JPH08105831A - Thermogravimeric analysis - Google Patents

Thermogravimeric analysis

Info

Publication number
JPH08105831A
JPH08105831A JP26305794A JP26305794A JPH08105831A JP H08105831 A JPH08105831 A JP H08105831A JP 26305794 A JP26305794 A JP 26305794A JP 26305794 A JP26305794 A JP 26305794A JP H08105831 A JPH08105831 A JP H08105831A
Authority
JP
Japan
Prior art keywords
temperature
sample
rate
thermogravimetric
drug
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26305794A
Other languages
Japanese (ja)
Other versions
JP2791642B2 (en
Inventor
Kiyosato Akiyama
皖史 秋山
Tadashi Arii
忠 有井
Akashi Kishi
證 岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rigaku Denki Co Ltd
Rigaku Corp
Original Assignee
Rigaku Denki Co Ltd
Rigaku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rigaku Denki Co Ltd, Rigaku Corp filed Critical Rigaku Denki Co Ltd
Priority to JP26305794A priority Critical patent/JP2791642B2/en
Publication of JPH08105831A publication Critical patent/JPH08105831A/en
Application granted granted Critical
Publication of JP2791642B2 publication Critical patent/JP2791642B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To separate adherence water and crystal water included in a medicine to estimate the quantity by a method wherein the temperature of the medicine is controlled such that increasing speed of the temperature is continuously varied in accordance with the decreasing speed of the medicine, then a thermogravimetric curve is obtained. CONSTITUTION: A lower end of a specimen holder 16 is supported by a tip of a balance beam 24. An equilibrium weight 28 is provided to the other end of the balance beam 24 and a screen 30 is fixed to the tip. A light from a light source lamp 32 passes the screen 30 to be incident to a photodetector 34. The weight variation of the holder 16 is represented as the variation of the output of the photodetector 34. A magnet 26 and a weight 36 are fixed to a lower end of the holder 16. The output of the photodetector 34 is inputted to a balance control circuit 38. The circuit 38 applies a current to a control coil 40 corresponding to the weight of the holder 16, then a force corresponding to the current value of the coil 40 is applied on the magnet 26 so that the position of the holder 16 is maintained. The temperature value of the specimen measured by a differential thermocouple 18 is inputted to a programmed automatic temperature control device 42 and is recorded by a recorder 46 together with the weight of the holder 16.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、温度を変化させて試
料の重量変化を測定する熱重量測定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermogravimetric measuring method for measuring the weight change of a sample by changing the temperature.

【0002】[0002]

【従来の技術】熱重量測定には熱天秤が用いられる。こ
の熱天秤で試料の重量変化を測定するには、試料温度の
変化方法として、いくつかの方法が知られている。最も
簡単な方法は、一定の昇温速度(または降温速度)で試
料を加熱(または冷却)する方法である。しかし、この
方法は、重量測定の分解能が劣るという欠点がある。重
量測定の分解能が劣るという意味は、重量変化の開始温
度や終了温度、また、その間の重量変化量などについ
て、その測定精度が劣るということである。等速昇温
(または降温)を用いると分解能が劣る理由は次の通り
である。試料に大きな重量変化が生じる場合にも試料温
度が一定速度で上昇または下降するので、試料の状態変
化が十分に完了しないうちに、別の試料温度に移行して
しまうことになる。このような欠点を回避するために、
昇温速度(または降温速度)を非常に小さくすることが
考えられる。しかし、このようにすると、測定時間が非
常に長くなって現実的でない。
2. Description of the Related Art A thermobalance is used for thermogravimetric measurement. In order to measure the weight change of a sample with this thermobalance, several methods are known as a method of changing the sample temperature. The simplest method is a method of heating (or cooling) the sample at a constant heating rate (or cooling rate). However, this method has a drawback that the resolution of weight measurement is poor. The fact that the resolution of the weight measurement is poor means that the measurement accuracy of the starting temperature and the ending temperature of the weight change, and the amount of weight change during that period is poor. The reason why the resolution is inferior when the constant speed temperature increase (or temperature decrease) is used is as follows. Even if a large weight change occurs in the sample, the sample temperature rises or falls at a constant speed, so that the sample temperature may shift to another sample before the state change of the sample is sufficiently completed. To avoid such drawbacks,
It is conceivable to make the rate of temperature rise (or rate of temperature decrease) very small. However, in this case, the measurement time becomes very long, which is not realistic.

【0003】一方、試料の重量減少が開始したら昇温を
停止する方法が知られている。すなわち、試料の重量減
少速度の絶対値が所定の設定値以上になったら昇温を停
止して試料を等温で保持し、成分の分解による重量減少
が完了して重量減少速度の絶対値が別の所定の設定値以
下になったら、再び昇温を開始する。このような温度制
御方法は、SIA(Stepwise Isothermal Analysis:ス
テップ式等温分析)と呼ばれ、文献「Thermochimica Ac
ta. 138(1989), p.107-114」に記載されている。この方
法によれば、分解温度が近接している複数の分解現象を
互いに精度良く分離することが可能になり、従来の一定
昇温方式よりも分解能が向上する。ただし、このSIA
方式は、試料の重量減少が開始したら昇温を停止してし
まうので、全体として測定時間が長くなる欠点がある。
また、昇温を完全に停止してしまうと、試料の分解反応
が中断して測定に悪影響を及ぼす場合もある。
On the other hand, a method is known in which the temperature rise is stopped when the weight reduction of the sample starts. That is, when the absolute value of the weight reduction rate of the sample becomes equal to or more than a predetermined set value, the temperature increase is stopped and the sample is held isothermally. When the temperature becomes equal to or lower than the predetermined set value of, the temperature rise is started again. Such a temperature control method is called SIA (Stepwise Isothermal Analysis), and is referred to in the document “Thermochimica Ac”.
ta. 138 (1989), p. 107-114 ”. According to this method, it is possible to accurately separate a plurality of decomposition phenomena whose decomposition temperatures are close to each other, and the resolution is improved as compared with the conventional constant temperature rising method. However, this SIA
The method has a drawback that the measurement time is long as a whole because the temperature rise is stopped when the weight reduction of the sample starts.
Further, if the temperature rise is completely stopped, the decomposition reaction of the sample may be interrupted and the measurement may be adversely affected.

【0004】そこで、このSIAを発展させて、試料の
減量速度に応じて昇温速度を連続的に変化させる温度制
御方法(以下、ダイナミック温度制御方法という。)
が、第29回熱測定討論会講演要旨集の第330〜33
1頁(日本熱測定学会発行、1993年)に発表されて
いる。
Therefore, by developing this SIA, a temperature control method (hereinafter referred to as a dynamic temperature control method) in which the rate of temperature increase is continuously changed in accordance with the deceleration rate of the sample.
But, the 330th to 33rd abstracts of the 29th thermometric discussion meeting
It is published on page 1 (published by The Japan Thermometric Society, 1993).

【0005】[0005]

【発明が解決しようとする課題】上述のダイナミック温
度制御方法は、比較的短時間で高精度の熱重量測定が可
能になり、今後の熱重量測定方法として非常に有望であ
る。そこで、本願発明者らは、このダイナミック温度制
御方法の応用分野について鋭意研究を重ねた結果、いく
つかの応用分野において顕著な結果を見出したものであ
る。この発明の目的は、医薬品の付着水と結晶水とを高
精度に分離定量することにある。この発明の別の目的
は、医薬品の付着水と結晶水のそれぞれの脱水温度を高
精度に測定することにある。この発明のさらに別の目的
は、セラミックス焼結原料の付着水と結晶水とを高精度
に分離定量することにある。この発明のさらに別の目的
は、高分子化合物に含まれる成分の熱分解開始温度と熱
分解終了温度とを高精度に測定することにある。
The dynamic temperature control method described above enables highly accurate thermogravimetric measurement in a relatively short time, and is very promising as a thermogravimetric measurement method in the future. Therefore, the inventors of the present application have conducted intensive studies on the application fields of this dynamic temperature control method, and as a result, have found remarkable results in some application fields. An object of the present invention is to highly accurately separate and quantify adhering water of drugs and water of crystallization. Another object of the present invention is to measure the dehydration temperatures of the adhered water of the drug and the crystal water with high accuracy. Still another object of the present invention is to highly accurately separate and quantify the adhered water of the ceramics sintering raw material and the crystal water. Still another object of the present invention is to measure the thermal decomposition start temperature and the thermal decomposition end temperature of the components contained in the polymer compound with high accuracy.

