JPH08105903A - Piezoelectric driving device - Google Patents
Piezoelectric driving deviceInfo
- Publication number
- JPH08105903A JPH08105903A JP6246251A JP24625194A JPH08105903A JP H08105903 A JPH08105903 A JP H08105903A JP 6246251 A JP6246251 A JP 6246251A JP 24625194 A JP24625194 A JP 24625194A JP H08105903 A JPH08105903 A JP H08105903A
- Authority
- JP
- Japan
- Prior art keywords
- piezoelectric
- piezoelectric driving
- displacement
- drive member
- piezoelectric drive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Length Measuring Devices With Unspecified Measuring Means (AREA)
- Control Of Position Or Direction (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、走査型プローブ顕微鏡
における圧電型駆動装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a piezoelectric drive device in a scanning probe microscope.
【0002】[0002]
【従来の技術】走査型プローブ顕微鏡における3次元的
駆動装置は、試料表面の原子的尺度の凹凸形状を測定す
るためのX、Y方向の面内走査と試料表面と探針との距
離を一定に保ちながらのZ方向の移動とが必要である。
従来、走査型プローブ顕微鏡における探針や試料の駆動
装置は、トライポッド型駆動装置やチューブ型駆動装置
を用いて駆動されていた。2. Description of the Related Art A three-dimensional driving device in a scanning probe microscope is used for in-plane scanning in the X and Y directions and a constant distance between a sample surface and a probe for measuring unevenness of an atomic scale on the sample surface. It is necessary to move in the Z direction while maintaining
Conventionally, a probe or sample driving device in a scanning probe microscope has been driven by using a tripod type driving device or a tube type driving device.
【0003】図3は、トライポッド型駆動装置の一例で
ある。トライポッド型駆動装置は、X,Y,Z方向の圧
電駆動部材のそれぞれ3本が頂点に集まっている構成で
ある。3方向の圧電駆動部材のうちX及びY方向の圧電
駆動部材の一端が固定されている。そのため、X方向と
Y方向との各変位が互いに干渉し、得られた画像が実表
面より歪んでしまう。それを防止するために、X方向の
駆動部材の電極間に電圧を加えたとき、もう一方のY方
向の圧電駆動部材に対して駆動制御しながらX方向に変
位させる方法も行われる。FIG. 3 shows an example of a tripod type driving device. The tripod type driving device has a structure in which three piezoelectric driving members in the X, Y, and Z directions are gathered at the apexes. One end of the piezoelectric drive member in the X and Y directions is fixed among the piezoelectric drive members in the three directions. Therefore, the displacements in the X and Y directions interfere with each other, and the obtained image is distorted from the actual surface. In order to prevent this, when a voltage is applied between the electrodes of the driving member in the X direction, the other piezoelectric driving member in the Y direction is driven and displaced in the X direction.
【0004】また、図4はチューブ型駆動装置の一例と
してG.Binnigらが、提案したものである。(Re
v.Sci.Instrum.57(8),1986) チューブ型駆動装置の構成は、チューブ型の圧電駆動部
材10の内側にグランドの電極11を持ち、外側に4分
割された電極12を持っている。その駆動方法は、外側
の対向する電極に、それぞれ正負反対の電圧を印加し、
チューブ型圧電駆動部材が横方向(図中の矢印)にたわ
むことによって、X方向あるいはY方向の走査駆動が行
われる。また、Z方向の駆動は外側の電極12にそれぞ
れ同電圧のオフセットを印加し、チューブ型圧電駆動部
材が伸縮変位することによって微動駆動が実現されてい
る。FIG. 4 shows an example of a G.G. It was proposed by Binnig et al. (Re
v.Sci.Instrum.57 (8), 1986) The structure of the tube type driving device has a ground electrode 11 inside the tube type piezoelectric driving member 10 and four divided electrodes 12 outside. . The driving method is to apply positive and negative voltages to opposite electrodes on the outside,
The tube-type piezoelectric drive member bends in the lateral direction (arrow in the figure), whereby scanning drive in the X direction or the Y direction is performed. Further, in the Z-direction driving, the same voltage offset is applied to each of the outer electrodes 12, and the tube-type piezoelectric driving member expands and contracts to realize fine movement driving.
