular spot lights S16 and S17 are set so as not to deviate from the light receiving detection areas of the four-divided light receiving sections 23a to 23d. Further, since the visible light cut filter 21 is provided, the external light noise component other than the rectangular spots S16 and S17 of the infrared light is blocked in the light receiving element 23 as much as possible.

【0026】それぞれの分割受光部23a〜23dで
は、矩形スポット光の照射面積に基づいて光電変換され
た検出電流が得られる。処理回路については口述する
が、この検出電流は電圧に変換されて演算処理される。
そこで分割受光部23a〜23dでの矩形スポット光の
照射面積に基づく検出出力を、図3においてLu,R
u,Ld,Rdで示す。前述のように、点光源16と1
7からは異なるタイミングで赤外光が発せられるため、
受光素子23にて矩形スポット光S16が検出される時
刻と矩形スポット光S17が検出される時刻が異なり、
処理回路にて時分割することにより各矩形スポット光S
16とS17ごとに、前記Lu,Ru,Ld,Rdの検
出出力が得られることになる。
In each of the divided light receiving portions 23a to 23d, a detected current photoelectrically converted based on the irradiation area of the rectangular spot light is obtained. Although the processing circuit will be dictated, the detected current is converted into a voltage and processed.
Therefore, the detection output based on the irradiation area of the rectangular spot light in the divided light receiving units 23a to 23d is Lu, R in FIG.
It is shown by u, Ld, and Rd. As described above, the point light sources 16 and 1
Since infrared light is emitted from 7 at different timings,
When the light receiving element 23 detects the rectangular spot light S16 and the rectangular spot light S17 are different,
Each of the rectangular spot lights S is time-divided by the processing circuit.
The detection outputs of Lu, Ru, Ld, and Rd are obtained every 16 and S17.

【0027】次に、発光部15と検出部20とから成る
前記角度検出装置での角度検出動作について説明する。
図3は、操作部材12がある姿勢のときに、検出部20
にて検出された矩形スポット光S16とS17を示して
いる。図3の検出状態は、図1にて操作部材12がZ軸
に対して反時計方向へ回転させられた状態である。この
回転角度をαとする。すなわち、検出部20側のX−Y
直交座標のX軸に対し、点光源16と17とが配置され
た発光部15側のx軸が角度αだけ相対的に回転した状
態を示している。
Next, the angle detecting operation of the angle detecting device including the light emitting section 15 and the detecting section 20 will be described.
FIG. 3 shows that when the operating member 12 is in a certain posture, the detecting unit 20
The rectangular spot lights S16 and S17 detected in FIG. The detection state of FIG. 3 is a state in which the operation member 12 is rotated counterclockwise with respect to the Z axis in FIG. This rotation angle is α. That is, XY on the detection unit 20 side
It shows a state in which the x-axis on the side of the light emitting unit 15 where the point light sources 16 and 17 are arranged is relatively rotated by an angle α with respect to the X-axis of the orthogonal coordinates.

【0028】図3において、光源16からの赤外光の矩
形スポット光S16の中心をI1とし、光源17からの
赤外光の矩形スポット光S17の中心をI2で示す。ま
た検出部20側のX−Y直交座標上での中心I1の座標
位置を(X1,Y1)としI2の座標位置を(X2,Y
2)で示す。発光部15の中心O1と絞り口22aの中
心とを結ぶ線J1(図4参照)の受光素子23上での交
点をOaとすると、前記交点Oaは、I1とI2との中
心点に位置する。検出部20のX−Y直交座標上での交
点Oaの座標位置を(X0,Y0)とする。図3に示す
X−Y直交座標上においてtanαを求めると、数1の通
りである。
In FIG. 3, the center of the rectangular spot light S16 of the infrared light from the light source 16 is shown as I1, and the center of the rectangular spot light S17 of the infrared light from the light source 17 is shown as I2. Further, the coordinate position of the center I1 on the XY orthogonal coordinates on the detection unit 20 side is (X1, Y1), and the coordinate position of I2 is (X2, Y
2). Letting Oa be the intersection of the line J1 (see FIG. 4) connecting the center O1 of the light emitting portion 15 and the center of the aperture 22a on the light receiving element 23, the intersection Oa is located at the center of I1 and I2. . The coordinate position of the intersection Oa on the XY orthogonal coordinates of the detection unit 20 is (X0, Y0). When tan α is obtained on the XY orthogonal coordinates shown in FIG.

【0029】[0029]

【数1】 [Equation 1]

【0030】よって、操作部材12および検出部20の
Z軸に対する回転角αは、数2の通りである。
Therefore, the rotation angle α of the operating member 12 and the detecting portion 20 with respect to the Z axis is as shown in the following equation 2.

【0031】[0031]

【数2】 [Equation 2]

【0032】ここで、上記数1におけるX1とX2は、
光源16と17から異なるタイミングで発生される赤外
光の矩形スポット光S16とS17に対し、X軸方向に
分割された分割受光部23b,23dの組の受光光量
と、分割受光部23a,23cの組の受光光量との差を
とることで求めることができる。またY1とY2は、そ
れぞれの矩形スポット光S16とS17に対し、Y軸方
向に分割された分割受光部23a,23bの組の受光光
量と、分割受光部23c,23dの組の受光光量との差
から求めることができる。すなわち、各分割受光部での
受光出力Lu,Ru,Ld,Rdと、座標X1,X2,
Y1,Y2は以下の数3で示す比例関係にある。よって
受光出力を演算することによりX1,X2,Y1,Y
2、すなわち検出部20のX−Y直交座標上での各矩形
スポットS16とS17の位置を求めることができる。
Here, X1 and X2 in the above equation 1 are
With respect to the rectangular spot lights S16 and S17 of infrared light generated at different timings from the light sources 16 and 17, the amount of light received by the pair of divided light receiving units 23b and 23d divided in the X-axis direction, and the divided light receiving units 23a and 23c. It can be obtained by taking the difference from the amount of received light of the group. Further, Y1 and Y2 are, for the respective rectangular spot lights S16 and S17, the amount of light received by the group of divided light receiving units 23a and 23b divided in the Y-axis direction and the amount of light received by the group of divided light receiving units 23c and 23d. It can be calculated from the difference. That is, the light receiving outputs Lu, Ru, Ld, Rd at the respective divided light receiving parts and the coordinates X1, X2,
Y1 and Y2 have a proportional relationship shown by the following Expression 3. Therefore, by calculating the received light output, X1, X2, Y1, Y
2, that is, the positions of the rectangular spots S16 and S17 on the XY orthogonal coordinates of the detection unit 20 can be obtained.

【0033】[0033]

【数3】 [Equation 3]

【0034】各分割受光部の受光出力に対して上記数3
の演算を施し、さらに数1または数2の計算を行うこと
により、操作部材12および検出部20のZ軸に対する
相対的な回転角度αを求めることができる。数1または
数2の計算は、例えば図11(B)に示すデジタル演算
部(算出部)48にて、(Y2−Y1)/(X2−X
1)の値とこれに対応する角度αをテーブルに予め設定
しておき、このテーブルを参照することにより上記角度
αを容易に求めることができる。
For the received light output of each divided light receiving unit, the above equation 3
By performing the calculation of 1 and the calculation of Formula 1 or Formula 2, the relative rotation angle α of the operation member 12 and the detection unit 20 with respect to the Z axis can be obtained. The calculation of Formula 1 or Formula 2 can be performed, for example, by (Y2-Y1) / (X2-X) in the digital calculation unit (calculation unit) 48 shown in FIG.
The value of 1) and the angle α corresponding thereto are set in advance in a table, and the angle α can be easily obtained by referring to this table.