【0006】[0006]

【課題を解決するための手段及び作用】この発明では、
ダイナミック温度制御方法の最も効果的な応用分野とし
て、(1)医薬品に含まれる付着水と結晶水とを分離定
量すること、(2)医薬品に含まれる付着水と結晶水の
それぞれの脱水温度を測定すること、(3)セラミック
ス焼結原料に含まれる付着水と結晶水とを分離定量する
こと、(4)高分子化合物に含まれる成分の熱分解開始
温度と熱分解終了温度とを測定すること、が非常に有望
であることを見出した。
According to the present invention,
The most effective application fields of the dynamic temperature control method are (1) separation and quantification of attached water and crystallization water contained in a drug, and (2) dehydration temperature of each of attached water and crystallization water contained in a drug. Measuring, (3) separating and quantifying adhered water and crystallization water contained in the ceramics sintering raw material, and (4) measuring thermal decomposition start temperature and thermal decomposition end temperature of components contained in the polymer compound. It has been found to be very promising.

【0007】医薬品に含まれる水分としては、構造の一
部分として不可欠な結晶水と、単に付着している付着水
(自由水とも呼ばれる。)とがある。そして、医薬品の
結晶構造、分子式、純度の決定には、結晶水量を正確に
測定することが必要である。また、医薬品の安定性、薬
効、製剤特性などに対しては、結晶水と付着水ではその
影響が異なるので、結晶水と付着水の量をそれぞれ求め
る必要がある。しかしながら、従来の等速昇温による熱
重量測定方法では、付着水と結晶水の減量がほとんど連
続して起こり、これらを明瞭に区別するのは困難であっ
た。したがって、熱重量曲線だけで結晶水か付着水かを
判定するのは危険である、との指摘がなされている。
Water contained in pharmaceuticals includes crystal water, which is indispensable as a part of the structure, and adhered water (also called free water) simply adhering. In order to determine the crystal structure, molecular formula and purity of a drug, it is necessary to accurately measure the amount of water of crystallization. In addition, since the effects of crystallization water and adherent water differ on the stability, drug efficacy, formulation characteristics, etc. of the drug, it is necessary to determine the amounts of crystallization water and adherent water, respectively. However, in the conventional thermogravimetric measurement method by constant temperature rise, the weight loss of the adhering water and the crystal water occurs almost continuously, and it is difficult to clearly distinguish them. Therefore, it has been pointed out that it is dangerous to judge whether it is crystal water or adhered water only by the thermogravimetric curve.

【0008】これに対して、医薬品の結晶水と付着水の
分離定量のためにダイナミック温度制御方法を適用する
と、結晶水と付着水を明瞭に分離定量でき、従来の等速
昇温法の場合と比較して、格段に優れた結果が得られ
た。
On the other hand, when the dynamic temperature control method is applied to separate and quantify the water of crystallization and the water of adhesion of the drug, the water of crystallization and the water of adhesion can be clearly separated and quantified. Compared with, the result was remarkably excellent.

【0009】また、医薬品を乾燥する場合や、乾燥して
保管する場合において、医薬品の結晶水と付着水のそれ
ぞれの脱水温度を正確に測定することが必要になる。す
なわち、医薬品を昇温していくと、最初に比較的低い温
度で付着水が脱水し、その後に、もっと高い温度で結晶
水が脱水する。医薬品を乾燥させる場合には、付着水の
脱水温度よりも高く、かつ、結晶水の脱水温度よりも低
い温度で、乾燥させる必要がある。また、医薬品を乾燥
状態で保管する場合も、この温度で保管するのが好まし
い。このような目的のために、結晶水と付着水のそれぞ
れの脱水温度を正確に測定する必要があり、ダイナミッ
ク温度制御方法を用いると、これらの脱水温度を正確に
測定できる。
Further, when the drug is dried or when it is stored in a dried state, it is necessary to accurately measure the dehydration temperature of each of the water of crystallization and the adherent water of the drug. That is, as the temperature of the drug is raised, the attached water is first dehydrated at a relatively low temperature, and then the crystal water is dehydrated at a higher temperature. When the drug is dried, it is necessary to dry the drug at a temperature higher than the dehydration temperature of attached water and lower than the dehydration temperature of crystal water. Also, when the drug is stored in a dry state, it is preferable to store it at this temperature. For such a purpose, it is necessary to accurately measure the dehydration temperature of each of the crystallization water and the attached water, and these dehydration temperatures can be accurately measured by using the dynamic temperature control method.

【0010】セラミックス焼結原料の水分量は、最終成
形性に大きな影響を与える。セラミックス焼結原料中に
は、結合力の弱い付着水と、セラミックスと強く結合し
た結合水とが存在する。また、セラミックス焼結原料中
には、融解状態または粉末状態でバインダが混入されて
いる。そして、結合水がバインダと均質に混合されると
成形性が良好になると言われている。このため、混入す
る水分量の管理が重要となる。一般に、乾燥法によっ
て、例えば40℃で4時間で分解するものを付着水、1
00℃で4時間で分解するものを結合水として、定量し
ているが、この方法では精度が悪い。また、従来の等速
昇温による熱重量測定も行われているが、結合水とバイ
ンダの熱分解が重複して起こるため、結合水量の測定精
度は劣っている。
The water content of the ceramics sintering raw material has a great influence on the final formability. In the ceramics sintering raw material, there are adhered water having a weak bonding force and bonded water strongly bonded to the ceramics. Further, a binder is mixed in the ceramics sintering raw material in a molten state or a powder state. It is said that the moldability is improved when the bound water is homogeneously mixed with the binder. Therefore, it is important to control the amount of water mixed. Generally, a substance that decomposes in 4 hours at 40 ° C. by a drying method is treated with attached water, 1
Although the amount of water that decomposes at 00 ° C in 4 hours is used as bound water, the amount of water is quantified, but the accuracy is low with this method. Further, although thermogravimetric measurement by a conventional constant temperature rise is also performed, the accuracy of measuring the amount of bound water is poor because the thermal decomposition of the bound water and the binder occur in duplicate.

【0011】これに対して、セラミックス焼結原料の結
晶水と付着水の分離定量のためにダイナミック温度制御
方法を適用すると、結晶水と付着水を明瞭に分離定量で
き、従来の等速昇温法の場合と比較して、格段に優れた
結果が得られた。
On the other hand, when the dynamic temperature control method is applied to separate and quantify the water of crystallization and the water of adhesion of the ceramics sintering raw material, the water of crystallization and the water of adhesion can be clearly separated and quantified, and the conventional constant-rate heating is performed. Significantly superior results were obtained compared to the method.

【0012】高分子化合物では、これを昇温していく
と、残留溶媒モノマーや各種の添加剤が比較的低温で熱
分解または揮発し、これに伴う重量減少が観測される。
そして、これに引き続いて、高分子化合物の主成分の熱
分解が1段階または多段階で起こる。従来の等速昇温法
によると、残留溶媒モノマーや各種の添加剤に起因する
最初の熱分解と、その後の主成分の熱分解とが重複して
しまい、主成分の熱分解開始温度を正確に測定すること
が困難であった。
In the polymer compound, as the temperature of the polymer compound is raised, residual solvent monomer and various additives are thermally decomposed or volatilized at a relatively low temperature, and a weight loss accompanying this is observed.
Then, following this, thermal decomposition of the main component of the polymer compound occurs in one step or multiple steps. According to the conventional constant velocity heating method, the initial thermal decomposition due to residual solvent monomer and various additives overlaps with the subsequent thermal decomposition of the main component, and the thermal decomposition start temperature of the main component is accurate. It was difficult to measure.