【0005】さらに、走査型プローブ顕微鏡は、試料表
面上の速い動的現象を観察するために、探針走査の高速
化も要求されてきている。Further, in the scanning probe microscope, in order to observe a fast dynamic phenomenon on the surface of the sample, it is required to speed up the scanning of the probe.
【0006】[0006]
【発明が解決しようとする課題】上記従来のトライポッ
ド型及びチューブ型駆動装置の走査駆動においては、
X、Y及びZの各方向の変位が互いに干渉してしまうと
いう欠点があった。また、従来の駆動装置は、これら各
圧電駆動部材の変位の干渉により、試料表面から得られ
る画像が実表面より歪んでしまうという問題があった。
また、従来の駆動装置には、変位の干渉が少なく、かつ
高速な探針走査するものがなかった。In the scanning drive of the above-described conventional tripod type and tube type drive devices,
There is a drawback that the displacements in the X, Y and Z directions interfere with each other. Further, the conventional driving device has a problem that an image obtained from the sample surface is distorted from the actual surface due to the interference of the displacements of these piezoelectric driving members.
In addition, there is no conventional driving device that performs high-speed probe scanning with less displacement interference.
【0007】本発明の目的は、X、Y、Z各方向の圧電
駆動部材の変位が互いに干渉しないで、かつ高速な探針
走査を可能とする圧電型駆動装置を提供することにあ
る。It is an object of the present invention to provide a piezoelectric type driving device in which displacements of the piezoelectric driving members in the X, Y and Z directions do not interfere with each other and high speed scanning of the probe is possible.
【0008】[0008]
【問題点を解決するための手段】上記目的を達成するた
めに本発明は、Y方向に変位を発生する一端が固定され
た第1の圧電駆動部材と、該第1の圧電駆動部材の他端
に設けられた前記第1の圧電駆動体の変位方向に対し直
角なX方向に変位を発生する第2の圧電駆動部材と、前
記第2の圧電駆動部材の自由端側に設けられた前記第1
及び第2の圧電駆動部材の変位方向に対し垂直なZ方向
に変位を発生する第3の圧電駆動部材と、前記第3の圧
電駆動部材の自由端側に、試料上を走査し局所情報を検
出する探針とを備えたことを特徴とする。In order to achieve the above object, the present invention provides a first piezoelectric driving member having one end fixed to generate a displacement in the Y direction, and another first piezoelectric driving member. A second piezoelectric drive member that is displaced at an end in the X direction perpendicular to the displacement direction of the first piezoelectric drive member, and the second piezoelectric drive member is provided at the free end side of the second piezoelectric drive member. First
And a third piezoelectric driving member that generates a displacement in a Z direction perpendicular to the displacement direction of the second piezoelectric driving member, and a free end side of the third piezoelectric driving member is scanned on the sample to display local information. And a probe for detecting.
【0009】[0009]
【作用】本請求項において、圧電駆動部材というのは、
積層型の圧電素子及びそれらを駆動する電極を含む総称
である。試料表面の微細な凹凸形状を測定しようとする
場合、制御電圧を時間変化させる。この時、圧電駆動部
材の共振周波数が問題となる。制御電圧の時間変化の周
波数成分が、いずれも圧電駆動部材の共振周波数に比べ
て十分低い周波数のものであれば、制御電圧の振幅に比
例して大きな効率で位相遅れが少ない変位を生じさせる
ことができる。従って、圧電駆動部材の共振周波数が高
ければ高いほど圧電駆動部材を大きな効率で、速い伸縮
変位を行うことができ、圧電駆動部材は、制御電圧の変
化に十分追従出来ることになる。本発明の圧電型駆動装
置によれば、変位の干渉が生じない上に、装置の共振周
波数を高くすることを可能にした。In this claim, the piezoelectric driving member means
It is a generic term that includes laminated piezoelectric elements and electrodes that drive them. When trying to measure the fine irregularities on the sample surface, the control voltage is changed with time. At this time, the resonance frequency of the piezoelectric driving member becomes a problem. If the frequency components of the change over time of the control voltage are all sufficiently lower than the resonance frequency of the piezoelectric drive member, the displacement with large phase efficiency and small phase delay is generated in proportion to the amplitude of the control voltage. You can Therefore, the higher the resonance frequency of the piezoelectric drive member, the more efficiently the piezoelectric drive member can be expanded and contracted with high efficiency, and the piezoelectric drive member can sufficiently follow the change in the control voltage. According to the piezoelectric driving device of the present invention, displacement interference does not occur, and the resonance frequency of the device can be increased.