【0035】次に、図3の検出状態では、操作部材12
と検出部20とがZ軸に対して相対的に角度αだけ回転
した状態であり、しかも図3に示す検出部20は移動側
である操作部材12に設けられている。そのため、検出
部20のX−Y直交座標は機器本体10側のx−y直交
座標(空間に対して固定されたx−y直交座標)に対し
て角度αだけ回転している。一方、操作部材12により
機器本体10に与えられる傾き情報は、機器本体10側
のx−y直交座標に対する角度θxおよびθyでなけれ
ばならない。そこで、図3において、検出部20に固定
されたX−Y直交座標に対して角度αだけ回転した回転
座標Xα−Yαを設定する。この座標上での中心Oaの
位置を求めると数4の通りである。
Next, in the detection state of FIG.
The detection unit 20 is in a state of being rotated by an angle α relative to the Z axis, and the detection unit 20 shown in FIG. 3 is provided on the operation member 12 on the moving side. Therefore, the XY Cartesian coordinates of the detection unit 20 are rotated by an angle α with respect to the XY Cartesian coordinates on the device body 10 side (the XY Cartesian coordinates fixed with respect to the space). On the other hand, the tilt information given to the device body 10 by the operation member 12 must be the angles θx and θy with respect to the xy orthogonal coordinates on the device body 10 side. Therefore, in FIG. 3, the rotation coordinates Xα-Yα rotated by the angle α with respect to the XY orthogonal coordinates fixed to the detection unit 20 are set. The position of the center Oa on this coordinate is calculated as in Formula 4.

【0036】[0036]

【数4】 [Equation 4]

【0037】ただし、X1とX2は数5によって求める
ことができる。
However, X1 and X2 can be obtained by the equation 5.

【0038】[0038]

【数5】 [Equation 5]

【0039】上記のXαとYαを求めることにより、機
器本体10側のx−y座標を基準としたZ軸傾き角度θ
xとθy(単位はラジアン)を求めることができる。図
4はθyについて図示しているが、θxについても同様
である。絞り口22aと受光素子23の表面との距離を
mとすると、このmは微小であるから、Xαとθx、Y
αとθyとの関係は数6のようになる。
By obtaining the above Xα and Yα, the Z-axis tilt angle θ with reference to the xy coordinates on the device body 10 side.
x and θy (unit is radian) can be obtained. Although FIG. 4 illustrates θy, the same applies to θx. When the distance between the aperture 22a and the surface of the light receiving element 23 is m, this m is very small. Therefore, Xα and θx, Y
The relationship between α and θy is as shown in Equation 6.

【0040】[0040]

【数6】 [Equation 6]

【0041】以上から、各分割受光部23a〜23dか
らの受光検出出力Lu,Ru,Ld,Rdに対して、数
3の演算を行い、さらに数1または数2の演算を行うこ
とにより、操作部材12のZ軸に対する回転角度αを求
めることができる。またこの角度αに基づき数4にてX
αとYαを求め、XαとYαおよびmの値から機器本体
10のx−y座標に対するZ軸の傾きθxとθyを求め
ることができる。Z軸は操作部材12の検出部20の受
光面に対して垂直な軸であるため、θxとθyを求める
ことにより、機器本体10のx−y座標に対する操作部
材12の傾き角度を検出できる。
From the above, the operation is performed by performing the operation of the equation 3 and further the operation of the equation 1 or the equation 2 on the received light detection outputs Lu, Ru, Ld and Rd from the respective divided light receiving portions 23a to 23d. The rotation angle α of the member 12 with respect to the Z axis can be obtained. In addition, based on this angle α, X in Equation 4
It is possible to obtain α and Yα, and obtain the inclinations θx and θy of the Z axis with respect to the xy coordinates of the device body 10 from the values of Xα, Yα and m. Since the Z axis is an axis perpendicular to the light receiving surface of the detection unit 20 of the operation member 12, the tilt angle of the operation member 12 with respect to the xy coordinates of the device body 10 can be detected by obtaining θx and θy.

【0042】次に、上記角度検出装置では、発光部15
と検出部20とのZ軸方向の距離L(図5参照)を求め
ることも可能である。図5に示すように、発光部15で
の点光源16と17とのx軸方向の間隔を2・a=Aと
し、受光素子23の受光面でのI1とI2の直線距離を
bとすると、これらの関係は数7のとおりである。
Next, in the above angle detecting device, the light emitting section 15
It is also possible to obtain the distance L (see FIG. 5) in the Z-axis direction between the detection unit 20 and the detection unit 20. As shown in FIG. 5, when the distance between the point light sources 16 and 17 in the light emitting section 15 in the x-axis direction is 2 · a = A, and the linear distance between I1 and I2 on the light receiving surface of the light receiving element 23 is b. , And these relationships are as shown in Equation 7.

【0043】[0043]

【数7】 [Equation 7]

【0044】上記において、bは検出部20側のX−Y
直交座標上のI1(X1,Y1)とI2(Y1,Y2)
の位置から以下の数8により求めることができる。
In the above, b is XY on the detection unit 20 side.
I1 (X1, Y1) and I2 (Y1, Y2) on Cartesian coordinates
It can be obtained from the position of the following equation (8).

【0045】[0045]

【数8】 [Equation 8]

【0046】すなわち、各分割受光部の受光検出出力か
ら数3により、X1,Y1,X2,Y2を求め、数8に
よりbを求め、さらに数7から距離Lを求めることがで
きる。上記の各演算は、操作部材12内で行われてその
結果が有線または無線で機器本体10に伝達され、ある
いは検出部20の受光検出出力のみが機器本体10に伝
達されて、機器本体10側で上記の演算がなされる。
That is, it is possible to obtain X1, Y1, X2, and Y2 from the light reception detection output of each divided light receiving unit by the equation 3, b from the equation 8, and the distance L from the equation 7. Each of the above calculations is performed in the operation member 12 and the result is transmitted to the device body 10 in a wired or wireless manner, or only the light reception detection output of the detection unit 20 is transmitted to the device body 10, and the device body 10 side Then, the above calculation is performed.

【0047】この入力装置では、操作部材12がZ軸に
対してα方向へ回転しても、その回転角度αを加味し
て、機器本体10側のx−y座標(空間での固定座標)
に対するx方向とy方向の傾きθxとθyを検出するこ
とができる。よって手で持った操作部材12がα方向へ
回転した姿勢であっても、機器本体10に対してθxと
θyの傾きに基づく情報を与えることができ、例えば画
面11上に表示されるカーソルマークをx−y座標上に
て移動させることができる。すなわち空間内にて操作部
材12を自由に動かして、画面11での画像処理の指
示、例えば線を描いたり、画面11上の釦表示にカーソ
ルマークを合せてスイッチ操作し、画面を切換えるなど
の入力が可能になり、この場合、手で持った操作部材1
2がZ軸に対して回転したとしてもこの回転によってx
−y座標に対する入力動作が狂うことがない。
In this input device, even if the operating member 12 rotates in the α direction with respect to the Z axis, the rotation angle α is taken into consideration, and the xy coordinates (fixed coordinates in space) on the device body 10 side are taken into consideration.
It is possible to detect the inclinations θx and θy in the x and y directions with respect to. Therefore, even if the operating member 12 held by hand is in the posture rotated in the α direction, information based on the inclinations of θx and θy can be given to the device body 10, and for example, a cursor mark displayed on the screen 11 Can be moved on the xy coordinates. That is, the operation member 12 can be freely moved in the space to give an instruction for image processing on the screen 11, for example, draw a line, or operate the switch by moving the cursor mark to the button display on the screen 11 to switch the screen. Input is possible, in this case the operating member 1 held by hand
Even if 2 rotates about the Z axis, this rotation causes x
-The input operation for the y coordinate does not get out of order.

【0048】また、この入力装置および角度検出装置に
おいて、Z軸に対する操作部材12および検出部20の
回転角度αを、機器本体10の画面11での表示に対す
る指示情報として利用できる。例えば操作部材12をα
方向へ回転させることにより、画面11に現れた画像を
機器本体側のxーy座標内にて回転させるなどの操作が
でき、これは描画処理やゲームソフトでのキャラクタの
回転動作などに利用できる。
Further, in the input device and the angle detection device, the rotation angle α of the operation member 12 and the detection unit 20 with respect to the Z axis can be used as instruction information for the display on the screen 11 of the device body 10. For example, the operation member 12
By rotating the image in the direction, the image appearing on the screen 11 can be rotated within the xy coordinates on the device body side, and this can be used for drawing processing and rotation of the character in the game software. .