【0013】これに対して、高分子化合物の熱分解開始
温度と熱分解終了温度の測定のためにダイナミック温度
制御方法を適用すると、これらの温度を精度良く測定で
き、従来の等速昇温の場合と比較して、格段に優れた結
果が得られた。
On the other hand, when the dynamic temperature control method is applied to measure the thermal decomposition start temperature and the thermal decomposition end temperature of the polymer compound, these temperatures can be measured with high accuracy, and the conventional constant rate heating can be performed. Compared with the case, the result was remarkably excellent.

【0014】この発明で使われているダイナミック温度
制御方法は、試料の減量速度に応じて試料の昇温速度が
連続的に変化するように、試料温度を制御するようにし
たものである。すなわち、試料の重量が時々刻々変化す
る場合に、その減量速度を算出して、その減量速度に適
した昇温速度を設定し、そのような昇温速度になるよう
に試料の温度を制御するようにしたものである。昇温速
度は、減量速度に対して連続的に変化するようにする。
換言すれば、昇温速度は減量速度の連続関数として表す
ことができる。このような制御方法は、あらかじめ設定
した重量減少速度に達したか否かで一定昇温と昇温停止
とを切り換えるようにした従来のSIA方式とは基本的
に異なっている。
The dynamic temperature control method used in the present invention controls the sample temperature so that the temperature rising rate of the sample continuously changes according to the deceleration rate of the sample. That is, when the weight of the sample changes from moment to moment, the deceleration rate is calculated, a heating rate suitable for the deceleration rate is set, and the temperature of the sample is controlled so as to reach such a heating rate. It was done like this. The temperature rising rate is made to continuously change with respect to the weight reduction rate.
In other words, the heating rate can be expressed as a continuous function of the deceleration rate. Such a control method is basically different from the conventional SIA method in which the constant temperature increase and the temperature increase stop are switched depending on whether or not a preset weight reduction rate is reached.

【0015】試料の昇温速度は、試料の減量速度の連続
関数となる。このことは、減量速度が変化していった場
合に、それに連れて昇温速度が連続的に変化することを
意味する。使用可能な連続関数の例としては、有理整関
数、無理関数、指数関数、対数関数を挙げることができ
る。
The rate of temperature rise of the sample is a continuous function of the rate of weight loss of the sample. This means that when the reduction rate changes, the rate of temperature increase changes continuously with it. Examples of continuous functions that can be used include rational integer functions, irrational functions, exponential functions, and logarithmic functions.

【0016】また、試料の昇温速度の絶対値が、試料の
減量速度の絶対値の単調減少関数となるようにするのが
好ましい。このことは、試料の減量速度が大きれば大き
いほど、試料の昇温速度が小さくなることを意味する。
使用可能な単調減少関数の例としては、上述の連続関数
の例のうちで、単調減少となっている領域を使うことが
できる。
Further, it is preferable that the absolute value of the temperature rising rate of the sample be a monotonically decreasing function of the absolute value of the weight reduction rate of the sample. This means that the higher the weight reduction rate of the sample, the lower the temperature rising rate of the sample.
As an example of the monotonically decreasing function that can be used, a region in which the monotonically decreasing function is used in the above-described example of the continuous function can be used.

【0017】この発明のように試料の減量速度に応じて
昇温速度を時々刻々変化させるには、試料の加熱炉とし
て、制御応答性が良好なものを使うことが望ましい。そ
のためには、赤外線加熱炉が最適である。
In order to change the temperature rising rate momentarily according to the weight reduction rate of the sample as in the present invention, it is desirable to use a sample heating furnace having a good control response. For that purpose, the infrared heating furnace is the most suitable.

【0018】この発明においてダイナミック温度制御を
実施するには次のようにする。熱天秤において試料の減
量速度を測定し、その測定結果に応じて試料の昇温速度
を変化させる。試料の昇温速度は減量速度の連続関数と
して表すことができ、これを目標値として、試料の温度
を例えばPID制御方式で制御する。試料の昇温速度
は、試料の減量速度に応じて最適に変化させることがで
きる。最も好ましい制御方法は、試料の減量速度の絶対
値が小さいときは試料の昇温速度の絶対値を相対的に大
きくし、試料の減量速度の絶対値が大きくなったら試料
の昇温速度を相対的に小さくすることである。これによ
り、試料の重量減少がゆるやかなときには、昇温速度を
速くすることができ、測定時間を短縮することができ
る。また、試料の重量減少が急激なときには、昇温速度
をゆるやかにすることができ、熱重量測定の分解能を向
上させることができる。そして、昇温速度は減量速度に
応じて連続的に変化するので、測定時間の短縮化と分解
能の向上とを兼ね備えた最適な温度制御が可能となる。
In the present invention, the dynamic temperature control is carried out as follows. The weight loss rate of the sample is measured with a thermobalance, and the temperature rising rate of the sample is changed according to the measurement result. The heating rate of the sample can be expressed as a continuous function of the deceleration rate, and the temperature of the sample is controlled by, for example, the PID control method with this as a target value. The temperature rising rate of the sample can be optimally changed according to the weight reduction rate of the sample. The most preferable control method is to make the absolute value of the heating rate of the sample relatively large when the absolute value of the deceleration rate of the sample is small, and to make the heating rate of the sample relatively when the absolute value of the deceleration rate of the sample becomes large. Is to make it smaller. Thereby, when the weight of the sample is gradually reduced, the temperature rising rate can be increased and the measurement time can be shortened. Further, when the weight of the sample is drastically reduced, the temperature rising rate can be made slower, and the resolution of thermogravimetric measurement can be improved. Further, since the heating rate changes continuously according to the deceleration rate, it is possible to perform the optimal temperature control that shortens the measurement time and improves the resolution.

【0019】[0019]

【実施例】図1は、この発明を実施するための熱天秤の
概略構成を示す正面断面図である。この熱天秤は、石英
製の保護管10の内部に測定試料容器12と標準試料容
器14とがあり、これらの容器は試料ホルダ16で支持
されている。二つの容器12、14の周囲にはPt製ま
たはNi製の均熱筒(図示せず)が配置されている。保
護管10の周囲には、合計4本の赤外線ランプ20があ
り、この赤外線ランプ20は楕円集光鏡22の焦点の位
置に配置されている。試料の温度は、容器12、14を
支持する感熱板に接着された示差熱電対18で測定でき
る。
1 is a front sectional view showing a schematic structure of a thermobalance for carrying out the present invention. This thermobalance has a measurement sample container 12 and a standard sample container 14 inside a protective tube 10 made of quartz, and these containers are supported by a sample holder 16. A soaking cylinder (not shown) made of Pt or Ni is arranged around the two containers 12 and 14. There are a total of four infrared lamps 20 around the protective tube 10, and the infrared lamps 20 are arranged at the focal point of the elliptical focusing mirror 22. The temperature of the sample can be measured with a differential thermocouple 18 attached to a heat sensitive plate supporting the containers 12 and 14.

【0020】試料ホルダ16の下端は天秤ビーム24の
先端に支持されている。天秤ビーム24の他端には平衡
用分銅28があり、その先にスクリーン30が固定され
ている。光源ランプ32からの光は、スクリーン30を
通過して光電素子34に入射する。試料ホルダ16の重
量変化は光電素子34の出力変化として現れる。一方、
試料ホルダ16の下端には磁石26と分銅36が固定さ
れている。光電素子34の出力は天秤制御回路38に入
力され、この天秤制御回路38は、試料ホルダ16の重
量に応じて制御コイル40に電流を流す。すなわち、試
料ホルダ16の重量が制御コイル40にフィードバック
される。そして、制御コイル40の電流に応じて磁石2
6に力が加わる。これにより、試料ホルダ16の位置が
保たれる。
The lower end of the sample holder 16 is supported by the tip of the balance beam 24. A balance weight 28 is provided at the other end of the balance beam 24, and a screen 30 is fixed at the tip thereof. The light from the light source lamp 32 passes through the screen 30 and enters the photoelectric element 34. The change in weight of the sample holder 16 appears as a change in the output of the photoelectric element 34. on the other hand,
A magnet 26 and a weight 36 are fixed to the lower end of the sample holder 16. The output of the photoelectric element 34 is input to the balance control circuit 38, and the balance control circuit 38 supplies a current to the control coil 40 according to the weight of the sample holder 16. That is, the weight of the sample holder 16 is fed back to the control coil 40. Then, according to the current of the control coil 40, the magnet 2
Power is added to 6. As a result, the position of the sample holder 16 is maintained.