【0010】本発明の圧電型駆動装置は、微細な凹凸を
有する試料表面上を高速で探針を走査することが要求さ
れる走査型プローブ顕微鏡に特に有効である。The piezoelectric driving device of the present invention is particularly effective for a scanning probe microscope which requires high speed scanning of a probe on the surface of a sample having fine irregularities.
【0011】[0011]
【実施例】図1は、本発明である圧電型駆動装置の構成
である。本発明の圧電駆動装置は、Y軸方向に変位駆動
する第1の圧電駆動部材1の一端6が固定され、他端は
自由端となっている。その自由端側にX軸方向の変位駆
動する第2の圧電駆動部材2の一端が、第1の圧電駆動
部材1の変位方向と垂直方向に変位するように第1の圧
電駆動部材の自由端側に固定される。Z方向に変位する
第3の圧電駆動部材3の一端が、第1及び第2の圧電駆
動部材と垂直方向に変位するように第2の圧電駆動部材
の自由端側に固定される。さらに、第3の圧電駆動部材
の自由端側に試料面5を走査する探針4を設けた構成と
した。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows the structure of a piezoelectric drive device according to the present invention. In the piezoelectric drive device of the present invention, one end 6 of the first piezoelectric drive member 1 that is driven to be displaced in the Y-axis direction is fixed, and the other end is a free end. The free end of the first piezoelectric drive member is arranged so that one end of the second piezoelectric drive member 2 that is driven to be displaced in the X-axis direction is displaced toward the free end side in a direction perpendicular to the displacement direction of the first piezoelectric drive member 1. Fixed on the side. One end of the third piezoelectric drive member 3 which is displaced in the Z direction is fixed to the free end side of the second piezoelectric drive member so as to be displaced in the direction perpendicular to the first and second piezoelectric drive members. Further, the probe 4 for scanning the sample surface 5 is provided on the free end side of the third piezoelectric driving member.
【0012】次に、本発明の圧電型駆動装置のXYZ方
向に駆動する動作について説明する。Y方向に変位する
第1の圧電型駆動部材1がY方向に伸縮変位する間、X
及びZ方向に変位する第2及び第3の圧電型駆動部材
2、3は、それぞれ平行移動するだけである。従って、
Y方向の変位とX,Z方向の変位との干渉は起こらな
い。Next, the operation of driving the piezoelectric driving device of the present invention in the XYZ directions will be described. While the first piezoelectric drive member 1 which is displaced in the Y direction is expanded and contracted in the Y direction, X
And the second and third piezoelectric type driving members 2 and 3 which are displaced in the Z direction only move in parallel. Therefore,
There is no interference between the displacement in the Y direction and the displacement in the X and Z directions.
【0013】また、X方向に変位する第2の圧電型駆動
部材2が伸縮変位する間、Z方向に変位する第3の圧電
駆動部材3は平行移動するだけである。そのため、X方
向の変位とZ方向の変位との干渉は起こらない。図2
は、走査型プローブ顕微鏡において、本発明の圧電駆動
装置を搭載したときの構成概念図である。Further, while the second piezoelectric drive member 2 which is displaced in the X direction is expanded and contracted, the third piezoelectric drive member 3 which is displaced in the Z direction only moves in parallel. Therefore, the X-direction displacement and the Z-direction displacement do not interfere with each other. Figure 2
FIG. 4 is a conceptual diagram of a configuration when the piezoelectric drive device of the present invention is mounted in a scanning probe microscope.