【0049】また、図1において操作部材12のθxと
θy方向の傾き角度のみに基づいて画面11上にてカー
ソルマークを移動させると、操作部材12が画面11に
近づいているときと、操作部材12が画面11から離れ
ているときとで操作感触に違いを感じさせることにな
る。操作部材12を画面11に近づけた位置と画面11
から十分に離れた位置とで、操作部材を例えばθx方向
へ同じ角度だけ傾けた場合、この傾き角度θxの情報に
基づいて画面11でカーソルマークが同じ距離だけ移動
することになる。よって画面11から離れた位置で操作
部材12を傾けたときに画面11上でカーソルマークが
あまり動いていないような感触となる。
In FIG. 1, when the cursor mark is moved on the screen 11 based only on the tilt angles of the operating member 12 in the θx and θy directions, when the operating member 12 approaches the screen 11, The difference in the operational feel when 12 is away from the screen 11 is felt. The position where the operation member 12 is brought close to the screen 11 and the screen 11
When the operation member is tilted by the same angle in the θx direction at a position sufficiently distant from the cursor position, the cursor mark moves by the same distance on the screen 11 based on the information of the tilt angle θx. Therefore, when the operation member 12 is tilted at a position away from the screen 11, the user feels that the cursor mark does not move much on the screen 11.

【0050】そこで、数7により求められる距離Lを加
味して補正することにより上記感触の相違を補うことが
できる。例えば発光部15と検出部20との距離Lが長
くなるにしたがって、操作部材12のθxまたはθy方
向の傾きに対し、画面11上でのカーソルマークの移動
距離を長くするような補正を行う。これにより、操作部
材12が画面11に近づいた場合と離れた場合とでの操
作感触の違いを補正できる。また逆に操作部材12が画
面11からかなり遠くに離れたときには、上記補正によ
り操作部材12がわずかに傾いただけで画面11上のカ
ーソルマークが大きく動き、手振れによる操作入力の狂
いが生じるおそれもある。この場合には前記と逆の補正
を行い、距離Lが長くなったときには、操作部材12の
θxおよびθyの傾きに対し画面11上でのカーソルマ
ークの移動距離を短く抑えるようにすればよい。
Therefore, the difference in touch can be compensated by adding the distance L calculated by the equation 7 to the correction. For example, as the distance L between the light emitting unit 15 and the detection unit 20 increases, the inclination of the operating member 12 in the θx or θy direction is corrected so that the moving distance of the cursor mark on the screen 11 is increased. As a result, it is possible to correct the difference in operation feeling between when the operation member 12 approaches the screen 11 and when the operation member 12 moves away from the screen 11. On the contrary, when the operation member 12 is separated from the screen 11 by a considerable distance, the operation member 12 may be slightly tilted by the above correction and the cursor mark on the screen 11 may move greatly, which may cause an operational input error due to camera shake. . In this case, a correction opposite to the above is performed, and when the distance L becomes long, the movement distance of the cursor mark on the screen 11 with respect to the inclination of θx and θy of the operation member 12 may be kept short.

【0051】図7と図8は上記第1実施例の変形例を示
している。この検出部20aに設けられた受光素子23
は、検出部側のX−Y直交座標において、X軸方向に分
割された2分割受光部23A,23Bと、Y軸方向に分
割された2分割受光部23C,23Dとを有している。
それぞれの受光部の前方には、絞り板22の絞り口22
Aと22Bが位置し、さらに絞り口22Aと22Bの光
源側前方にシリンドリカルレンズ25aと25bが設け
られている。なお、2分割受光部23A,23Bと2分
割受光部23C,23Dはきわめて接近した距離にて配
置されている。図8に示すように、シリンドリカルレン
ズを設けることにより、2分割受光部23Aと23Bに
形成されるスポット光はY軸方向にて光が集束され、X
軸方向では光が集束されない。2分割受光部23Cと2
3Dに形成されるスポット光ではX軸方向にて光が集束
され、Y軸方向では光が集束されない。
7 and 8 show a modification of the first embodiment. Light receiving element 23 provided in the detection unit 20a
In the XY orthogonal coordinates on the detection unit side, has two-divided light receiving units 23A and 23B divided in the X-axis direction and two-divided light receiving units 23C and 23D divided in the Y-axis direction.
In front of the respective light receiving parts, the diaphragm aperture 22 of the diaphragm plate 22 is provided.
A and 22B are located, and cylindrical lenses 25a and 25b are provided in front of the apertures 22A and 22B on the light source side. The two-divided light receiving sections 23A and 23B and the two-divided light receiving sections 23C and 23D are arranged at extremely close distances. As shown in FIG. 8, by providing a cylindrical lens, the spot light formed on the two-divided light receiving sections 23A and 23B is focused in the Y-axis direction, and X
No light is focused in the axial direction. Two-divided light receiving sections 23C and 2
In the spot light formed in 3D, the light is focused in the X-axis direction, and the light is not focused in the Y-axis direction.

【0052】図7と図8に示す検出部20aは図1に示
す操作部材12に設けられるものである。この操作部材
12すなわち検出部20aがZ軸に対して角度αだけ回
転したとすると、図示左側の2分割受光部23A,23
Bでは、光源16からの赤外光がシリンドリカルレンズ
25aにて集束され絞り口22Aにて絞られ、矩形スポ
ット光S16aとなって受光面に当たる。同様に光源1
7からの赤外光は矩形スポット光S17aとなって2分
割受光部23Aと23Bの受光面に当たる。同様に、右
側の2分割受光部23C,23Dでは、光源16からの
赤外光が矩形スポットS16bとなって当たり、光源1
7からの赤外光が矩形スポット光S17bとなって当た
る。左右の2分割受光部23A,23Bと23C,23
Dは発光部15からの距離Lに対して十分に短い距離に
て配置されているため、それぞれの分割受光部23A〜
23Dでの受光出力をL,R,U,Dとしたときに、以
下の数9に示す演算を行うことにより、図3に示したI
1とI2の座標位置X1,Y1とX2,Y2を近似的に
求めることができる。
The detector 20a shown in FIGS. 7 and 8 is provided on the operating member 12 shown in FIG. Assuming that the operating member 12, that is, the detection unit 20a is rotated by the angle α with respect to the Z axis, the two-divided light receiving units 23A, 23 on the left side of the drawing.
In B, the infrared light from the light source 16 is focused by the cylindrical lens 25a and focused by the aperture 22A to become the rectangular spot light S16a, which strikes the light receiving surface. Similarly light source 1
The infrared light from 7 becomes a rectangular spot light S17a and strikes the light receiving surfaces of the two-divided light receiving sections 23A and 23B. Similarly, the infrared light from the light source 16 hits the rectangular spot S16b at the right two-divided light receiving portions 23C and 23D, and the light source 1
The infrared light from 7 becomes the rectangular spot light S17b. Left and right two-divided light receiving sections 23A, 23B and 23C, 23
Since D is arranged at a distance that is sufficiently shorter than the distance L from the light emitting unit 15, each of the divided light receiving units 23A to 23A.
When the light receiving outputs at 23D are L, R, U, and D, the I shown in FIG.
The coordinate positions X1, Y1 and X2, Y2 of 1 and I2 can be approximately obtained.

【0053】[0053]

【数9】 [Equation 9]

【0054】数9により求められたX1,X2,Y1,
Y2は、それぞれの光源16および17からの赤外光の
矩形スポット位置の近似座標を意味しているため、この
値に基づき数1または数2の演算を行うことにより、操
作部材12と検出部20aとのZ軸に対する相対的な回
転角度αを求めることができる。また数4、数5、数6
により機器本体10側のx−y直交座標に対する傾き角
度θxとθyを求めることができる。さらに数7により
発光部15と検出部20aとの距離Lを近似的に求める
ことも可能である。
X1, X2, Y1, obtained by the equation 9
Since Y2 means the approximate coordinates of the rectangular spot position of the infrared light from each of the light sources 16 and 17, the operation member 12 and the detection unit 12 and the detection unit are calculated by performing the calculation of Expression 1 or Expression 2 based on this value. The rotation angle α relative to the Z axis with respect to 20a can be obtained. In addition, number 4, number 5, number 6
Thus, the tilt angles θx and θy with respect to the xy orthogonal coordinates on the device body 10 side can be obtained. Furthermore, the distance L between the light emitting unit 15 and the detecting unit 20a can be approximately calculated by the equation 7.