【0021】示差熱電対18で測定された試料温度はプ
ログラム自動温度制御装置42に入力される。また、示
差熱電対18で測定された示差熱温度は直流増幅器44
で増幅されて、記録計46で記録される。また、天秤制
御回路38の出力すなわち試料ホルダ16の重量も、記
録計46で記録される。
The sample temperature measured by the differential thermocouple 18 is input to the program automatic temperature control device 42. Further, the differential heat temperature measured by the differential thermocouple 18 is the DC amplifier 44.
It is amplified by and recorded by the recorder 46. The output of the balance control circuit 38, that is, the weight of the sample holder 16 is also recorded by the recorder 46.

【0022】プログラム自動温度制御装置42には、示
差熱電対18からの試料温度データと、天秤制御回路3
8からの重量データとが入力される。そして、このプロ
グラム自動温度制御装置42は、試料の減量速度に応じ
た昇温速度になるように、赤外線ランプ20に電流を流
す。また、プログラム自動温度制御装置42には、制御
係数設定装置48からの信号が入力されて、制御係数が
指定される。
The program automatic temperature control device 42 includes sample temperature data from the differential thermocouple 18 and the balance control circuit 3.
Weight data from 8 is input. Then, the program automatic temperature control device 42 supplies a current to the infrared lamp 20 so that the temperature rising rate according to the weight reduction rate of the sample is reached. A signal from the control coefficient setting device 48 is input to the program automatic temperature control device 42 to specify the control coefficient.

【0023】図1に示す赤外線加熱炉は、抵抗加熱炉と
比較して熱慣性が小さく、温度制御の応答性に優れてい
る。
The infrared heating furnace shown in FIG. 1 has a smaller thermal inertia than the resistance heating furnace and is excellent in temperature control response.

【0024】次に、試料の温度制御方法について説明す
る。試料の昇温速度は試料の減量速度に応じて次の式
(1)で表される。
Next, a method for controlling the temperature of the sample will be described. The rate of temperature rise of the sample is expressed by the following equation (1) according to the rate of weight loss of the sample.

【0025】[0025]

【数1】 ここで、V:昇温速度(℃/秒) Vm:最大昇温速度(℃/秒) U:減量速度(%/秒) Um:限界減量速度(%/秒) n:べき指数[Equation 1] Here, V: temperature increase rate (° C / second) Vm: maximum temperature increase rate (° C / second) U: weight loss rate (% / second) Um: limit weight loss rate (% / second) n: power index

【0026】試料の重量は、初期重量に対する百分率
(パーセント)で求めており、試料の減量速度の単位
は、毎秒当たりのパーセントである。試料が減量してい
く場合には、減量速度は負の値となるが、その絶対値を
とって減量速度Uとしている。式(1)の物理的意味は
次の通りである。試料の減量速度Uがゼロになると(す
なわち、試料の重量が変化しないときは)、昇温速度V
は最大昇温速度Vmに等しくなる。このVmの値は、試
料の性質に応じてあらかじめ決定しておく。試料の減量
速度Uが大きくなるにつれて昇温速度Vは小さくなって
いき、減量速度Uが限界減量速度Umに等しくなると、
昇温速度Vはゼロになる。すなわち、昇温が停止する。
この限界減量速度Umも試料の性質に応じてあらかじめ
決定しておく。一般的には、予定した測定温度範囲内に
おいて減量速度Uが限界減量速度Umを越えないよう
に、Umを設定しておく。式(1)において、もし減量
速度Uが限界減量速度Umを越えると、形式的にはVの
値が負となるが、実際の温度制御では昇温を停止するだ
けであって降温に転ずることはない。すなわち、式
(1)はU≦Umの条件でのみ有効である。式(1)は
図1のプログラム自動温度制御装置に記憶されている。
また、式(1)のVm,Um,nの数値は、図1の制御
係数設定装置48で設定できる。
The weight of the sample is obtained as a percentage (percentage) with respect to the initial weight, and the unit of the weight loss rate of the sample is the percentage per second. When the amount of the sample is reduced, the weight reduction rate has a negative value, but the absolute value is taken as the weight reduction rate U. The physical meaning of formula (1) is as follows. When the weight reduction rate U of the sample becomes zero (that is, when the weight of the sample does not change), the heating rate V
Becomes equal to the maximum heating rate Vm. The value of Vm is determined in advance according to the properties of the sample. As the weight reduction rate U of the sample increases, the heating rate V decreases, and when the weight reduction rate U becomes equal to the limit weight reduction rate Um,
The heating rate V becomes zero. That is, the temperature rise stops.
The limit weight reduction rate Um is also determined in advance according to the properties of the sample. Generally, Um is set so that the deceleration rate U does not exceed the limit deceleration rate Um within the predetermined measurement temperature range. In the formula (1), if the deceleration speed U exceeds the limit deceleration speed Um, the value of V is formally negative, but in the actual temperature control, only the temperature rise is stopped and the temperature falls. There is no. That is, the expression (1) is valid only under the condition of U ≦ Um. Expression (1) is stored in the program automatic temperature control device of FIG.
Further, the numerical values of Vm, Um, and n in the equation (1) can be set by the control coefficient setting device 48 of FIG.

【0027】減量速度UがゼロからUmの範囲内では、
昇温速度Vは減量速度Uの単調減少関数となる。単調減
少関数の意味は次の通りである。すなわち、任意の二つ
の減量速度U1、U2に対して昇温速度がそれぞれV
1、V2と定まる場合に、U2>U1ならば、常にV2
≦V1となる。なお、この実施例の式(1)の場合に
は、U2>U1ならば常にV2<V1となる。
When the deceleration rate U is within the range of zero to Um,
The rate of temperature increase V is a monotonically decreasing function of the rate of decrease U. The meaning of the monotonically decreasing function is as follows. That is, the temperature rising rate is V for each of the two arbitrary reduction rates U1 and U2.
If it is determined as 1, V2, if U2> U1, then it is always V2
≦ V1. In the case of the formula (1) of this embodiment, V2 <V1 is always satisfied if U2> U1.

【0028】式(1)における減量速度Uを実際に求め
るには、次のような手順を用いている。まず、試料の重
量をサンプリング間隔Δtで測定する。i番目のサンプ
リング時(以下、時刻iと呼ぶ。)の重量がWi 、ひと
つ手前の時刻(i−1)の重量がWi-1 とすると、時刻
iの時点での減量速度Ui は(Wi-1 −Wi )/Δtと
なる。次に、この減量速度Ui の4点移動平均Uai
求める。すなわち、Uai =(Ui +Ui-1 +Ui-2
i-3 )/4である。この4点移動平均の減量速度Ua
i を時刻iの減量速度とすることができる。この減量速
度を式(1)における減量速度Uに代入すればよい。
To actually obtain the deceleration rate U in the equation (1), the following procedure is used. First, the weight of the sample is measured at the sampling interval Δt. Assuming that the weight at the i-th sampling time (hereinafter referred to as time i) is W i and the weight at the immediately preceding time (i-1) is W i-1 , the weight reduction rate U i at the time i is (W i-1 −W i ) / Δt. Next, a four-point moving average Ua i of the weight reduction speed U i is obtained. That is, Ua i = (U i + U i-1 + U i-2 +
U i-3 ) / 4. Weight loss speed Ua of this 4-point moving average
i can be the deceleration rate at time i. This deceleration rate may be substituted for the deceleration rate U in the equation (1).