【0014】試料5と探針4との位置調整を行う3つの
マイクロメーター7で支持された基板6の下に本発明の
圧電型駆動装置が固定されている。ここで試料表面5の
凹凸形状をビデオレートで探針4を走査する場合におけ
る本発明の圧電型駆動装置の動作について具体的例に基
づいて説明する。探針走査が、1画像を256ラインで
サンプリングする例をあげる。ビデオレートは30Hz
である。従って、Y方向に変位を発生させる第1の圧電
駆動部材1は30Hz、X方向に変位を発生させる第2
の圧電駆動部材2は約8KHz(30×256=768
0)で走査されなければならない。The piezoelectric drive device of the present invention is fixed below a substrate 6 supported by three micrometers 7 for adjusting the positions of the sample 5 and the probe 4. Here, the operation of the piezoelectric driving device of the present invention when the probe 4 scans the uneven shape of the sample surface 5 at the video rate will be described based on a specific example. An example will be given in which the probe scanning samples one image at 256 lines. Video rate is 30Hz
Is. Therefore, the first piezoelectric driving member 1 that generates a displacement in the Y direction has a frequency of 30 Hz and the second piezoelectric driving member 1 that generates a displacement in the X direction.
The piezoelectric driving member 2 of about 8 KHz (30 × 256 = 768
0) must be scanned.
【0015】ここで、市販されている圧電駆動部材の中
でこれらの共振周波数を満足し、出来る限り走査範囲が
広くとれるものとしては、共振周波数が約35KHz、
最大変位が40μmのものがある。さらに、Z方向の圧
電駆動部材に要求される共振周波数を考えてみる。25
6点のデータをサンプリングする場合、サンプリングデ
ータの最大周波数は、X方向の共振周波数の128倍の
共振周波数となる。しかし、実際に得られたデータを画
像化することを考慮すれば、X方向の50倍程度の周波
数成分までを画像化するのが現実的である。従って、Z
方向の圧電駆動部材は、X方向に変位を発生させる第2
の圧電駆動部材の50倍の400KHz程度の共振周波
数をもっていればよいことになる。ここで、市販されて
いる圧電駆動部材の中でこれらの共振周波数を満足し、
走査範囲が広くとれるものは、共振周波数約400KH
z、最大変位3μmものがある。このように、X,Y,
Z方向にこれら市販されている圧電駆動部材を本発明の
圧電駆動装置に用いることにより、簡単にビデオレート
での探針の走査が可能となる。Among the commercially available piezoelectric driving members, those which satisfy these resonance frequencies and have a wide scanning range as much as possible have a resonance frequency of about 35 KHz.
Some have a maximum displacement of 40 μm. Further, consider the resonance frequency required for the piezoelectric drive member in the Z direction. 25
When the data of 6 points is sampled, the maximum frequency of the sampling data is 128 times the resonance frequency in the X direction. However, considering that the actually obtained data is imaged, it is realistic to image up to about 50 times the frequency component in the X direction. Therefore, Z
Direction piezoelectric drive member is configured to generate a second displacement in the X direction.
It is sufficient to have a resonance frequency of about 400 KHz, which is 50 times that of the piezoelectric driving member. Here, satisfying these resonance frequencies among the commercially available piezoelectric drive members,
Resonance frequency of about 400KH for wide scanning range
z, maximum displacement is 3 μm. Thus, X, Y,
By using these commercially available piezoelectric drive members in the Z direction in the piezoelectric drive device of the present invention, it becomes possible to easily scan the probe at a video rate.
【0016】ここで、固定端6に固定されているY方向
に変位駆動する第1の圧電駆動部材2は、30Hzとい
う比較的遅い速さで走査するため、自由端側に接着され
ている圧電駆動部材2、3の質量が走査に与える影響は
無視できる。本発明の圧電型駆動装置と従来のチューブ
型圧電型駆動装置と比較しするために、チューブ型圧電
型駆動装置のXYZ方向に市販している圧電駆動部材を
用いて、変位幅20μmを得ようとする例を考えてみ
る。各変位方向の共振周波数は、XY方向では約1KH
z、Z方向の共振周波数では約50KHz程度である。
そのため、ビデオレートでの探針の走査は不可能であ
る。Since the first piezoelectric driving member 2 fixed to the fixed end 6 and driven to be displaced in the Y direction scans at a relatively slow speed of 30 Hz, the piezoelectric bonded to the free end side. The influence of the mass of the driving members 2 and 3 on the scanning can be ignored. In order to compare the piezoelectric type driving device of the present invention with a conventional tube type piezoelectric driving device, a displacement width of 20 μm will be obtained by using a commercially available piezoelectric driving member in the XYZ directions of the tube type piezoelectric driving device. Consider the example. The resonance frequency in each displacement direction is approximately 1 KH in the XY directions.
The resonance frequency in the z and Z directions is about 50 KHz.
Therefore, scanning of the probe at the video rate is impossible.
【0017】このように、本発明の圧電駆動装置を用い
ることにより、市販の圧電駆動部材を用いて走査範囲が
広くとれ、簡単に高速な走査を実現できる。As described above, by using the piezoelectric driving device of the present invention, it is possible to obtain a wide scanning range by using a commercially available piezoelectric driving member and easily realize high-speed scanning.
【0018】[0018]
【発明の効果】本発明の駆動装置の構成によれば、X,
Y,Z軸の変位方向のそれぞれの駆動が、お互いに干渉
しあわない。そのために、駆動電圧の制御に補正回路も
不要で簡単に駆動部材を独立制御駆動することができ、
走査範囲も広くとれるようになった。さらに、本発明の
圧電型駆動装置は、従来広く使われて来たチューブ型圧
電型駆動装置に比べ共振周波数を高くすることができる
ので、より高速に探針を走査することが可能となった。According to the configuration of the driving device of the present invention, X,
The drives in the displacement directions of the Y and Z axes do not interfere with each other. Therefore, a correction circuit is not required for controlling the drive voltage, and the drive member can be easily driven independently.
The scanning range has become wider. Further, since the piezoelectric driving device of the present invention can increase the resonance frequency as compared with the tube type piezoelectric driving device which has been widely used in the past, it is possible to scan the probe at higher speed. .
【0019】[0019]
【図1】本発明の圧電型駆動装置の構成図。FIG. 1 is a configuration diagram of a piezoelectric driving device of the present invention.
【図2】走査型プローブ顕微鏡における本発明の圧電型
駆動装置の動作説明図。FIG. 2 is an operation explanatory view of the piezoelectric driving device of the present invention in the scanning probe microscope.
【図3】従来のトライポッド型駆動装置の構成図。FIG. 3 is a configuration diagram of a conventional tripod-type drive device.
【図4】従来のチューブ型駆動装置の構成図。FIG. 4 is a configuration diagram of a conventional tube drive device.
1 第1の圧電駆動部材(Y方向の圧電駆動部材) 2 第2の圧電駆動部材(X方向の圧電駆動部材) 3 第3の圧電駆動部材(Z方向の圧電駆動部材) 4 探針 5 試料 6 基板 7 マイクロメーター DESCRIPTION OF SYMBOLS 1 1st piezoelectric drive member (Y direction piezoelectric drive member) 2 2nd piezoelectric drive member (X direction piezoelectric drive member) 3 3rd piezoelectric drive member (Z direction piezoelectric drive member) 4 Probe 5 Sample 6 substrates 7 micrometers
Claims (1)
させる圧電型駆動装置において、 Y方向に変位を発生する一端が固定された第1の圧電駆
動部材と、該第1の圧電駆動部材の他端に設けられた前
記第1の圧電駆動体の変位方向に対し直角なX方向に変
位を発生する第2の圧電駆動部材と、前記第2の圧電駆
動部材の自由端側に設けられた前記第1及び第2の圧電
駆動部材の変位方向に対し垂直なZ方向に変位を発生す
る第3の圧電駆動部材と、前記第3の圧電駆動部材の自
由端側に設けられた試料上を走査し局所情報を検出する
探針とを備えたことを特徴とする圧電型駆動装置。1. A piezoelectric drive device for generating displacement in three directions of X, Y and Z directions, wherein a first piezoelectric drive member having one end for generating displacement in the Y direction is fixed, and the first piezoelectric drive member. A second piezoelectric drive member, which is provided at the other end of the drive member, generates a displacement in an X direction perpendicular to the displacement direction of the first piezoelectric drive body, and a second piezoelectric drive member is provided on the free end side of the second piezoelectric drive member. A third piezoelectric driving member that generates a displacement in a Z direction that is perpendicular to the displacement direction of the first and second piezoelectric driving members that are provided, and a third piezoelectric driving member that is provided on the free end side of the third piezoelectric driving member. A piezoelectric driving device comprising: a probe that scans a sample to detect local information.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6246251A JPH08105903A (en) | 1994-08-11 | 1994-10-12 | Piezoelectric driving device |
US08/513,650 US5656769A (en) | 1994-08-11 | 1995-08-10 | Scanning probe microscope |
US08/967,215 US6018991A (en) | 1994-08-11 | 1997-10-28 | Scanning probe microscope having cantilever attached to driving member |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18914094 | 1994-08-11 | ||
JP6-189140 | 1994-08-11 | ||
JP6246251A JPH08105903A (en) | 1994-08-11 | 1994-10-12 | Piezoelectric driving device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08105903A true JPH08105903A (en) | 1996-04-23 |
Family
ID=26505321
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6246251A Pending JPH08105903A (en) | 1994-08-11 | 1994-10-12 | Piezoelectric driving device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08105903A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018222727A1 (en) * | 2017-05-31 | 2018-12-06 | Cornell University | Multidimensional piezoelectric actuator having enhanced actuation range |
-
1994
- 1994-10-12 JP JP6246251A patent/JPH08105903A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018222727A1 (en) * | 2017-05-31 | 2018-12-06 | Cornell University | Multidimensional piezoelectric actuator having enhanced actuation range |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Fleming et al. | Bridging the gap between conventional and video-speed scanning probe microscopes | |
USRE33387E (en) | Atomic force microscope and method for imaging surfaces with atomic resolution | |
EP0149017B1 (en) | Piezoelectric x-y positioner | |
US5723775A (en) | Atomic force microscope under high speed feedback control | |
US4724318A (en) | Atomic force microscope and method for imaging surfaces with atomic resolution | |
US5204531A (en) | Method of adjusting the size of the area scanned by a scanning probe | |
US20020017615A1 (en) | Scanning unit and scanning microscope having the same | |
US20040069944A1 (en) | Balanced momentum probe holder | |
JPS62130302A (en) | Method and device for forming image of surface of sample | |
Ahmad et al. | Large area fast-AFM scanning with active “Quattro” cantilever arrays | |
CN110907663B (en) | Kelvin probe force microscope measuring method based on T-shaped cantilever beam probe | |
WO2010092956A1 (en) | Planar positioning device and inspection device equipped with same | |
KR100567860B1 (en) | Raster mode scanning device compensates for mechanical vibration disturbances during the scanning process | |
JPH08105903A (en) | Piezoelectric driving device | |
JP4342739B2 (en) | Scanning probe microscope | |
JPH1010140A (en) | Scanning probe microscope | |
JP3892184B2 (en) | Scanning probe microscope | |
Maroufi et al. | Design and control of a single-chip SOI-MEMS atomic force microscope | |
JPH09264897A (en) | Scanning probe microscope | |
JPH09119938A (en) | Scanning probe microscope | |
JP3588701B2 (en) | Scanning probe microscope and its measuring method | |
JPH08248037A (en) | Piezoelectric driver | |
JP3784570B2 (en) | Scanning probe microscope | |
JP2002014025A (en) | Probe scanning control device, scanning probe microscope by the same, probe scanning control method, and measuring method by the scanning control method | |
JP2962612B2 (en) | Scanning microscope |