【0055】図8の実施例では、左側の分割受光部23
A,23Bにおいて、各矩形スポット光S16aとS1
7aとが受光面に対しY軸方向へはずれないようにし、
右側の分割受光部23C,23Dにおいて、各矩形スポ
ット光S16bとS17bが受光面に対してX軸方向へ
外れないようにすることが必要であるが、これは各絞り
口22Aと22Bの開口面積を広くしておくことにより
可能である。またシリンドリカルレンズ25aと25b
は必ずしも必要ではないが、シリンドリカルレンズを設
けておくことにより光源16と17からの光がY軸方向
とX軸方向へ集束されて検出されるため、光の利用効率
が高くなりS/N比(対信号雑音比)を高めることが可
能になる。
In the embodiment shown in FIG. 8, the split light-receiving portion 23 on the left side is used.
In A and 23B, the rectangular spot lights S16a and S1
7a and the light receiving surface so that they do not move in the Y-axis direction,
In the right divided light receiving sections 23C and 23D, it is necessary to prevent the rectangular spot lights S16b and S17b from deviating in the X-axis direction with respect to the light receiving surface. This is because the aperture area of each aperture 22A and 22B is large. It is possible to keep it wide. Also, the cylindrical lenses 25a and 25b
Is not necessarily required, but since the light from the light sources 16 and 17 is focused and detected in the Y-axis direction and the X-axis direction by providing a cylindrical lens, the light utilization efficiency is improved and the S / N ratio is increased. It is possible to increase (signal to noise ratio).

【0056】次に図9および図10は本発明の第2実施
例を示している。この実施例では、発光部30と検出部
35とで角度検出装置が構成されている。図1に示した
のと同様の入力装置において、発光部30が機器本体1
0側に設けられ、検出部35が操作部材12側に設けら
れる。発光部30には、赤外光発光ダイオードなどの点
光源31が1個設けられ、その前方に偏光板32が設け
られている。点光源31から発せられて偏光板32を透
過した赤外光は、発光部30側の固定座標(x−y座
標)に対し偏光方向がy方向のほぼ直線偏光成分のみと
なる。なお光源31は複数設けてもよい。
Next, FIGS. 9 and 10 show a second embodiment of the present invention. In this embodiment, the light emitting unit 30 and the detecting unit 35 constitute an angle detecting device. In the input device similar to that shown in FIG.
It is provided on the 0 side, and the detection unit 35 is provided on the operating member 12 side. The light emitting unit 30 is provided with one point light source 31 such as an infrared light emitting diode, and a polarizing plate 32 is provided in front of the point light source 31. The infrared light emitted from the point light source 31 and transmitted through the polarizing plate 32 has only a substantially linear polarization component whose polarization direction is the y direction with respect to the fixed coordinates (xy coordinates) on the light emitting unit 30 side. A plurality of light sources 31 may be provided.

【0057】検出部35にはX−Y直交座標において、
Y軸に対して互いに逆側に−45度と+45度の偏光成
分を透過するフィルタ36と37が設けられている。フ
ィルタ36を透過した光は、Y軸方向に分割された2分
割受光部23Aと23Bとで受光検出され、フィルタ3
7を透過した光は、X軸方向に分割された2分割受光部
23C,23Dにより受光検出される。検出部35が操
作部材12に搭載され、操作部材12が検出部35から
延びる垂線であるZ軸を中心として角度αだけ回転する
と、各フィルタ36と37が互いに逆方向へ45度づつ
の偏光成分を透過するものであるため、それぞれのフィ
ルタを透過して2分割受光部にて受光される検出出力の
うち、発光部30から発せられる直線偏光に対してフィ
ルタの透過偏光角度が近づく側にて受光光量が多くな
り、偏光角度が離れる側にて受光光量が低下する。
The detection unit 35 has the following XY Cartesian coordinates:
Filters 36 and 37 that transmit polarized components of −45 degrees and +45 degrees are provided on the opposite sides of the Y axis. The light transmitted through the filter 36 is received and detected by the two-divided light receiving sections 23A and 23B divided in the Y-axis direction, and the filter 3
The light transmitted through 7 is received and detected by the two-divided light receiving sections 23C and 23D divided in the X-axis direction. When the detection unit 35 is mounted on the operation member 12 and the operation member 12 is rotated by an angle α about the Z axis that is a vertical line extending from the detection unit 35, the filters 36 and 37 are polarized components of 45 degrees in opposite directions. Of the detection output transmitted through each of the filters and received by the two-divided light receiving section, on the side where the transmission polarization angle of the filter approaches the linearly polarized light emitted from the light emitting section 30. The amount of received light increases, and the amount of received light decreases on the side where the polarization angles are separated.

【0058】フィルタ36を透過して2分割受光部23
A,23Bに形成される矩形スポット光S36と、フィ
ルタ37を透過して2分割受光部23C,23Dに形成
される矩形スポット光S37(図10参照)とはその面
積が互いに等しいものにし、各矩形スポットS36とS
37が各2分割受光部での受光領域から外れないように
することが必要である。発光部30での偏光板32の偏
光方向と、フィルタ36またはフィルタ37の偏光方向
とが完全に一致した場合の2分割受光部23A,23B
での受光検出出力の総和または2分割受光部23C,2
3Dでの受光検出出力の総和をP0とする。検出部35
がZ軸に対して角度+α(単位は度(deg))だけ回
転したときの、2分割受光部23A,23Bでの受光検
出出力の総和をP1、2分割受光部23C,23Dでの
受光検出出力の総和をP2とすると、P1,P2とP0
との関係は数10の通りとなる。
The two-divided light receiving section 23 is transmitted through the filter 36.
The rectangular spot light S36 formed on A and 23B and the rectangular spot light S37 (see FIG. 10) which is transmitted through the filter 37 and formed on the two-divided light receiving sections 23C and 23D have the same area, and Rectangular spots S36 and S
It is necessary to prevent 37 from deviating from the light receiving area in each two-divided light receiving section. Two-divided light receiving sections 23A and 23B when the polarization direction of the polarizing plate 32 in the light emitting section 30 and the polarization direction of the filter 36 or the filter 37 completely match.
Of the total received light detection output at the two or two-divided light receiving sections 23C, 2
Let P0 be the total sum of the received light detection outputs in 3D. Detector 35
Is the angle + α (unit is degree (deg)) with respect to the Z-axis, the sum of the received light detection outputs in the two-divided light receiving units 23A and 23B is P1, and the received light detection in the two-divided light receiving units 23C and 23D. If the sum of outputs is P2, P1, P2 and P0
The relationship with and is as shown in Equation 10.

【0059】[0059]

【数10】 [Equation 10]

【0060】ここで、左右の両2分割受光部での受光検
出出力の差(P2−P1)および(P1−P2)を計算
すると、数11の通りである。
Here, when the difference (P2-P1) and (P1-P2) between the received light detection outputs of the left and right two-divided light receiving sections is calculated, the result is as shown in equation 11.

【0061】[0061]

【数11】 [Equation 11]

【0062】ここでP=(P1−P2)/(P2−P
1)とすると、Pは数12の通りである。
Here, P = (P1-P2) / (P2-P
Assuming 1), P is as shown in Expression 12.

【0063】[0063]

【数12】 [Equation 12]

【0064】数12からαを求めると数13の通りであ
る。
When α is obtained from equation 12, it is as shown in equation 13.

【0065】[0065]

【数13】 [Equation 13]

【0066】すなわち2分割受光部23Aと23Bの受
光検出出力の総和P1と、2分割受光部23C,23D
の受光検出出力の総和P2とから数11と数12さらに
数13の演算処理を行うことにより、検出部35と発光
部30とのZ軸に対する相対的な回転角度αを求めるこ
とができる。また、受光部23Aの受光検出出力Lと受
光部23Bの受光検出出力Rに対して、また受光部23
Cの受光検出出力Uと受光部23Dの受光検出出力Dに
対して数14の演算を行うことにより、図10での各矩
形スポット光S36とS37の中心の位置Xa,Yaを
算出できる。このXaとYaに対し数6と同様の演算を
行えば、検出部35のZ軸の発光部30側に対する傾き
角度θxとθy(図1参照)を算出することが可能であ
る。
That is, the sum P1 of the received light detection outputs of the two-divided light receiving sections 23A and 23B and the two-divided light receiving sections 23C and 23D.
The relative rotation angle α of the detection unit 35 and the light emitting unit 30 with respect to the Z-axis can be obtained by performing the arithmetic processing of Formula 11, Formula 12 and Formula 13 from the total sum P2 of the received light detection outputs. Further, with respect to the received light detection output L of the light receiving unit 23A and the received light detection output R of the light receiving unit 23B, the light receiving unit 23
The positions Xa and Ya of the centers of the rectangular spot lights S36 and S37 in FIG. 10 can be calculated by performing the calculation of the equation 14 on the light reception detection output U of C and the light reception detection output D of the light receiving unit 23D. By performing the same calculation as Equation 6 on Xa and Ya, it is possible to calculate the tilt angles θx and θy (see FIG. 1) of the Z axis of the detection unit 35 with respect to the light emitting unit 30 side.