【0029】ところで、上述の4点移動平均の減量速度
は、重量測定のバラツキをならして平均的な減量速度を
算出している点で好ましいものであるが、過去の減量速
度を利用しているので、現在の減量速度さらには今後の
減量速度から見ると若干遅れたデータとなっている。そ
こで、今後の減量速度を予測して、その予測した減量速
度を式(1)の減量速度Uに代入すれば、温度制御の目
標追従性がより向上する。そこで、例えば、現在から数
個前のサンプリングまで遡った複数個の4点移動平均減
量速度Uaを基にして、将来の時刻(i+1)の減量速
度Uai+1 を予測することができ、この予測減量速度を
式(1)に代入することができる。予測値を算出する方
法としては公知の予測演算手法を利用できる。
By the way, the above-mentioned four-point moving average deceleration rate is preferable in that the average deceleration rate is calculated by smoothing the variation in weight measurement. Therefore, the data shows a slight delay from the current weight reduction rate and the future weight reduction rate. Therefore, by predicting the future deceleration rate and substituting the predicted deceleration rate into the deceleration rate U in the equation (1), the target followability of the temperature control is further improved. Therefore, for example, the deceleration rate Ua i + 1 at the future time (i + 1) can be predicted based on a plurality of four-point moving average deceleration rates Ua traced back from the present sampling to a few samplings ago. The predicted weight loss rate can be substituted into equation (1). As a method of calculating the predicted value, a known prediction calculation method can be used.

【0030】図2は式(1)をグラフ表示した例であ
る。図2の(A)は、べき指数n=1の条件で、限界減
量速度Umを変更したときに昇温速度曲線がどのように
変化するかを示したグラフである。最大昇温速度Vmが
同じ条件であっても、限界減量速度Umが小さく設定さ
れていればいるほど、減量速度Uの増加に対して昇温速
度Vが急激に小さくなる。すなわち、限界減量速度Um
は、昇温速度Vの減量速度Uに対する感度係数として作
用する。実用的なUmの数値は、0.0001〜0.2
%/秒である。
FIG. 2 is an example in which the formula (1) is displayed in a graph. FIG. 2A is a graph showing how the temperature increase rate curve changes when the limit deceleration rate Um is changed under the condition that the power index n = 1. Even if the maximum temperature increase rate Vm is the same, the smaller the limit deceleration rate Um is set, the more rapidly the temperature increase rate V becomes smaller as the deceleration rate U increases. That is, the limit weight reduction speed Um
Acts as a sensitivity coefficient for the rate of temperature increase V with respect to the rate of decrease U. The practical value of Um is 0.0001 to 0.2.
% / Sec.

【0031】また、図2の(B)は、最大昇温速度Vm
と限界減量速度Umとを同じにした条件において、べき
指数nの影響を示したグラフである。縦軸は昇温速度V
を最大昇温速度Vmで規格化したものであり、横軸は減
量速度Uを限界減量速度Umで規格化したものである。
n=1では昇温速度Vは減量速度Uの1次曲線(すなわ
ち直線)となる。n=2では昇温速度Vは減量速度Uの
2次曲線となる。U/Umは1より小さいので、この2
次曲線は下に凸となる。n=0.5では逆に上に凸の曲
線となる。nの値は、減量速度の変化割合に対する昇温
速度の変化割合(すなわち曲線の傾き)が、減量速度の
値に応じて、どのように変化するかを決定するものであ
る。すなわち、nが1より大きいときは、減量速度の値
が小さい領域において曲線の傾きが大きくなり、逆に、
nが1より小さいときは、減量速度の値が大きい領域に
おいて曲線の傾きが大きくなる。結局、べき指数nは、
昇温速度Vの減量速度Uに対する局所的な感度係数とし
て作用する。このnの値も、試料の性質に応じて決定す
る。実用的なnの数値は0.1〜3.0の範囲である。
Further, FIG. 2B shows the maximum heating rate Vm.
2 is a graph showing the influence of a power index n under the condition that the limit deceleration rate Um and the limit deceleration rate Um are the same. Vertical axis shows temperature increase rate V
Is normalized by the maximum temperature increase rate Vm, and the horizontal axis indicates the weight reduction rate U by the limit weight reduction rate Um.
When n = 1, the heating rate V becomes a linear curve (that is, a straight line) of the deceleration rate U. When n = 2, the heating rate V becomes a quadratic curve of the deceleration rate U. Since U / Um is smaller than 1, this 2
The next curve is convex downward. On the contrary, when n = 0.5, the curve is convex upward. The value of n determines how the rate of change of the heating rate with respect to the rate of change of the weight reduction rate (that is, the slope of the curve) changes in accordance with the value of the weight reduction rate. That is, when n is larger than 1, the slope of the curve becomes large in the region where the value of the deceleration rate is small, and conversely,
When n is smaller than 1, the slope of the curve becomes large in the region where the value of the deceleration speed is large. After all, the exponent n is
It acts as a local sensitivity coefficient for the temperature increase rate V with respect to the weight reduction rate U. The value of n is also determined according to the properties of the sample. The practical value of n is in the range of 0.1 to 3.0.

【0032】図3は、医薬品の結晶水と付着水を分離定
量する発明の実施例の熱重量曲線のグラフである。医薬
品の試料としては、和光純薬製のキニーネ硫酸塩二水和
物を用いた。測定条件は次の表1の通りである。この表
1において、制御開始温度とは、ダイナミック温度制御
の開始温度である。
FIG. 3 is a graph of a thermogravimetric curve of an embodiment of the invention for separating and quantifying water of crystallization and adhered water of a drug. Quinine sulfate dihydrate manufactured by Wako Pure Chemical Industries, Ltd. was used as a drug sample. The measurement conditions are as shown in Table 1 below. In Table 1, the control start temperature is the start temperature of the dynamic temperature control.

【0033】[0033]

【表1】試料の量 5.74mg 試料容器 直径5mm、深さ2mmの開放型アル
ミニウム皿 測定雰囲気 乾燥窒素ガスを毎分100ミリリット
ルの流量で流す 制御開始温度 35℃ 式(1)のVm 40℃/分 式(1)のUm 1×10-3%/秒 式(1)のn 0.5
[Table 1] Amount of sample 5.74 mg Sample container Open-type aluminum dish with a diameter of 5 mm and a depth of 2 mm Measuring atmosphere Flowing dry nitrogen gas at a flow rate of 100 ml / min Control start temperature 35 ° C Vm of formula (1) 40 ° C / Min Um of the formula (1) 1 × 10 −3 % / sec n 0.5 of the formula (1)

【0034】図3の(A)は、横軸に時間、縦軸に重量
と温度をとったグラフであり、(B)は、同じ測定デー
タに対して、横軸に温度、縦軸に重量をとったグラフで
ある。(A)のグラフから分かるように、時間の経過に
対して、温度は一定の昇温速度にはならずに、減量速度
に応じて複雑に変化している。(B)のグラフから分か
るように、ダイナミック温度制御方法で得られた熱重量
曲線50では、室温から第1段目の減量が完了するまで
に、0.31%の減量があったものと決定でき、これが
付着水量である。次に、第2段目の減量として、4.5
5%の減量があったものと決定でき、これが結晶水量で
ある。付着水が脱水した後の試料の重量を基準にする
と、結晶水の量は4.56%に相当し、分子式から求め
られる結晶水量4.61%に対して、熱天秤の測定誤差
内で一致した。
FIG. 3A is a graph in which the horizontal axis represents time and the vertical axis represents weight and temperature. FIG. 3B shows the same measurement data, in which the horizontal axis represents temperature and the vertical axis represents weight. It is the graph which took. As can be seen from the graph of (A), the temperature does not have a constant rate of temperature rise but changes intricately according to the rate of decrease in weight over time. As can be seen from the graph of (B), in the thermogravimetric curve 50 obtained by the dynamic temperature control method, it was determined that there was a 0.31% weight loss from room temperature until the weight loss of the first step was completed. Yes, this is the amount of water deposited. Next, as the second stage weight loss, 4.5
It can be determined that there was a 5% weight loss, which is the amount of water of crystallization. Based on the weight of the sample after the attached water was dehydrated, the amount of water of crystallization was 4.56%, and the amount of water of crystallization obtained from the molecular formula was 4.61%, which was within the measurement error of the thermobalance. did.