【0067】[0067]

【数14】 [Equation 14]

【0068】この場合数14と数6の演算処理のみでθ
xとθyを近似的に算出できるが、検出部35が操作部
材12に搭載されて、検出部35のX−Y直交座標がZ
軸に対してαだけ回転しているので、この角度αにて補
正を行うことによりθxとθyをさらに高精度に算出す
ることが可能である。また2分割受光部23A,23B
の代わりに矩形スポット光S36のX軸方向への位置を
検出できるPSD素子を使用し、また2分割受光部23
C,23Dの代わりに矩形スポット光S37のY軸方向
への位置を検出できるPSD素子を用いてもよい。
In this case, only the arithmetic processing of the equations 14 and 6 gives θ.
Although x and θy can be calculated approximately, the detection unit 35 is mounted on the operation member 12, and the XY orthogonal coordinate of the detection unit 35 is Z.
Since it is rotated by α with respect to the axis, θx and θy can be calculated with higher accuracy by performing correction at this angle α. In addition, the two-divided light receiving units 23A and 23B
Instead of the above, a PSD element that can detect the position of the rectangular spot light S36 in the X-axis direction is used, and
Instead of C and 23D, a PSD element that can detect the position of the rectangular spot light S37 in the Y-axis direction may be used.

【0069】次に図11(A)(B)は、前記各実施例
の角度検出装置において使用される回路構成について示
している。図1と図2などに示した第1実施例では、点
光源16と17から互いに位相が180度相違した赤外
光が、同じ周波数で間欠発光する。図9に示す第2実施
例においても点光源31から赤外光が所定の周波数にて
間欠発光する。したがって、各実施例において、各分割
受光部23a〜23dまたは23A〜23Dでは、前記
パルス周期に対応したほぼサイン曲線変化の受光出力が
得られる。
Next, FIGS. 11A and 11B show the circuit configuration used in the angle detecting device of each of the embodiments. In the first embodiment shown in FIG. 1 and FIG. 2 and the like, the infrared light having a phase difference of 180 degrees from the point light sources 16 and 17 emits intermittently at the same frequency. Also in the second embodiment shown in FIG. 9, infrared light is intermittently emitted from the point light source 31 at a predetermined frequency. Therefore, in each of the embodiments, each of the divided light receiving units 23a to 23d or 23A to 23D can obtain a light reception output having a substantially sine curve change corresponding to the pulse cycle.

【0070】図11に示すように、それぞれの分割受光
部には電流・電圧変換器41が接続され、各分割受光部
での受光出力の電流値が電圧値に変換される。それぞれ
の検出電圧はバンドパスフィルタ42を通過し、パルス
発光(間欠発光)の周波数成分が除かれる。そして増幅
器43によりそれぞれの検出電圧が電圧増幅され、検波
器44によりそれぞれ検波され、各分割受光部の受光光
量に応じた電圧がDC成分として取り出される。また各
検波器44からの電圧出力が加算器45により電圧値と
して加算されオートゲインコントロール回路46に与え
られる。そしてゲインコントロール回路46により増幅
器43の増幅率が制御される。検波器44からの各検出
電圧は、例えばアナログ・デジタル変換器47によりデ
ジタル値に変換され、デジタル演算器48により、和、
差、商、積の各演算が行われる。すなわち、数1ないし
数14に示された各演算はデジタル演算器48にて行わ
れる。よってデジタル演算器48が、本発明の算出部に
相当する。
As shown in FIG. 11, a current / voltage converter 41 is connected to each of the divided light receiving portions, and the current value of the light receiving output in each divided light receiving portion is converted into a voltage value. Each detected voltage passes through the bandpass filter 42, and the frequency component of pulse emission (intermittent emission) is removed. Then, the detected voltage is amplified by the amplifier 43, detected by the detector 44, and the voltage corresponding to the received light amount of each divided light receiving unit is extracted as a DC component. Further, the voltage output from each wave detector 44 is added as a voltage value by the adder 45 and is given to the automatic gain control circuit 46. Then, the gain control circuit 46 controls the amplification factor of the amplifier 43. Each detected voltage from the detector 44 is converted into a digital value by, for example, the analog / digital converter 47, and the sum is calculated by the digital calculator 48.
Difference, quotient, and product operations are performed. That is, each calculation shown in the formulas 1 to 14 is performed by the digital calculator 48. Therefore, the digital calculator 48 corresponds to the calculating unit of the present invention.

【0071】図11に示す回路が図1に示す操作部材1
2内に設けられている場合には、演算後の出力が、赤外
線送信またはFM送信あるいは有線接続により機器本体
10側に送信される。装置本体10側では受信情報に基
づいて画面11にカーソルマークなどの表示が行われ
る。または、分割受光部からの電流出力あるいは、電流
・電圧変換後の電圧出力に関する情報が有線または無線
で機器本体10に送られ、バンドパスフィルタ42以降
の回路が機器本体10側に設けられてもよい。また、図
1に示すような入力装置において、前記各実施例の発光
部が操作部材12側に設けられ、検出部が機器本体10
側に設けられてもよい。
The circuit shown in FIG. 11 corresponds to the operating member 1 shown in FIG.
In the case of being provided inside 2, the output after the calculation is transmitted to the device body 10 side by infrared transmission, FM transmission or wired connection. On the device body 10 side, a cursor mark or the like is displayed on the screen 11 based on the received information. Alternatively, information regarding the current output from the divided light receiving unit or the voltage output after the current / voltage conversion may be sent to the device body 10 by wire or wirelessly, and the circuit after the bandpass filter 42 may be provided on the device body 10 side. Good. Further, in the input device as shown in FIG. 1, the light emitting unit of each of the above-described embodiments is provided on the operation member 12 side, and the detection unit is the device body 10.
It may be provided on the side.

【0072】例えば図3に示す検出部20が機器本体1
0側に設けられ、2つの点光源16と17が操作部材1
2側に設けられている場合、図3に示す4分割受光部の
基準となるX−Y座標は空間中に固定されたものとな
る。よってXα−Yαの回転座標を用いた数4の演算を
行わなくても、数3および数5の演算処理に基づき、Z
軸の傾き角度θxとθyを算出することが可能である。
この場合、数1または数2の演算でZ軸に対する回転角
度αを検出できて、その情報を機器本体10にて得るこ
とができ、また数3と数5さらに数6と同様の演算処理
のみでθxとθyを求めることができる。なお、本発明
の角度検出装置は図1に示すような操作部材12を有す
る入力装置のみならず、バーチャルリアリティでの位置
および角度検出に応用することもできる。
For example, the detection unit 20 shown in FIG.
The two point light sources 16 and 17 are provided on the 0 side and the operation member 1
When it is provided on the second side, the XY coordinates serving as the reference of the four-division light receiving unit shown in FIG. 3 are fixed in space. Therefore, even if the calculation of the equation 4 using the rotational coordinate of Xα-Yα is not performed, Z is calculated based on the calculation processing of the equations 3 and 5.
It is possible to calculate the tilt angles θx and θy of the axes.
In this case, the rotation angle α with respect to the Z-axis can be detected by the calculation of Formula 1 or Formula 2, and the information can be obtained in the device main body 10, and only the calculation process similar to Formula 3 and Formula 5 and Formula 6 is required. Then, θx and θy can be obtained. The angle detection device of the present invention can be applied not only to the input device having the operation member 12 as shown in FIG. 1, but also to the position and angle detection in virtual reality.

【0073】[0073]

【発明の効果】以上のように、本発明では、発光部と検
出部とを結ぶ軸に対する両部の回転角度を検出でき、入
力装置に応用した場合に、操作部材から機器本体に対し
て上記回転角度に関する情報と指示を与えることが可能
になる。
As described above, according to the present invention, the rotation angle of both parts with respect to the axis connecting the light emitting part and the detecting part can be detected, and when applied to the input device, the above-mentioned operation member can be used for the main body of the device. It becomes possible to give information and instructions regarding the rotation angle.

【0074】また発光部と検出部との回転角度を加味し
て傾き情報を得ることができ、例えば検出部が操作部材
などの移動側に設けられた場合であっても、検出部側の
直交座標の回転成分を加味した状態で、固定側の機器本
体に対してx軸とy軸方向の傾き角度θxとθyに関す
る情報を入力することが可能になる。
Further, the tilt information can be obtained in consideration of the rotation angle between the light emitting section and the detecting section. For example, even when the detecting section is provided on the moving side of the operating member or the like, the orthogonality on the detecting section side is obtained. It is possible to input information about the tilt angles θx and θy in the x-axis and y-axis directions with respect to the fixed-side device body in consideration of the rotational component of the coordinates.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例の角度検出装置を使用した
入力装置を示す斜視図、
FIG. 1 is a perspective view showing an input device using an angle detection device according to a first embodiment of the present invention,

【図2】第1実施例の角度検出装置を示す平面断面図、FIG. 2 is a plan sectional view showing the angle detection device of the first embodiment,

【図3】第1実施例の検出部をZ軸方向から見た拡大正
面図、
FIG. 3 is an enlarged front view of the detection unit of the first embodiment as seen from the Z-axis direction,

【図4】第1実施例の角度検出装置を示す側面断面図、FIG. 4 is a side sectional view showing the angle detection device of the first embodiment,

【図5】第1実施例の角度検出装置の各部の配置寸法を
示す説明図、
FIG. 5 is an explanatory diagram showing arrangement dimensions of each part of the angle detection device of the first embodiment;

【図6】(A)(B)は、第1実施例の光源を発光させ
る駆動パルスの波形図、
6A and 6B are waveform diagrams of drive pulses for causing the light source of the first embodiment to emit light,

【図7】第1実施例の変形例を示す検出部の斜視図、FIG. 7 is a perspective view of a detection unit showing a modification of the first embodiment,

【図8】変形例の検出部の拡大正面図、FIG. 8 is an enlarged front view of a detection unit of a modified example,

【図9】本発明の第2実施例の角度検出装置を示す斜視
図、
FIG. 9 is a perspective view showing an angle detection device according to a second embodiment of the present invention,

【図10】第2実施例の検出部を示す拡大正面図、FIG. 10 is an enlarged front view showing the detection unit of the second embodiment,

【図11】(A)(B)は各実施例の角度検出装置の回
路の一例を示すブロック図、
11A and 11B are block diagrams showing an example of a circuit of the angle detection device according to each embodiment.

【図12】従来の入力装置を示す斜視図、FIG. 12 is a perspective view showing a conventional input device,

【符号の説明】[Explanation of symbols]

10 機器本体 11 画面 12 操作部材 15 発光部 16,17 点光源 20 検出部 21 可視光カットフィルタ 22 絞り板 22a 絞り口 23 受光素子 30 発光部 31 点光源 32 偏光板 35 検出部 36,37 フィルタ 10 Device Main Body 11 Screen 12 Operating Member 15 Light Emitting Section 16, 17 Point Light Source 20 Detection Section 21 Visible Light Cut Filter 22 Aperture Plate 22a Aperture Port 23 Light Receiving Element 30 Light Emitting Section 31 Point Light Source 32 Polarizing Plate 35 Detection Section 36, 37 Filter

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 発光部と検出部とが離れて配置され、前
記発光部には、識別可能な光を発する2個の光源が間隔
を開けて配置され、前記検出部には、それぞれの光を所
定面積のスポット光とする絞り口と、絞り口の中心を通
る軸と交叉するX−Y直交座標を設定したときにX軸方
向に分割された分割受光部とY軸方向に分割された分割
受光部とが設けられ、各スポット光に対するX軸方向の
分割受光部での受光光量の差とY軸方向の分割受光部で
の受光光量の差からそれぞれのスポット光の位置を求
め、両スポット光の中心を結ぶ線の前記X−Y座標上で
の傾き角度を求める算出部が設けられていることを特徴
とする角度検出装置。
1. A light emitting part and a detecting part are arranged separately, and two light sources which emit identifiable light are arranged at intervals in the light emitting part, and each light source is arranged in the detecting part. Is set as a spot light of a predetermined area, and an X-Y orthogonal coordinate that intersects with an axis passing through the center of the aperture is set, a divided light receiving portion divided in the X-axis direction and a divided light-receiving portion divided in the Y-axis direction. A split light receiving unit is provided, and the position of each spot light is obtained from the difference in the light receiving amount in the X light receiving unit in the X axis direction and the difference in the light receiving amount in the Y light receiving unit in the Y axis direction. An angle detecting device, comprising: a calculation unit that obtains a tilt angle of a line connecting the centers of spot lights on the XY coordinates.
【請求項2】 前記X−Y直交座標を前記傾き角度だけ
回転させた回転座標Xα−Yαを設定し、算出部にて、
Xα−Yα座標上での前記両スポット光の中点の位置が
求められる請求項1記載の角度検出装置。
2. A rotation coordinate Xα-Yα obtained by rotating the X-Y orthogonal coordinate by the tilt angle is set, and the calculation unit
The angle detection device according to claim 1, wherein the position of the midpoint of the spot lights on the Xα-Yα coordinates is obtained.
【請求項3】 算出部では、両スポット光の中心間の距
離と前記光源の配置間隔とから発光部と検出部との距離
が求められる請求項1記載の角度検出装置。
3. The angle detecting device according to claim 1, wherein the calculating section obtains the distance between the light emitting section and the detecting section from the distance between the centers of both spot lights and the arrangement interval of the light sources.
【請求項4】 検出部には、1つの絞り口と、X軸方向
とY軸方向にそれぞれ分割された4分割受光部とが設け
られている請求項1または2記載の角度検出装置。
4. The angle detection device according to claim 1, wherein the detection unit is provided with one aperture and a four-division light receiving unit divided in the X-axis direction and the Y-axis direction.
【請求項5】 検出部には、2つの絞り口と、一方の絞
り口を通過したスポットを検出するX軸方向に分割され
た2分割受光部と、他方の絞り口を通過したスポット光
を検出するY軸方向に分割された2分割受光部とが設け
られている請求項1または2記載の角度検出装置。
5. The detection unit includes two apertures, a two-divided light receiving unit that is divided in the X-axis direction for detecting a spot that has passed through one aperture, and spot light that has passed through the other aperture. The angle detection device according to claim 1 or 2, further comprising a two-divided light receiving portion that is divided in the Y-axis direction for detection.
【請求項6】 発光部と検出部とが離れて配置され、前
記発光部からはほぼ直線偏光の光が発せられ、前記検出
部には、前記発光部から発せられる光の偏光方向に対し
て互いに逆方向に傾いた偏光成分を透過する2個のフィ
ルタと、それぞれのフィルタを透過した光を検出する受
光部が設けられ、それぞれのフィルタを透過した光の受
光光量の差から、発光部と検出部との回転角度を求める
算出部が設けられていることを特徴とする角度検出装
置。
6. The light emitting section and the detecting section are arranged apart from each other, and the light emitting section emits substantially linearly polarized light, and the detecting section has a polarization direction of the light emitted from the light emitting section. Two filters that transmit polarized light components that are inclined in opposite directions and a light receiving unit that detects light that has passed through the respective filters are provided. From the difference in the received light amount of the light that has passed through the respective filters, An angle detection device, comprising: a calculation unit that obtains a rotation angle with respect to the detection unit.
【請求項7】 発光部と検出部とを結ぶ軸に交叉するX
−Y直交座標を設定したときに、一方の受光部はX軸方
向へのスポット光の移動量を検知でき、他方の受光部は
Y軸方向へのスポット光の移動量を検知できるものであ
る請求項6記載の角度検出装置。
7. An X intersecting with an axis connecting a light emitting portion and a detecting portion.
When -Y Cartesian coordinates are set, one light receiving unit can detect the movement amount of the spot light in the X-axis direction, and the other light receiving unit can detect the movement amount of the spot light in the Y-axis direction. The angle detection device according to claim 6.
【請求項8】 請求項1または6に記載の角度検出装置
を使用した入力装置であって、固定された機器本体側と
移動自在な操作部材側の一方に発光部が他方に検出部が
設けられ、発光部と検出部とを結ぶ軸に対する両部の相
対的な回転角度情報が操作部材から機器本体に入力され
る入力装置。
8. An input device using the angle detection device according to claim 1 or 6, wherein a light emitting section is provided on one of a fixed device body side and a movable operation member side, and a detection section is provided on the other side. An input device in which information on relative rotation angles of both parts with respect to an axis connecting the light emitting part and the detecting part is input from the operation member to the device body.
JP13818294A 1994-05-26 1994-05-26 Angle detecting device and input device using the same Expired - Fee Related JP3204844B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP13818294A JP3204844B2 (en) 1994-05-26 1994-05-26 Angle detecting device and input device using the same
GB9510424A GB2289756B (en) 1994-05-26 1995-05-23 Space coordinates detecting device and input apparatus using same
US08/452,453 US5627565A (en) 1994-05-26 1995-05-26 Space coordinates detecting device and input apparatus using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13818294A JP3204844B2 (en) 1994-05-26 1994-05-26 Angle detecting device and input device using the same