【0035】(B)のグラフの破線の曲線52は、毎分
10℃の従来の等速昇温法を用いて同じ試料を測定した
結果を比較して示したものである。試料の量、試料容
器、測定雰囲気などの条件は、ダイナミック温度制御の
場合と同じにした。この曲線52から分かるように、従
来の等速昇温法では、第1段目の付着水の脱水現象と第
2段目の結晶水の脱水現象が、ほとんど連続的に観測さ
れてしまい、両者の分離定量は不可能であった。
A broken line curve 52 in the graph (B) shows a comparison of the results obtained by measuring the same sample using the conventional constant velocity heating method at 10 ° C./min. The conditions such as the amount of sample, sample container, and measurement atmosphere were the same as those in the dynamic temperature control. As can be seen from this curve 52, in the conventional constant velocity heating method, the dehydration phenomenon of the first stage adhering water and the dehydration phenomenon of the second stage crystal water were observed almost continuously, and both Was not possible.

【0036】また、(B)のグラフから、付着水の脱水
温度と結晶水の脱水温度を特定することができる。付着
水は室温から45℃付近まで徐々に脱水していくことが
分かり、45℃から58℃の区間では、ほぼ減量がなく
なる。また、結晶水は60℃において脱水する。したが
って、この医薬品の付着水のみを脱水乾燥させるには、
45℃から58℃の範囲の温度まで医薬品を加熱すれば
足り、かつ、60℃を越えないようにすることが必要で
ある。
Further, the dehydration temperature of adhering water and the dehydration temperature of crystal water can be specified from the graph of (B). It was found that the adhered water was gradually dehydrated from room temperature to around 45 ° C, and there was almost no weight loss in the section from 45 ° C to 58 ° C. The water of crystallization is dehydrated at 60 ° C. Therefore, to dehydrate and dry only the water adhering to this drug,
It is sufficient to heat the drug to a temperature in the range of 45 ° C to 58 ° C, and it is necessary not to exceed 60 ° C.

【0037】図4は、セラミックス焼結原料の結晶水と
付着水を分離定量する発明の実施例の熱重量曲線のグラ
フである。セラミックス焼結原料の試料としては、バイ
ンダとしてポリマーを添加した、スラリー状の原料を用
いた。測定条件は次の表2の通りである。
FIG. 4 is a graph of a thermogravimetric curve of an embodiment of the invention for separating and quantifying water of crystallization and water of adhesion of a ceramics sintering raw material. As a sample of the ceramics sintering raw material, a slurry raw material to which a polymer was added as a binder was used. The measurement conditions are as shown in Table 2 below.

【0038】[0038]

【表2】試料の量 23.00mg 試料容器 直径5mm、深さ2mmの開放型アル
ミニウム皿 測定雰囲気 乾燥窒素ガスを毎分100ミリリット
ルの流量で流す 制御開始温度 35℃ 式(1)のVm 3℃/分 式(1)のUm 2×10-3%/秒 式(1)のn 0.1
[Table 2] Amount of sample 23.00 mg Sample container Open type aluminum dish with a diameter of 5 mm and a depth of 2 mm Measurement atmosphere Dry nitrogen gas is passed at a flow rate of 100 ml / min Control start temperature 35 ° C. Vm 3 ° C. of formula (1) / Min Um of the formula (1) 2 × 10 −3 % / sec n 0.1 of the formula (1)

【0039】この図4は、横軸に温度、縦軸に重量をと
ったグラフである。実線の曲線54はこの発明のダイナ
ミック制御方法による測定結果であり、破線の曲線56
は毎分2℃の従来の等速昇温法による測定結果である。
曲線54から分かるように、第1段目の減量は9.93
%と決定でき、これが付着水量である。第2段目の減量
は5.63%と決定でき、これが結晶水量である。さら
に、第3段目の減量が6.15%観測され、これがバイ
ンダの一部の減量分である。従来法の曲線56と比較し
て特に顕著なことは、従来法では、第2段目の減量と第
3段目の減量が重複していて、両者の分離定量が困難に
なっているのに対して、この発明のダイナミック温度制
御方法では、第2段目の減量と第3段目の減量の境界が
明瞭に現れていて、結合水の分離定量が精度良く測定で
きることである。
FIG. 4 is a graph in which temperature is plotted on the horizontal axis and weight is plotted on the vertical axis. The solid curve 54 is the measurement result by the dynamic control method of the present invention, and the broken curve 56.
Is the measurement result by the conventional constant velocity heating method at 2 ° C. per minute.
As can be seen from the curve 54, the weight loss in the first step is 9.93.
%, Which is the amount of attached water. The weight loss in the second step can be determined to be 5.63%, which is the amount of water of crystallization. Furthermore, the weight loss of the third stage was observed at 6.15%, which is a part of the weight loss of the binder. What is particularly remarkable as compared with the curve 56 of the conventional method is that in the conventional method, the weight loss of the second step and the weight loss of the third step overlap, which makes it difficult to separate and quantify the two. On the other hand, in the dynamic temperature control method of the present invention, the boundary between the second-stage weight loss and the third-stage weight loss clearly appears, and the bound water can be accurately separated and quantified.

【0040】図5は、高分子化合物の熱分解開始温度と
熱分解終了温度を測定する発明の実施例の熱重量曲線の
グラフである。高分子化合物の試料としては、小さく刻
んだポリウレタンを用いた。測定条件は次の表3の通り
である。
FIG. 5 is a graph of a thermogravimetric curve of an example of the invention for measuring the thermal decomposition start temperature and the thermal decomposition end temperature of a polymer compound. As a sample of the polymer compound, small chopped polyurethane was used. The measurement conditions are as shown in Table 3 below.

【0041】[0041]

【表3】試料の量 9.44mg 試料容器 直径5mm、深さ2.5mmの開放型
アルミニウム皿 測定雰囲気 乾燥空気を毎分100ミリリットルの
流量で流す 制御開始温度 50℃ 式(1)のVm 5℃/分 式(1)のUm 4.5×10-3%/秒 式(1)のn 1.0
[Table 3] Amount of sample 9.44 mg Sample container Open-type aluminum dish with a diameter of 5 mm and a depth of 2.5 mm Measurement atmosphere Dry air is flown at a flow rate of 100 ml / min Control start temperature 50 ° C. Vm 5 of formula (1) C / min Um of formula (1) 4.5 × 10 −3 % / sec n 1.0 of formula (1)

【0042】この図5は、横軸に温度、縦軸に重量をと
ったグラフである。実線の曲線58はこの発明のダイナ
ミック温度制御方法による測定結果であり、破線の曲線
60は毎分5℃の従来の等速昇温法による測定結果であ
る。ダイナミック温度制御による曲線58から分かるこ
とは、まず、室温から60℃付近まで若干の減量が見ら
れる。これは、溶媒または水の分離による減量であると
思われる。その後は、平坦な基線が続くが、165℃付
近から熱重量曲線が基線から離れ始める。したがって、
熱分解開始温度は165℃である。また、JIS K7
120(1987)に規定する熱重量曲線の読み方に従
うと、このときの熱分解開始温度は201.7℃とな
る。その後は、温度上昇とともに複雑な熱分解過程が進
行するが、最終的には全ての試料が蒸発し、減量が10
0%となる。このときの熱分解終了温度は、基線に戻る
ときの温度で測定すると468.2℃となり、上述のJ
ISの方法で測定すると420.8℃となる。このよう
なダイナミック温度制御方法に対して、従来の等速昇温
法の曲線60では、同じ試料に対して、JIS方式の測
定によれば、熱分解開始温度が238.5℃、熱分解終
了温度が458.3℃となる。したがって、熱分解の開
始温度及び終了温度は、ダイナミック温度制御方法にお
けるJIS方式の測定温度よりも、かなり高めに測定さ
れてしまう。
FIG. 5 is a graph in which temperature is plotted on the horizontal axis and weight is plotted on the vertical axis. A solid line curve 58 is the measurement result by the dynamic temperature control method of the present invention, and a broken line curve 60 is the measurement result by the conventional constant velocity heating method at 5 ° C. per minute. As can be seen from the curve 58 based on the dynamic temperature control, first, a slight weight reduction is observed from room temperature to around 60 ° C. This appears to be a weight loss due to solvent or water separation. After that, a flat baseline continues, but the thermogravimetric curve begins to separate from the baseline at around 165 ° C. Therefore,
The thermal decomposition starting temperature is 165 ° C. Also, JIS K7
According to the reading of the thermogravimetric curve defined in 120 (1987), the thermal decomposition start temperature at this time is 201.7 ° C. After that, a complicated thermal decomposition process progresses as the temperature rises, but eventually all the samples evaporate and the weight loss is 10%.
It becomes 0%. The thermal decomposition end temperature at this time is 468.2 ° C. when measured at the temperature when returning to the base line, and
When measured by the IS method, the temperature is 420.8 ° C. In contrast to such a dynamic temperature control method, according to the curve 60 of the conventional constant velocity heating method, according to the measurement of JIS method, the thermal decomposition start temperature is 238.5 ° C. and the thermal decomposition end is the same for the same sample. The temperature reaches 458.3 ° C. Therefore, the start temperature and the end temperature of the thermal decomposition are measured considerably higher than the measurement temperature of the JIS method in the dynamic temperature control method.