Publications (2)

Publication Number Publication Date
JPH07318332A true JPH07318332A (en) 1995-12-08
JP3204844B2 JP3204844B2 (en) 2001-09-04

Family

ID=15215979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13818294A Expired - Fee Related JP3204844B2 (en) 1994-05-26 1994-05-26 Angle detecting device and input device using the same

Country Status (1)

Country Link
JP (1) JP3204844B2 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09311028A (en) * 1996-05-22 1997-12-02 Atom Giken:Kk Relative angle detector and virtual reality providing device
US5838432A (en) * 1995-06-12 1998-11-17 Olympus Optical Co., Ltd. Optical Angle detection apparatus
JP2002062981A (en) * 2000-08-16 2002-02-28 Nippon Hoso Kyokai <Nhk> Display screen indicating device
WO2012039166A1 (en) * 2010-09-21 2012-03-29 Inaba Minoru Stereoscopic image display device and stereoscopic image appreciation eyeglasses
JP2012151674A (en) * 2011-01-19 2012-08-09 Seiko Epson Corp Shutter spectacles and image display system
US8834271B2 (en) 2005-08-24 2014-09-16 Nintendo Co., Ltd. Game controller and game system
US8870655B2 (en) 2005-08-24 2014-10-28 Nintendo Co., Ltd. Wireless game controllers
US8888576B2 (en) 1999-02-26 2014-11-18 Mq Gaming, Llc Multi-media interactive play system
US8907889B2 (en) 2005-01-12 2014-12-09 Thinkoptics, Inc. Handheld vision based absolute pointing system
US8913003B2 (en) 2006-07-17 2014-12-16 Thinkoptics, Inc. Free-space multi-dimensional absolute pointer using a projection marker system
US8913011B2 (en) 2001-02-22 2014-12-16 Creative Kingdoms, Llc Wireless entertainment device, system, and method
US8937594B2 (en) 2004-04-30 2015-01-20 Hillcrest Laboratories, Inc. 3D pointing devices with orientation compensation and improved usability
US8961260B2 (en) 2000-10-20 2015-02-24 Mq Gaming, Llc Toy incorporating RFID tracking device
US9011248B2 (en) 2005-08-22 2015-04-21 Nintendo Co., Ltd. Game operating device
US9039533B2 (en) 2003-03-25 2015-05-26 Creative Kingdoms, Llc Wireless interactive game having both physical and virtual elements
US9149717B2 (en) 2000-02-22 2015-10-06 Mq Gaming, Llc Dual-range wireless interactive entertainment device
US9176598B2 (en) 2007-05-08 2015-11-03 Thinkoptics, Inc. Free-space multi-dimensional absolute pointer with improved performance
US9261978B2 (en) 2004-04-30 2016-02-16 Hillcrest Laboratories, Inc. 3D pointing devices and methods
USRE45905E1 (en) 2005-09-15 2016-03-01 Nintendo Co., Ltd. Video game system with wireless modular handheld controller
US9272206B2 (en) 2002-04-05 2016-03-01 Mq Gaming, Llc System and method for playing an interactive game
US9446319B2 (en) 2003-03-25 2016-09-20 Mq Gaming, Llc Interactive gaming toy
US9616334B2 (en) 2002-04-05 2017-04-11 Mq Gaming, Llc Multi-platform gaming system using RFID-tagged toys
US10159897B2 (en) 2004-11-23 2018-12-25 Idhl Holdings, Inc. Semantic gaming and application transformation

Cited By (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5838432A (en) * 1995-06-12 1998-11-17 Olympus Optical Co., Ltd. Optical Angle detection apparatus
JPH09311028A (en) * 1996-05-22 1997-12-02 Atom Giken:Kk Relative angle detector and virtual reality providing device
US9468854B2 (en) 1999-02-26 2016-10-18 Mq Gaming, Llc Multi-platform gaming systems and methods
US8888576B2 (en) 1999-02-26 2014-11-18 Mq Gaming, Llc Multi-media interactive play system
US9186585B2 (en) 1999-02-26 2015-11-17 Mq Gaming, Llc Multi-platform gaming systems and methods
US9861887B1 (en) 1999-02-26 2018-01-09 Mq Gaming, Llc Multi-platform gaming systems and methods
US9731194B2 (en) 1999-02-26 2017-08-15 Mq Gaming, Llc Multi-platform gaming systems and methods
US10300374B2 (en) 1999-02-26 2019-05-28 Mq Gaming, Llc Multi-platform gaming systems and methods
US10307671B2 (en) 2000-02-22 2019-06-04 Mq Gaming, Llc Interactive entertainment system
US10188953B2 (en) 2000-02-22 2019-01-29 Mq Gaming, Llc Dual-range wireless interactive entertainment device
US9713766B2 (en) 2000-02-22 2017-07-25 Mq Gaming, Llc Dual-range wireless interactive entertainment device
US9579568B2 (en) 2000-02-22 2017-02-28 Mq Gaming, Llc Dual-range wireless interactive entertainment device
US8915785B2 (en) 2000-02-22 2014-12-23 Creative Kingdoms, Llc Interactive entertainment system
US9814973B2 (en) 2000-02-22 2017-11-14 Mq Gaming, Llc Interactive entertainment system
US9474962B2 (en) 2000-02-22 2016-10-25 Mq Gaming, Llc Interactive entertainment system
US9149717B2 (en) 2000-02-22 2015-10-06 Mq Gaming, Llc Dual-range wireless interactive entertainment device
JP2002062981A (en) * 2000-08-16 2002-02-28 Nippon Hoso Kyokai <Nhk> Display screen indicating device
US9931578B2 (en) 2000-10-20 2018-04-03 Mq Gaming, Llc Toy incorporating RFID tag
US9320976B2 (en) 2000-10-20 2016-04-26 Mq Gaming, Llc Wireless toy systems and methods for interactive entertainment
US8961260B2 (en) 2000-10-20 2015-02-24 Mq Gaming, Llc Toy incorporating RFID tracking device
US10307683B2 (en) 2000-10-20 2019-06-04 Mq Gaming, Llc Toy incorporating RFID tag
US9480929B2 (en) 2000-10-20 2016-11-01 Mq Gaming, Llc Toy incorporating RFID tag
US9162148B2 (en) 2001-02-22 2015-10-20 Mq Gaming, Llc Wireless entertainment device, system, and method
US10179283B2 (en) 2001-02-22 2019-01-15 Mq Gaming, Llc Wireless entertainment device, system, and method
US10758818B2 (en) 2001-02-22 2020-09-01 Mq Gaming, Llc Wireless entertainment device, system, and method
US9737797B2 (en) 2001-02-22 2017-08-22 Mq Gaming, Llc Wireless entertainment device, system, and method
US9393491B2 (en) 2001-02-22 2016-07-19 Mq Gaming, Llc Wireless entertainment device, system, and method
US8913011B2 (en) 2001-02-22 2014-12-16 Creative Kingdoms, Llc Wireless entertainment device, system, and method
US9272206B2 (en) 2002-04-05 2016-03-01 Mq Gaming, Llc System and method for playing an interactive game
US9616334B2 (en) 2002-04-05 2017-04-11 Mq Gaming, Llc Multi-platform gaming system using RFID-tagged toys
US10010790B2 (en) 2002-04-05 2018-07-03 Mq Gaming, Llc System and method for playing an interactive game
US11278796B2 (en) 2002-04-05 2022-03-22 Mq Gaming, Llc Methods and systems for providing personalized interactive entertainment
US9463380B2 (en) 2002-04-05 2016-10-11 Mq Gaming, Llc System and method for playing an interactive game
US10507387B2 (en) 2002-04-05 2019-12-17 Mq Gaming, Llc System and method for playing an interactive game
US9393500B2 (en) 2003-03-25 2016-07-19 Mq Gaming, Llc Wireless interactive game having both physical and virtual elements
US8961312B2 (en) 2003-03-25 2015-02-24 Creative Kingdoms, Llc Motion-sensitive controller and associated gaming applications
US10022624B2 (en) 2003-03-25 2018-07-17 Mq Gaming, Llc Wireless interactive game having both physical and virtual elements
US10583357B2 (en) 2003-03-25 2020-03-10 Mq Gaming, Llc Interactive gaming toy
US9446319B2 (en) 2003-03-25 2016-09-20 Mq Gaming, Llc Interactive gaming toy
US10369463B2 (en) 2003-03-25 2019-08-06 Mq Gaming, Llc Wireless interactive game having both physical and virtual elements
US9993724B2 (en) 2003-03-25 2018-06-12 Mq Gaming, Llc Interactive gaming toy
US9770652B2 (en) 2003-03-25 2017-09-26 Mq Gaming, Llc Wireless interactive game having both physical and virtual elements
US9039533B2 (en) 2003-03-25 2015-05-26 Creative Kingdoms, Llc Wireless interactive game having both physical and virtual elements
US11052309B2 (en) 2003-03-25 2021-07-06 Mq Gaming, Llc Wireless interactive game having both physical and virtual elements
US9707478B2 (en) 2003-03-25 2017-07-18 Mq Gaming, Llc Motion-sensitive controller and associated gaming applications
US9575570B2 (en) 2004-04-30 2017-02-21 Hillcrest Laboratories, Inc. 3D pointing devices and methods
US11157091B2 (en) 2004-04-30 2021-10-26 Idhl Holdings, Inc. 3D pointing devices and methods
US9298282B2 (en) 2004-04-30 2016-03-29 Hillcrest Laboratories, Inc. 3D pointing devices with orientation compensation and improved usability
US9946356B2 (en) 2004-04-30 2018-04-17 Interdigital Patent Holdings, Inc. 3D pointing devices with orientation compensation and improved usability
US10782792B2 (en) 2004-04-30 2020-09-22 Idhl Holdings, Inc. 3D pointing devices with orientation compensation and improved usability
US9261978B2 (en) 2004-04-30 2016-02-16 Hillcrest Laboratories, Inc. 3D pointing devices and methods
US10514776B2 (en) 2004-04-30 2019-12-24 Idhl Holdings, Inc. 3D pointing devices and methods
US8937594B2 (en) 2004-04-30 2015-01-20 Hillcrest Laboratories, Inc. 3D pointing devices with orientation compensation and improved usability
US9675878B2 (en) 2004-09-29 2017-06-13 Mq Gaming, Llc System and method for playing a virtual game by sensing physical movements
US10159897B2 (en) 2004-11-23 2018-12-25 Idhl Holdings, Inc. Semantic gaming and application transformation
US11154776B2 (en) 2004-11-23 2021-10-26 Idhl Holdings, Inc. Semantic gaming and application transformation
US8907889B2 (en) 2005-01-12 2014-12-09 Thinkoptics, Inc. Handheld vision based absolute pointing system
US10238978B2 (en) 2005-08-22 2019-03-26 Nintendo Co., Ltd. Game operating device
US10661183B2 (en) 2005-08-22 2020-05-26 Nintendo Co., Ltd. Game operating device
US9498728B2 (en) 2005-08-22 2016-11-22 Nintendo Co., Ltd. Game operating device
US9700806B2 (en) 2005-08-22 2017-07-11 Nintendo Co., Ltd. Game operating device
US9011248B2 (en) 2005-08-22 2015-04-21 Nintendo Co., Ltd. Game operating device
US10155170B2 (en) 2005-08-22 2018-12-18 Nintendo Co., Ltd. Game operating device with holding portion detachably holding an electronic device
US9227138B2 (en) 2005-08-24 2016-01-05 Nintendo Co., Ltd. Game controller and game system
US10137365B2 (en) 2005-08-24 2018-11-27 Nintendo Co., Ltd. Game controller and game system
US8870655B2 (en) 2005-08-24 2014-10-28 Nintendo Co., Ltd. Wireless game controllers
US8834271B2 (en) 2005-08-24 2014-09-16 Nintendo Co., Ltd. Game controller and game system
US11027190B2 (en) 2005-08-24 2021-06-08 Nintendo Co., Ltd. Game controller and game system
US9498709B2 (en) 2005-08-24 2016-11-22 Nintendo Co., Ltd. Game controller and game system
US9044671B2 (en) 2005-08-24 2015-06-02 Nintendo Co., Ltd. Game controller and game system
USRE45905E1 (en) 2005-09-15 2016-03-01 Nintendo Co., Ltd. Video game system with wireless modular handheld controller
US8913003B2 (en) 2006-07-17 2014-12-16 Thinkoptics, Inc. Free-space multi-dimensional absolute pointer using a projection marker system
US9176598B2 (en) 2007-05-08 2015-11-03 Thinkoptics, Inc. Free-space multi-dimensional absolute pointer with improved performance
TWI456264B (en) * 2010-09-21 2014-10-11 Minoru Inaba Stereoscopic image display device and stereoscopic viewing glasses
WO2012039166A1 (en) * 2010-09-21 2012-03-29 Inaba Minoru Stereoscopic image display device and stereoscopic image appreciation eyeglasses
JP2012151674A (en) * 2011-01-19 2012-08-09 Seiko Epson Corp Shutter spectacles and image display system

Also Published As

Publication number Publication date
JP3204844B2 (en) 2001-09-04

Similar Documents

Publication Publication Date Title
JP3204844B2 (en) Angle detecting device and input device using the same
US5627565A (en) Space coordinates detecting device and input apparatus using same
JP3194841B2 (en) Tilt detecting device and input device using the same
JP3217926B2 (en) Spatial coordinate detector
JP3416291B2 (en) Spatial coordinate detector
CA2558732C (en) Apparatus and method for determining orientation parameters of an elongate object
US5574479A (en) Optical system for determining the roll orientation of a remote unit relative to a base unit
JP3059619B2 (en) Tilt detecting device and input device using the same
CN102460563B (en) The position measuring system of use location sensitive detectors
US10437391B2 (en) Optical touch sensing for displays and other applications
CN101366001B (en) Transmitter, receiver, ans system with relative position detecting functionality between transmitters and receivers
JP4708581B2 (en) Coordinate input device, coordinate input instruction tool, and computer program
JP6129863B2 (en) Three-dimensional touch type input system and optical navigation method
JPH0895704A (en) Spatial coordinate detecting device
GB2284478A (en) Inclination measurement for cursor control
JP2000284895A (en) Coordinate input pen, electronic board using it, coordinate input system and electronic board system
JP2006513504A (en) Position and orientation reading by projector
JP2002091692A (en) Pointing system
US5949403A (en) Remote coordinate designating device
JP2010511221A (en) Three-dimensional control of data processing via a handheld pointing device
JP2565838B2 (en) Optical three-dimensional angle detection device and optical three-dimensional position calculation device
US6982407B2 (en) Photoelectric conversion unit having a plurality of photoelectric conversion surfaces and systems and methods for measuring location and/or direction using the photoelectric conversion unit
JP2004110184A (en) Optical coordinate input system
JPH0630045B2 (en) Optical pointing device
JP3523583B2 (en) Three-dimensional position / posture measuring apparatus and method, and recording medium

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010619

LAPS Cancellation because of no payment of annual fees