【0043】本発明の熱重量測定方法を実施するための
熱天秤としては、図1に示すような示差熱天秤だけでな
く、示差走査熱量天秤なども利用でき、任意の形式の熱
天秤に有効である。また、試料ホルダについても、図1
に示すような共通の試料ホルダだけでなく、測定試料容
器と標準試料容器のそれぞれに対して別個に試料ホルダ
を設けた、いわゆる差動形の試料ホルダを用いてもよ
い。
As the thermobalance for carrying out the thermogravimetric measuring method of the present invention, not only the differential thermobalance as shown in FIG. 1 but also a differential scanning calorimeter can be used, which is effective for any type of thermobalance. Is. The sample holder is also shown in FIG.
In addition to the common sample holder as shown in FIG. 2, a so-called differential sample holder in which a sample holder is separately provided for each of the measurement sample container and the standard sample container may be used.

【0044】[0044]

【発明の効果】医薬品の付着水と結晶水を分離定量する
のにダイナミック温度制御方法を用いたので、医薬品の
付着品と結晶水を高精度に分離定量できた。また、医薬
品の付着水と結晶水の脱水温度をそれぞれ高精度に測定
でき、これらの脱水温度は、医薬品の乾燥温度を決定す
るのに有効に利用できる。
Since the dynamic temperature control method is used to separate and quantify the water adhering to the drug and the water of crystallization, the drug adhering to the drug and the water of crystallization can be separated and quantified with high accuracy. In addition, the dehydration temperatures of the adhered water and the crystal water of the drug can be measured with high accuracy, and these dehydration temperatures can be effectively used to determine the drying temperature of the drug.

【0045】セラミックス焼結減量の付着水と結晶水を
分離定量するのにダイナミック温度制御方法を用いたの
で、セラミックス焼結原料の付着品と結晶水を高精度に
分離定量できた。
Since the dynamic temperature control method was used for separating and quantifying the adherent water and the crystal water, which were reduced in the amount of ceramics sintering, the adhered product of the ceramics sintering raw material and the crystal water could be separated and quantified with high accuracy.

【0046】高分子化合物に含まれる成分の熱分解開始
温度と熱分解終了温度とを測定するのにダイナミック温
度制御方法を用いたので、高分子化合物の成分の熱分解
開始温度と熱分解終了温度とを高精度に測定できた。
Since the dynamic temperature control method was used to measure the thermal decomposition start temperature and the thermal decomposition end temperature of the component contained in the polymer compound, the thermal decomposition start temperature and the thermal decomposition end temperature of the component of the polymer compound were used. And could be measured with high accuracy.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明を実施するための熱天秤の概略構成図
である。
FIG. 1 is a schematic configuration diagram of a thermobalance for carrying out the present invention.

【図2】条件を変更したときの昇温速度曲線の変化を示
すグラフである。
FIG. 2 is a graph showing changes in a temperature rising rate curve when conditions are changed.

【図3】医薬品の熱重量曲線のグラフである。FIG. 3 is a graph of a thermogravimetric curve of a drug.

【図4】セラミックス焼結原料の熱重量曲線のグラフで
ある。
FIG. 4 is a graph of a thermogravimetric curve of a ceramics sintering raw material.

【図5】高分子化合物の熱重量曲線のグラフである。FIG. 5 is a graph of a thermogravimetric curve of a polymer compound.

【符号の説明】[Explanation of symbols]

10 保護管 12 測定試料容器 14 標準試料容器 16 試料ホルダ 18 示差熱電対 20 赤外線ランプ 22 楕円集光鏡 24 天秤ビーム 42 プログラム自動温度制御装置 48 制御係数設定装置 50 ダイナミック温度制御方法による曲線 52 等速昇温法による曲線 10 Protective tube 12 Measurement sample container 14 Standard sample container 16 Sample holder 18 Differential thermocouple 20 Infrared lamp 22 Elliptical focusing mirror 24 Balance beam 42 Program automatic temperature control device 48 Control coefficient setting device 50 Curve by dynamic temperature control method 52 Constant velocity Curve by heating method

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 熱重量測定の試料として医薬品を用い、
この医薬品の減量速度に応じて医薬品の昇温速度が連続
的に変化するように医薬品の温度を制御して熱重量変化
曲線を求め、この曲線に基づいて、医薬品に含まれる付
着水と結晶水とを分離定量することを特徴とする熱重量
測定方法。
1. A drug is used as a thermogravimetric sample,
The thermogravimetric change curve is obtained by controlling the temperature of the drug so that the temperature rising rate of the drug continuously changes according to the weight loss rate of this drug, and based on this curve, the adhered water and crystallization water contained in the drug A thermogravimetric measurement method characterized by separating and quantifying and.
【請求項2】 熱重量測定の試料として医薬品を用い、
この医薬品の減量速度に応じて医薬品の昇温速度が連続
的に変化するように医薬品の温度を制御して熱重量変化
曲線を求め、この曲線に基づいて、医薬品に含まれる付
着水と結晶水のそれぞれの脱水温度を測定することを特
徴とする熱重量測定方法。
2. A drug is used as a thermogravimetric sample,
The thermogravimetric change curve is obtained by controlling the temperature of the drug so that the temperature rising rate of the drug continuously changes according to the weight loss rate of this drug, and based on this curve, the adhered water and crystallization water contained in the drug A thermogravimetric measurement method comprising measuring the dehydration temperature of each.
【請求項3】 熱重量測定の試料としてセラミックス焼
結原料を用い、このセラミックス焼結原料の減量速度に
応じてセラミックス焼結原料の昇温速度が連続的に変化
するようにセラミックス焼結原料の温度を制御して熱重
量変化曲線を求め、この曲線に基づいて、セラミックス
焼結原料に含まれる付着水と結晶水とを分離定量するこ
とを特徴とする熱重量測定方法。
3. A ceramics sintering raw material is used as a sample for thermogravimetric measurement, and the ceramics sintering raw material is adjusted so that the temperature rising rate of the ceramics sintering raw material continuously changes according to the reduction rate of the ceramics sintering raw material. A thermogravimetric measuring method characterized in that a thermogravimetric change curve is obtained by controlling the temperature, and based on this curve, the adhering water and the crystallization water contained in the ceramics sintering raw material are separated and quantified.
【請求項4】 熱重量測定の試料として高分子化合物を
用い、この高分子化合物の減量速度に応じて高分子化合
物の昇温速度が連続的に変化するように高分子化合物の
温度を制御して熱重量変化曲線を求め、この曲線に基づ
いて、高分子化合物に含まれる成分の熱分解開始温度と
熱分解終了温度とを測定することを特徴とする熱重量測
定方法
4. A polymer compound is used as a sample for thermogravimetric measurement, and the temperature of the polymer compound is controlled so that the temperature rising rate of the polymer compound continuously changes according to the weight loss rate of the polymer compound. To obtain a thermogravimetric change curve, and based on this curve, the thermal decomposition start temperature and the thermal decomposition end temperature of the components contained in the polymer compound are measured.
【請求項5】 請求項1から4までのいずれか1項に記
載の熱重量測定方法において、試料の昇温速度の絶対値
が試料の減量速度の絶対値の単調減少関数となるように
試料温度を制御することを特徴とする熱重量測定方法。
5. The thermogravimetric measurement method according to claim 1, wherein the absolute value of the temperature rising rate of the sample is a monotonically decreasing function of the absolute value of the deceleration rate of the sample. A thermogravimetric measuring method characterized by controlling temperature.
【請求項6】 請求項1から4までのいずれか1項に記
載の熱重量測定方法において、試料を加熱するのに赤外
線加熱炉を用いることを特徴とする熱重量測定方法。
6. The thermogravimetric measuring method according to claim 1, wherein an infrared heating furnace is used to heat the sample.
JP26305794A 1994-10-03 1994-10-03 Thermogravimetry method Expired - Fee Related JP2791642B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26305794A JP2791642B2 (en) 1994-10-03 1994-10-03 Thermogravimetry method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26305794A JP2791642B2 (en) 1994-10-03 1994-10-03 Thermogravimetry method

Publications (2)

Publication Number Publication Date
JPH08105831A true JPH08105831A (en) 1996-04-23
JP2791642B2 JP2791642B2 (en) 1998-08-27

Family

ID=17384265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26305794A Expired - Fee Related JP2791642B2 (en) 1994-10-03 1994-10-03 Thermogravimetry method

Country Status (1)

Country Link
JP (1) JP2791642B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006145520A (en) * 2004-10-22 2006-06-08 Asahi Glass Co Ltd Analysis method for composition of sodium hydrogencarbonate crystal particles
JP2006145521A (en) * 2004-10-22 2006-06-08 Asahi Glass Co Ltd Analysis method for composition of sodium hydrogencarbonate crystal particles
JP2006153890A (en) * 2004-10-22 2006-06-15 Asahi Glass Co Ltd Method for analyzing composition of sodium hydrogencarbonate crystal grain
JP2007292764A (en) * 2006-04-25 2007-11-08 Mettler-Toledo Ag Measuring device for moisture weight measurement
JP2009085699A (en) * 2007-09-28 2009-04-23 A & D Co Ltd Method and apparatus for measuring free water
JP2013092539A (en) * 2013-02-04 2013-05-16 Nippon Steel & Sumitomo Metal Evaluation method for blended iron ore for sintering
CN103822846A (en) * 2014-01-23 2014-05-28 浙江工商大学 Detection method for moisture form of organic waste
CN104483343A (en) * 2014-12-29 2015-04-01 成都光明光电股份有限公司 Temperature measuring method for crystallization heat treatment
CN107490526A (en) * 2017-09-06 2017-12-19 中国工程物理研究院核物理与化学研究所 Macromolecule material aging effect the cannot-harm-detection device and its detection method
JP2018054294A (en) * 2016-09-26 2018-04-05 株式会社Kri Analyzing method of carbon composite material and evaluating method of carbonaceous material for secondary battery
JP2018091749A (en) * 2016-12-05 2018-06-14 株式会社Kri Method for analyzing carbon composite material, carbon fiber composite material and evaluation method of carbon material for secondary battery
JP2019070534A (en) * 2017-10-06 2019-05-09 株式会社Kri Estimation method of coefficient of thermal expansion, and quality control method of calcined coke
JP2019075238A (en) * 2017-10-13 2019-05-16 株式会社Kri Method of analyzing electrode material, method of managing quality of electrode material, and method of analyzing deterioration in electrode material
JP2020085809A (en) * 2018-11-30 2020-06-04 株式会社Kri Pre-processing method for analyzing phase structure of rubber composition, evaluation method of phase structure of rubber composition and quality control method of rubber composition

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006145521A (en) * 2004-10-22 2006-06-08 Asahi Glass Co Ltd Analysis method for composition of sodium hydrogencarbonate crystal particles
JP2006153890A (en) * 2004-10-22 2006-06-15 Asahi Glass Co Ltd Method for analyzing composition of sodium hydrogencarbonate crystal grain
JP2006145520A (en) * 2004-10-22 2006-06-08 Asahi Glass Co Ltd Analysis method for composition of sodium hydrogencarbonate crystal particles
JP2007292764A (en) * 2006-04-25 2007-11-08 Mettler-Toledo Ag Measuring device for moisture weight measurement
JP2012168202A (en) * 2006-04-25 2012-09-06 Mettler-Toledo Ag Measuring device for moisture weight measurement
JP2009085699A (en) * 2007-09-28 2009-04-23 A & D Co Ltd Method and apparatus for measuring free water
JP2013092539A (en) * 2013-02-04 2013-05-16 Nippon Steel & Sumitomo Metal Evaluation method for blended iron ore for sintering
CN103822846B (en) * 2014-01-23 2016-01-20 浙江工商大学 A kind of detection method of organic waste water morphology
CN103822846A (en) * 2014-01-23 2014-05-28 浙江工商大学 Detection method for moisture form of organic waste
CN104483343A (en) * 2014-12-29 2015-04-01 成都光明光电股份有限公司 Temperature measuring method for crystallization heat treatment
JP2018054294A (en) * 2016-09-26 2018-04-05 株式会社Kri Analyzing method of carbon composite material and evaluating method of carbonaceous material for secondary battery
JP2018091749A (en) * 2016-12-05 2018-06-14 株式会社Kri Method for analyzing carbon composite material, carbon fiber composite material and evaluation method of carbon material for secondary battery
CN107490526A (en) * 2017-09-06 2017-12-19 中国工程物理研究院核物理与化学研究所 Macromolecule material aging effect the cannot-harm-detection device and its detection method
CN107490526B (en) * 2017-09-06 2023-08-22 中国工程物理研究院核物理与化学研究所 Nondestructive testing device and method for aging effect of high polymer material
JP2019070534A (en) * 2017-10-06 2019-05-09 株式会社Kri Estimation method of coefficient of thermal expansion, and quality control method of calcined coke
JP2019075238A (en) * 2017-10-13 2019-05-16 株式会社Kri Method of analyzing electrode material, method of managing quality of electrode material, and method of analyzing deterioration in electrode material
JP2020085809A (en) * 2018-11-30 2020-06-04 株式会社Kri Pre-processing method for analyzing phase structure of rubber composition, evaluation method of phase structure of rubber composition and quality control method of rubber composition

Also Published As

Publication number Publication date
JP2791642B2 (en) 1998-08-27

Similar Documents

Publication Publication Date Title
JPH08105831A (en) Thermogravimeric analysis
Schick et al. Fast scanning calorimetry
Booth et al. The use of differential scanning calorimetry to study polymer crystallization kinetics
JPH081414B2 (en) Method and apparatus for performing high resolution analysis
JP3370592B2 (en) Differential thermal analyzer
JP2005249427A (en) Thermophysical property measuring method and device
Wuxderlich et al. Dynamic differential thermal analysis of the glass transition interval
Wei et al. Integration of ultrafast scanning calorimetry with micro-Raman spectroscopy for investigation of metastable materials
CN104792821B (en) Miniature calorimeter
Garnier Specific heat of srtio3 near the structural transition
JP4178729B2 (en) Thermal analyzer
JPH07260663A (en) Gas analyzing method in thermogravimetry
JPH07260662A (en) Thermogravimetric method
US4027524A (en) Apparatus for determining thermophysical properties of test specimens
Baber et al. In situ measurement of dimensional changes and temperature fields during sintering with a novel thermooptical measuring device
JP4228080B2 (en) Method for calculating the crystal length distribution of crystals in a material from differential scanning calorimetry data of the polymer material
Dong et al. A comparison of a novel single-pan calorimeter with a conventional heat-flux differential scanning calorimeter
Mokdad et al. A Self-Validation Method for High-Temperature Thermocouples Under Oxidizing Atmospheres
JPH1123442A (en) Method for analyzing thermal decomposition reaction of solid
Zorn et al. In situ crystallization measurements on Fe-Zr glasses using an automated high-temperature diffractometer with a position sensitive detector
Solomons et al. Electronic Recording Differential Potentiometer
Hunter Dynamic Vapour Sorption
RU2692399C1 (en) Method for determination of metal powder self-ignition temperature
RU2243543C1 (en) Method for comprehensive evaluation of material thermal characteristics
RU2713808C1 (en) Cooling and heating method with constant speed of extended calorimetric chambers of isothermal capillary differential titration nanocalorimeter intended for operation with short-lived objects

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20080619

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20090619

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090619

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20100619

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20100619

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20110619

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20120619

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130619

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees