JP4228080B2 - Method for calculating the crystal length distribution of crystals in a material from differential scanning calorimetry data of the polymer material - Google Patents

Method for calculating the crystal length distribution of crystals in a material from differential scanning calorimetry data of the polymer material Download PDF

Info

Publication number
JP4228080B2
JP4228080B2 JP2005209342A JP2005209342A JP4228080B2 JP 4228080 B2 JP4228080 B2 JP 4228080B2 JP 2005209342 A JP2005209342 A JP 2005209342A JP 2005209342 A JP2005209342 A JP 2005209342A JP 4228080 B2 JP4228080 B2 JP 4228080B2
Authority
JP
Japan
Prior art keywords
temperature
melting
crystal
temperatures
obtaining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005209342A
Other languages
Japanese (ja)
Other versions
JP2007024735A (en
Inventor
信行 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gunma University NUC
Original Assignee
Gunma University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gunma University NUC filed Critical Gunma University NUC
Priority to JP2005209342A priority Critical patent/JP4228080B2/en
Publication of JP2007024735A publication Critical patent/JP2007024735A/en
Application granted granted Critical
Publication of JP4228080B2 publication Critical patent/JP4228080B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、高分子物質を示差走査熱量測定(Differential Scanning Calorimetry、以下「DSC」という。)して得られた融解ピーク曲線から必要な融解温度を補正することにより、この高分子物質中の結晶(以下、「高分子結晶」という。)の結晶長分布を算出する方法に関するものである。   The present invention corrects the melting temperature from a melting peak curve obtained by differential scanning calorimetry (hereinafter referred to as “DSC”) of a polymer material, thereby correcting crystals in the polymer material. (Hereinafter, referred to as “polymer crystal”).

高分子物質のDSC融解ピーク曲線は、高分子結晶の結晶長ζの分布に変換でき、その分布はX線解析による結果と良く一致することが報告されている(例えば、非特許文献1参照。)。
非特許文献1では、融解ピーク曲線を示す融解温度Tmの補正に、純粋な安息香酸の融解ピークの初期勾配が用いられている。即ち、実測された高分子物質の融解ピーク曲線上の点から安息香酸の融解ピークの初期勾配をもつ直線を引き、温度軸と交わった温度が、融解ピーク曲線上の点での融解温度Tmであるとされている。ただし、安息香酸は僅かな純度の低下で、融解ピークの立ち上がりが緩やかになる特徴がある(例えば、非特許文献2参照。)。そのため、温度補正には、高純度の安息香酸が要求されている。
It has been reported that the DSC melting peak curve of a polymer substance can be converted into the distribution of the crystal length ζ of the polymer crystal, and the distribution agrees well with the result of X-ray analysis (see, for example, Non-Patent Document 1). ).
In Non-Patent Document 1, the initial gradient of the melting peak of pure benzoic acid is used to correct the melting temperature Tm indicating the melting peak curve. That is, a straight line having an initial gradient of the melting peak of benzoic acid is drawn from the measured point on the melting peak curve of the polymer substance, and the temperature crossing the temperature axis is the melting temperature Tm at the point on the melting peak curve. It is said that there is. However, benzoic acid is characterized by a slight decrease in purity and a slow rise in melting peak (see Non-Patent Document 2, for example). Therefore, high-purity benzoic acid is required for temperature correction.

しかしながら、低分子である安息香酸の結晶の融解の仕方は、非結晶部分と共存する高分子結晶の融解とは異なるため、安息香酸の融解ピークの立ち上がり勾配で高分子結晶の融解温度Tmを補正することに対しては、厳密性が欠けている。更に、非特許文献1で算出された結晶長(ζ)分布は温度で規格化されていないため、即ち、分布関数の単位が「nm-1-1」ではなく「nm-1」であるため、他の試料のζ分布との比較ができない。またζ分布を算出するために必要な単位面積当りの結晶末端表面自由エネルギーσは、他の文献から引用しなければならない(例えば、非特許文献3参照。)。その場合、この結晶末端表面自由エネルギーσは、あくまで仮の値であって用いている試料の値ではない。
Polymer, Vol.25, pp1268-1270(1984) Principles of Thermal Analysis and Calorimetry, RSC Paperbacks, P87(2002) Thermochimica Acta, Vol.396, PP79-85(2003)
However, since the melting method of benzoic acid crystals, which are low molecular weights, is different from the melting of polymer crystals that coexist with non-crystalline parts, the melting temperature Tm of the polymer crystals is corrected by the rising slope of the melting peak of benzoic acid. There is a lack of strictness for doing this. Furthermore, the crystal length calculated in Non-Patent Document 1 (zeta) distribution because not standardized in temperature, i.e., the unit of the distribution function is a rather "nm -1 K -1" "nm -1" Therefore, it cannot be compared with the ζ distribution of other samples. Further, the crystal end surface free energy σ per unit area necessary for calculating the ζ distribution must be cited from other documents (for example, see Non-Patent Document 3). In this case, the crystal end surface free energy σ is merely a temporary value, not the value of the sample used.
Polymer, Vol.25, pp1268-1270 (1984) Principles of Thermal Analysis and Calorimetry, RSC Paperbacks, P87 (2002) Thermochimica Acta, Vol.396, PP79-85 (2003)

しかしながら、結晶長(ζ)分布を算出するために必要な結晶末端表面自由エネルギーσを非特許文献3の研究のように、他の文献から引用したとしても、熱に敏感で繊細な構造や性質を有する高分子物質のDSC融解ピークの解析は、X線解析装置だけでは難しく、即ち、X線解析装置を用いたとしても、試料にX線を当てることによる影響で、実際に近い結晶長分布を得ることはできない問題点があった。また結晶長分布を算出するに際しては、高純度の安息香酸を使用して、融解温度Tmの補正をしなければならない煩わしさがあった。   However, even if the crystal end surface free energy σ necessary for calculating the crystal length (ζ) distribution is cited from other documents as in the study of Non-Patent Document 3, it is sensitive to heat and has a delicate structure and properties. Analysis of DSC melting peak of high molecular weight material is difficult with only X-ray analyzer, that is, even if X-ray analyzer is used, the crystal length distribution is close to the actual due to the effect of irradiating the sample with X-rays There was a problem that could not be obtained. Further, when calculating the crystal length distribution, there is an inconvenience that the melting temperature Tm must be corrected using high-purity benzoic acid.

本発明の目的は、高分子物質のDSC融解ピークを実際に近い結晶長分布に変換することにより、X線解析で得られる分布とは異なった、熱に敏感で繊細な高分子物質の構造や性質を反映した結晶長分布を、X線解析装置及び融解温度Tmの補正に高純度の安息香酸を用いることなく、DSCデータに基づいて算出する方法を提供することにある。   The object of the present invention is to convert the DSC melting peak of a polymer material into a crystal length distribution that is close to the actual one, so that the structure of a sensitive and sensitive polymer material, which is different from the distribution obtained by X-ray analysis, It is an object of the present invention to provide a method for calculating a crystal length distribution reflecting properties based on DSC data without using high-purity benzoic acid for correction of an X-ray analyzer and a melting temperature Tm.

本願請求項1に係る発明は、図1〜図2に示すように、次の工程(a)〜(i)を含む高分子物質の示差走査熱量測定データから該物質の結晶長分布を算出する方法である。
(a) 高分子物質を複数の所与の温度(Ta1, Ta2, ... Tan)で熱処理して前記高分子物質の示差走査熱量測定を行う工程、
(b) 前記熱量測定から前記複数の所与の温度(Ta1, Ta2, ... Tan)における各温度に対応する複数の融解開始温度(Tb1, Tb2, ... Tbn)及び複数の融解終了温度(Te1, Te2, ... Ten)を求める工程、
(c) たて軸を前記高分子物質の融解温度Tm、及びよこ軸を前記熱処理温度Taとする図中に、前記複数の融解開始温度(Tb1, Tb2, ... Tbn)及び前記複数の融解終了温度(Te1, Te2, ... Ten)をそれぞれプロットする工程(図1参照)、
(d) 前記プロットした複数の融解開始温度(Tb1, Tb2, ... Tbn)から得られる直線P1を前記プロットした複数の融解終了温度(Te1, Te2, ... Ten)から得られる直線P2に交差させてその交点Mに対応する温度Tb0を求める工程(図1参照)、
(e) 前記図中にTm=Taの仮想直線P3を引き、前記直線P2を延長して直線P3に交差させてその交点Nに対応する平衡融解温度Tmxを求める工程(図1参照)、
(f) 前記高分子物質の重量をW、前記(a)工程の示差走査熱量測定で実測された融解ピークAの物質のグラム当りの融解吸熱量をQ、昇温速度をdT/dt(Tは温度、tは時間)とし、前記(d)及び(e)工程でそれぞれ求めた温度Tb0及び温度Tmxを用いて、次の式(1)から仮想融解ピークBのピーク点Pにおけるヒートフロー(dQ/dt)pを求め、この式(1)の両辺を(Tmx−Tb0)で除すことにより得られた式(2)から仮想融解ピークBの立ち上がり勾配Cを求める工程(図2参照)、
(dQ/dt)p=2QW(dT/dt)/(Tmx−Tb0) ………(1)
C=(dQ/dt)p/(Tmx−Tb0)=2QW(dT/dt)/(Tmx−Tb0)2 …(2)
(g) 前記融解ピークAの曲線と温度軸線で囲まれた吸熱量Qに相当する面積∫Tb Te(dQ/dt)dTを求め、更にTbからTeまでの各温度で単位温度当りの吸熱変化量ΔQのQに対する比ΔQ/Qに相当する(dQ/dt)/∫Tb Te(dQ/dt)dTを求める工程、
(h) σを高分子物質中の結晶の単位面積当りの結晶末端表面自由エネルギー、huをその単位体積当りの融解熱とするとき、温度補正されたTmを用いて、次の式(3)より前記高分子結晶の結晶長ζを求める工程、及び
ζ=(2σ/hu)[Tmx/(Tmx−Tm)] ………(3)
(i) 前記(g)工程で求めたΔQ/Qと、前記(h)工程で求めた結晶長ζを次の式(4)に代入して、補正された温度で規格化された結晶長分布関数F(ζ)を求め、この関数F(ζ)から結晶長分布を求める工程。
F(ζ)=(ΔQ/Q)/ζ ………(4)
ただし、(a)〜(d)工程において、nはそれぞれ正の整数である。
In the invention according to claim 1 of the present application, as shown in FIGS. 1 to 2, the crystal length distribution of the substance is calculated from the differential scanning calorimetry data of the polymer substance including the following steps (a) to (i). Is the method.
(a) a step of performing differential scanning calorimetry of the polymer material by heat-treating the polymer material at a plurality of given temperatures (Ta1, Ta2, ... Tan);
(b) From the calorimetry, a plurality of melting start temperatures (Tb1, Tb2, ... Tbn) corresponding to each temperature at the plurality of given temperatures (Ta1, Ta2, ... Tan) and a plurality of melting ends The process of determining the temperature (Te1, Te2, ... Ten),
(c) In the figure where the vertical axis is the melting temperature Tm of the polymer material and the horizontal axis is the heat treatment temperature Ta, the plurality of melting start temperatures (Tb1, Tb2, ... Tbn) and the plurality of the melting points Plotting melting end temperatures (Te1, Te2, ... Ten) respectively (see Fig. 1),
(d) A straight line P1 obtained from the plurality of plotted melting start temperatures (Tb1, Tb2,... Tbn) is a straight line P2 obtained from the plurality of plotted melting end temperatures (Te1, Te2,... Ten). To obtain a temperature Tb 0 corresponding to the intersection M (see FIG. 1),
(e) drawing a virtual line P3 of Tm = Ta in the figure, the step of obtaining an equilibrium melting temperature Tm x corresponding to the intersection N by intersecting a straight line P3 by extending the straight line P2 (see FIG. 1),
(f) The weight of the polymer substance is W, the melting endotherm per gram of the substance of the melting peak A actually measured by differential scanning calorimetry in the step (a) is Q, and the rate of temperature rise is dT / dt (T temperature, t is the time), the (by using the temperature Tb 0 and the temperature Tm x obtained respectively d) and (e) step, the heat at the peak point P of the virtual melting peak B from the following equation (1) flow seek (dQ / dt) p, obtaining a rising slope C of the virtual melting peak B from both sides of (Tm x -Tb 0) in dividing the resulting equation by the formula (1) (2) ( (See Fig. 2)
(dQ / dt) p = 2QW (dT / dt) / (Tm x −Tb 0 ) (1)
C = (dQ / dt) p / (Tm x −Tb 0 ) = 2QW (dT / dt) / (Tm x −Tb 0 ) 2 (2)
(g) Obtain the area ∫ Tb Te (dQ / dt) dT corresponding to the endothermic amount Q surrounded by the curve of the melting peak A and the temperature axis, and further change the endotherm per unit temperature at each temperature from Tb to Te. corresponds to the ratio Delta] Q / Q to Q quantity ΔQ (dQ / dt) / ∫ Tb Te obtaining a (dQ / dt) dT,
(h) When σ is the crystal end surface free energy per unit area of the crystal in the polymer material and hu is the heat of fusion per unit volume, using the temperature-corrected Tm, the following equation (3) A step of obtaining a crystal length ζ of the polymer crystal, and
ζ = (2σ / hu) [Tm x / (Tm x −Tm)] (3)
(i) ΔQ / Q obtained in the step (g) and the crystal length ζ obtained in the step (h) are substituted into the following equation (4) to standardize the crystal length at the corrected temperature. A step of obtaining a distribution function F (ζ) and obtaining a crystal length distribution from the function F (ζ).
F (ζ) = (ΔQ / Q) / ζ (4)
However, in the steps (a) to (d), n is a positive integer.

本願請求項1に係る方法では、DSC融解ピーク曲線の変数である融解温度Tmを、高分子物質のDSCデータを用いて式(1)及び(2)に基づき温度補正し、温度Tb0及び温度Tmxを用いて式(3)及び(4)から結晶長分布関数F(ζ)を算出することにより、高分子物質のDSC融解ピークを実際に近い結晶長分布に変換することができるとともに、熱に敏感で繊細な高分子物質の構造や性質を結晶長分布から予測することができる。またX線解析装置及び融解温度Tmの補正に高純度の安息香酸を用いずに、簡便で安価に高分子物質の結晶長分布を算出することができる。 In the method according to claim 1 of the present application, the melting temperature Tm, which is a variable of the DSC melting peak curve, is temperature-corrected based on the equations (1) and (2) using the DSC data of the polymer substance, and the temperature Tb 0 and the temperature By calculating the crystal length distribution function F (ζ) from Eqs. (3) and (4) using Tm x , the DSC melting peak of the polymer substance can be converted into a crystal length distribution close to actuality, The structure and properties of sensitive and sensitive polymer substances can be predicted from the crystal length distribution. Further, the crystal length distribution of the polymer substance can be calculated easily and inexpensively without using high-purity benzoic acid for the correction of the X-ray analyzer and the melting temperature Tm.

以下、本発明の最良の実施の形態を各工程毎に説明する。
(a) DSCの実施
同一の高分子物質を複数用意し、各高分子物質を複数の所与の温度(Ta1, Ta2, ... Tan)でそれぞれ熱処理して、DSCデータを得る。複数の所与の温度を設定するに際しては、熱処理によって、結晶形が変化する温度領域を避け、Tb−Taがほぼ一定である温度範囲の融解終了温度Te及び融解開始温度Teを選択する。Teは、一般的にはTbの値に関係しない。高分子物質は物質中に結晶構造を有するものである。
Hereinafter, the best mode of the present invention will be described for each step.
(a) Implementation of DSC A plurality of identical polymer materials are prepared, and each polymer material is heat-treated at a plurality of given temperatures (Ta1, Ta2,... Tan) to obtain DSC data. When setting a plurality of given temperatures, a melting end temperature Te and a melting start temperature Te in a temperature range in which Tb-Ta is substantially constant are selected by avoiding a temperature range in which the crystal form changes by heat treatment. Te is generally not related to the value of Tb. The polymer substance has a crystal structure in the substance.

(b) 各融解開始温度及び各融解終了温度の測定
複数のDSCデータから、複数の熱処理温度(Ta1, Ta2, ... Tan)毎に複数の融解開始温度(Tb1, Tb2, ... Tbn)及び複数の融解終了温度(Te1, Te2, ... Ten)を求める。これらの温度は、複数のDSCデータから次のようにして求められる。融解ピークの立ち上がる手前の直線部分から高温度側に延長線を引き、その直線からのピークの立ち上がり温度をTbとし、また、融解ピークが終了した後の直線部分から低温側に延長線を引き、その直線と融解終了側のピーク曲線との合流点をTeとする。
(b) Measurement of each melting start temperature and each melting end temperature From a plurality of DSC data, a plurality of melting start temperatures (Tb1, Tb2, ... Tbn for each of a plurality of heat treatment temperatures (Ta1, Ta2, ... Tan). ) And a plurality of melting end temperatures (Te1, Te2,... Ten). These temperatures are obtained from a plurality of DSC data as follows. Draw an extension line to the high temperature side from the straight line part before the melting peak rises, set the rising temperature of the peak from the straight line to Tb, and draw an extension line from the straight line part after the melting peak to the low temperature side, Te is the junction of the straight line and the peak curve at the end of melting.

(c) 図中へのプロット
図1に示すように、たて軸を高分子物質の融解温度Tm、及びよこ軸を熱処理温度Taとする図中に、複数の熱処理温度(Ta1, Ta2, ... Tan)に対応して、複数の融解開始温度(Tb1, Tb2, ... Tbn)及び複数の融解終了温度(Te1, Te2, ... Ten)をそれぞれプロットする。
(c) Plot in the figure As shown in FIG. 1, in the figure where the vertical axis is the melting temperature Tm of the polymer substance and the horizontal axis is the heat treatment temperature Ta, a plurality of heat treatment temperatures (Ta1, Ta2,. .. Tan, a plurality of melting start temperatures (Tb1, Tb2,... Tbn) and a plurality of melting end temperatures (Te1, Te2,... Ten) are respectively plotted.

(d) 温度Tb0の決定
図1に示すように、先ずプロットした複数の融解開始温度(Tb1, Tb2, ... Tbn)から直線P1を得る。次いでプロットした複数の融解終了温度(Te1, Te2, ... Ten)から直線P2を得る。次に直線P1を直線P2に交差させてその交点Mを求め、この点Mをよこ軸の温度軸で読み取って、交点Mに対応する温度Tb0を求める。この温度Tb0は後述する仮想融解ピークB(図2参照)の融解開始温度でもあり、融解終了温度でもあり、またピークBのピーク温度でもある。
(d) Determination of temperature Tb 0 As shown in FIG. 1, a straight line P1 is first obtained from a plurality of plotted melting start temperatures (Tb1, Tb2,... Tbn). Next, a straight line P2 is obtained from the plotted melting end temperatures (Te1, Te2,... Ten). Next, the straight line P1 is intersected with the straight line P2, and the intersection M is obtained. The point M is read by the temperature axis of the horizontal axis, and the temperature Tb 0 corresponding to the intersection M is obtained. This temperature Tb 0 is a melting start temperature, a melting end temperature of a virtual melting peak B (see FIG. 2) described later, and a peak B peak temperature.

(e) 平衡融解温度Tmxの決定
先ず図1の中にTm=Taの仮想直線P3を引く。次いで工程(d)で得た直線P2を延長して直線P3に交差させてその交点Nを求め、この点Nをよこ軸の温度軸で読み取って、交点Nに対応する温度Tmxを求める。このTmxは平衡融解温度である。即ち、結晶長が無限大のときの高分子物質の融解温度であり、結晶がすべて融解し結晶化度0(ゼロ)になったときの温度でもある。図1から明らかなように、一般的に複数の融解開始温度(Tb1, Tb2, ... Tbn)から得られた直線P1はTm=Taの仮想直線P3より上側に位置する。即ち、各融解開始温度はそれぞれの熱処理温度Taより通常数度高い。
なお、高温熱処理試料では、融解終了温度Teが熱処理温度Taの増加とともに平衡融解温度Tmxを越えて増加していくことがある。これは一般的には結晶の遅延融解によるオーバーシュートと考えられ、このときの融解終了温度Teは、P2直線を引くデータには使えない。
(e) subtracting the virtual straight line P3 of Tm = Ta in first determined Figure 1 equilibrium melting temperature Tm x. Then the intersection point N determined by intersecting a straight line P3 by extending the straight line P2 obtained in step (d), by reading this point N at a temperature axis of abscissa, obtaining the temperature Tm x corresponding to the intersection N. The Tm x is an equilibrium melting temperature. That is, it is the melting temperature of the polymer substance when the crystal length is infinite, and is also the temperature when all the crystals are melted and the crystallinity is 0 (zero). As is apparent from FIG. 1, the straight line P1 obtained from a plurality of melting start temperatures (Tb1, Tb2,... Tbn) is generally located above the virtual straight line P3 of Tm = Ta. That is, each melting start temperature is usually several degrees higher than the respective heat treatment temperature Ta.
In the high-temperature heat treatment sample may melting completion temperature Te increases beyond equilibrium melting temperature Tm x with increasing annealing temperature Ta. This is generally considered as an overshoot due to delayed melting of the crystal, and the melting end temperature Te at this time cannot be used for data for drawing the P2 straight line.

(f) 高分子物質の仮想融解ピークからの勾配の決定
前記(a)工程のDSCで実測された融解ピークAが示される図2に前記(d)工程で求められた温度Tb0と前記(e)工程で求められた温度Tmxを用いて仮想融解ピークBを次の手順で作図する。
先ず高分子物質の重量をW、前記融解ピークAの物質のグラム当りの融解吸熱量をQ、昇温速度をdT/dt(Tは温度、tは時間)とし、温度Tb0及び温度Tmxを用いて、図2に示すように、次の式(1)から仮想融解ピークBのピーク点Pにおけるヒートフロー(dQ/dt)pを求める。
(dQ/dt)p=2QW(dT/dt)/(Tmx−Tb0) ………(1)
次いでこの式(1)の両辺を(Tmx−Tb0)で除すことにより得られた式(2)から仮想融解ピークBの立ち上がり勾配Cを求める。これにより図2に示すように、点Tb0と点Tmxと点Pとからなる直角三角形を描くことができる。この三角形の面積は、前記吸熱量Qに相当する。
C=(dQ/dt)p/(Tmx−Tb0)=2QW(dT/dt)/(Tmx−Tb0)2 …(2)
(f) Determination of gradient from virtual melting peak of polymer substance FIG. 2 shows the melting peak A measured by DSC in the step (a) and the temperature Tb 0 obtained in the step (d) and the above ( virtual melting peak B plotting by the following procedure using the temperature Tm x obtained in step e).
First, the weight of the polymer substance is W, the melting endotherm per gram of the substance having the melting peak A is Q, the heating rate is dT / dt (T is temperature, t is time), temperature Tb 0 and temperature Tm x 2, the heat flow (dQ / dt) p at the peak point P of the virtual melting peak B is obtained from the following equation (1), as shown in FIG.
(dQ / dt) p = 2QW (dT / dt) / (Tm x −Tb 0 ) (1)
Next, the rising gradient C of the virtual melting peak B is obtained from the equation (2) obtained by dividing both sides of the equation (1) by (Tm x -Tb 0 ). Thus, as shown in FIG. 2, it is possible to draw a right triangle consisting of points Tb 0 and the point Tm x and the point P. The area of this triangle corresponds to the endothermic amount Q.
C = (dQ / dt) p / (Tm x −Tb 0 ) = 2QW (dT / dt) / (Tm x −Tb 0 ) 2 (2)

(g) 単位温度当りの比吸熱変化量ΔQ/Qの決定
前記融解ピークAの曲線と温度軸線で囲まれた吸熱量Qに相当する面積∫Tb Te(dQ/dt)dTを求め、TbからTeまでの各温度でのΔQ/Qに相当する(dQ/dt)/∫Tb Te(dQ/dt)dTを求める。TbからTeまでの各温度の温度補正は次のようにして行う。融解ピークAのピーク点から温度軸線まで前記(f)工程で求めた勾配Cの直線をピーク点から引く。温度軸線との交点温度がピーク点での真の融解ピーク温度である。次に、補正前融解ピーク温度と真の融解ピーク温度の差ΔTを求める。TbからTeまでの各温度の温度補正値は、−ΔT(dQ/dt)/(dQ/dt)p で与えられる。ここで、(dQ/dT)pはピーク点でのヒートフローであり、(dQ/dT)は温度補正前の各温度でのヒートフローである。
(g) Determination of specific endothermic change ΔQ / Q per unit temperature Obtain an area ∫ Tb Te (dQ / dt) dT corresponding to the endothermic amount Q surrounded by the curve of the melting peak A and the temperature axis. corresponding to Delta] Q / Q at each temperature up Te Request (dQ / dt) / ∫ Tb Te (dQ / dt) dT. The temperature correction for each temperature from Tb to Te is performed as follows. From the peak point of the melting peak A to the temperature axis, a straight line of the gradient C obtained in the step (f) is drawn from the peak point. The intersection temperature with the temperature axis is the true melting peak temperature at the peak point. Next, a difference ΔT between the pre-correction melting peak temperature and the true melting peak temperature is obtained. The temperature correction value for each temperature from Tb to Te is given by -ΔT (dQ / dt) / (dQ / dt) p. Here, (dQ / dT) p is the heat flow at the peak point, and (dQ / dT) is the heat flow at each temperature before temperature correction.

(h) 高分子物質中の結晶の結晶長の決定
前述した非特許文献1に示されるように、σを高分子物質中の結晶の単位面積当りの結晶末端表面自由エネルギー、huをその単位体積当りの融解熱とするとき、次の式(3)よりこの高分子結晶の結晶長ζを求める。式(3)中のTmには、温度補正されたTmを用いる。
ζ=(2σ/hu)[Tmx/(Tmx−Tm)] ………(3)
(h) Determination of crystal length of crystal in polymer material As shown in Non-Patent Document 1 mentioned above, σ is the crystal free surface energy per unit area of crystal in the polymer material, and hu is its unit volume. When the heat of fusion is per unit, the crystal length ζ of this polymer crystal is obtained from the following equation (3). As Tm in the equation (3), Tm whose temperature is corrected is used.
ζ = (2σ / hu) [Tm x / (Tm x −Tm)] (3)

(i) 結晶長分布関数F(ζ)による結晶長分布の決定
前記(g)工程で求めた比吸熱変化量ΔQ/Qと、前記(h)工程で求めた結晶長ζを次の式(4)に代入して、温度で規格化された結晶長分布関数F(ζ)を求め、前記工程(h)で求めた結晶長ζとこの関数F(ζ)から結晶長分布を求める。
F(ζ)=(ΔQ/Q)/ζ ………(4)
(i) Determination of crystal length distribution by crystal length distribution function F (ζ) The specific endothermic change ΔQ / Q obtained in the step (g) and the crystal length ζ obtained in the step (h) are expressed by the following formula ( Substituting into 4), the crystal length distribution function F (ζ) normalized by temperature is obtained, and the crystal length distribution is obtained from the crystal length ζ obtained in the step (h) and the function F (ζ).
F (ζ) = (ΔQ / Q) / ζ (4)

この式(4)は、温度で規格化された結晶長分布関数F(ζ)として、NATAS Annual Conference Proceedings (0.29.26p in CD), Albuquerque, (2003)(非特許文献4)、第39回熱測定討論会講演要旨集、広島、p282(2003)(非特許文献5)においても、次の式(4’)に示すように定義されている。
F(ζ)=(ΔQ/Q)/ζ=nζ/[Nc(Te −Tb)] ………(4’)
ここで、nζはζの長さをもった結晶連鎖の数、Ncは融解開始温度Tbと融解終了温度Teの範囲で融解した結晶の構造単位数である。
This equation (4) is expressed as the crystal length distribution function F (ζ) normalized by temperature, as shown in the NATAS Annual Conference Proceedings (0.29.26p in CD), Albuquerque, (2003) (Non-Patent Document 4), 39th. Also defined in the following equation (4 ′) in the collection of lectures on thermal measurement discussion, Hiroshima, p282 (2003) (non-patent document 5).
F (ζ) = (ΔQ / Q) / ζ = nζ / [Nc (Te−Tb)] (4 ′)
Here, nζ is the number of crystal chains having the length of ζ, and Nc is the number of structural units of crystals melted in the range of the melting start temperature Tb and the melting end temperature Te.

また式(3)中のσは次の式(5)によって算出される。この式(5)は上記非特許文献4及び5の他、J. Macromol. Sci., Phys., B42, 621(2003)(非特許文献6)に示される。
σ/hu=b[RTm2+(Hx−hx)(Tmx−Tm)]/[2(Hx−hx)Tmx] … (5)
ここで、Hx=2(w/ρ)hu−wQであり、bは結晶単位セルの繊維軸長さ、hxは非結晶域中の擬結晶による構造単位モル当りの転移エンタルピーであり、wは構造単位モル当たりの分子量、ρは結晶の密度である。
Also, σ in equation (3) is calculated by the following equation (5). This equation (5) is shown in J. Macromol. Sci., Phys., B42 , 621 (2003) (Non-Patent Document 6) in addition to Non-Patent Documents 4 and 5 above.
σ / h u = b [RTm 2 + (Hx-hx) (Tm x -Tm)] / [2 (Hx-hx) Tm x] ... (5)
Here, Hx = 2 (w / ρ) hu-wQ, b is the fiber axis length of the crystal unit cell, hx is the transition enthalpy per mole of structural unit due to the pseudocrystal in the amorphous region, and w is The molecular weight per mole of structural unit, ρ, is the density of the crystal.

次に本発明の実施例を説明する。
<実施例1>
高分子物質として、ポリヘキサメチレンアジポアミド(ナイロン66)フィルムを8枚用意し、各フィルムを熱流束型のDSC装置(ブルカー・エイエックスエス社製DSC3200S)を用いて、8つの異なる温度、即ちTa1=220℃、Ta2=225℃、Ta3=230℃、Ta4=240℃、Ta5=250℃、Ta6=253℃、Ta7=256℃及びTa7=258℃でそれぞれ60分間熱処理した。
Next, examples of the present invention will be described.
<Example 1>
As the polymer material, eight polyhexamethylene adipamide (nylon 66) films were prepared, and each film was subjected to eight different temperatures using a heat flux type DSC apparatus (DSC3200S manufactured by Bruker AXS). That is, heat treatment was performed at Ta1 = 220 ° C., Ta2 = 225 ° C., Ta3 = 230 ° C., Ta4 = 240 ° C., Ta5 = 250 ° C., Ta6 = 253 ° C., Ta7 = 256 ° C. and Ta7 = 258 ° C. for 60 minutes.

上記8種類のDSCデータから、8つの熱処理温度毎にそれぞれ融解開始温度(Tb1, Tb2, Tb3, Tb4, Tb5, Tb6, Tb7, Tb8)及び融解終了温度(Te1, Te2, Te3, Te4, Te5, Te6, Te7, Te8)を求めた。この実施例では240℃までの熱処理では、Tb−Taはほぼ4℃、250℃以上の熱処理では、Tb−Taはほぼ2℃であった。240℃から250℃までの熱処理では、形成される結晶形がβ型からα型に変わったと予測され、この範囲のTb、Teはデータから除いた。Tb−Taがほぼ2℃である256℃で60分間熱処理したときのナイロン66フィルムのDSC融解ピーク曲線を図3に示す。   From the above 8 types of DSC data, the melting start temperature (Tb1, Tb2, Tb3, Tb4, Tb5, Tb6, Tb7, Tb8) and the melting end temperature (Te1, Te2, Te3, Te4, Te5, Te6, Te7, Te8) were obtained. In this example, Tb-Ta was approximately 4 ° C in the heat treatment up to 240 ° C, and Tb-Ta was approximately 2 ° C in the heat treatment at 250 ° C or higher. In the heat treatment from 240 ° C. to 250 ° C., the crystal form formed was predicted to have changed from β-type to α-type, and Tb and Te in this range were excluded from the data. FIG. 3 shows a DSC melting peak curve of the nylon 66 film when heat-treated for 60 minutes at 256 ° C. where Tb-Ta is approximately 2 ° C.

次いで、図1に示すように、たて軸を高分子物質の融解温度Tm、及びよこ軸を熱処理温度Taとする図中に、上記8つの融解開始温度(Tb1, Tb2, Tb3, Tb4, Tb5, Tb6, Tb7, Tb8)及び8つの融解終了温度(Te1, Te2, Te3, Te4, Te5, Te6, Te7, Te8)をそれぞれプロットした。これらの融解開始温度(Tb1, Tb2, Tb3, Tb4, Tb5, Tb6, Tb7, Tb8)から直線P1を得た。次いでプロットした複数の融解終了温度(Te1, Te2, Te3, Te4, Te5, Te6, Te7, Te8)から直線P2を得た。次に直線P1を直線P2に交差させてその交点Mを求め、この点Mをよこ軸の温度軸で読み取って、交点Mに対応する、図2に示す仮想融解ピークBの融解開始温度でもあり、融解終了温度でもある温度Tb0を求めた。この実施例では、Tb0=267℃であった。 Next, as shown in FIG. 1, the eight melting start temperatures (Tb1, Tb2, Tb3, Tb4, Tb5) are shown in the figure where the vertical axis is the melting temperature Tm of the polymer material and the horizontal axis is the heat treatment temperature Ta. , Tb6, Tb7, Tb8) and eight melting end temperatures (Te1, Te2, Te3, Te4, Te5, Te6, Te7, Te8), respectively. A straight line P1 was obtained from these melting start temperatures (Tb1, Tb2, Tb3, Tb4, Tb5, Tb6, Tb7, Tb8). Next, a straight line P2 was obtained from the plotted melting end temperatures (Te1, Te2, Te3, Te4, Te5, Te6, Te7, Te8). Next, the intersection point M is obtained by intersecting the straight line P1 with the straight line P2, and this point M is read on the temperature axis of the horizontal axis, and is also the melting start temperature of the virtual melting peak B shown in FIG. The temperature Tb 0 which is also the melting end temperature was determined. In this example, Tb 0 = 267 ° C.

続いて、図1の中にTm=Taの仮想直線P3を引いた後、工程(d)で得た直線P2を延長して直線P3に交差させてその交点Nを求め、この点Nをよこ軸の温度軸で読み取って、交点Nに対応する平衡融解温度Tmxを求めた。この実施例ではTmx=269℃であった。
DSCで実測された融解ピークAが示される図2に対して、温度Tb0と温度Tmxを用いて次の手順で仮想融解ピークBを作図した。先ず前述した式(1)から仮想融解ピークBのピーク点Pにおけるヒートフロー(dQ/dt)pを求めた。この実施例では、吸熱量Q=21.62cal/g、高分子物質の重量W=0.28mg、昇温速度dT/dt=10℃/分であり、(dQ/dt)p=1009μcal/秒であった。次いで前述した式(2)から仮想融解ピークBの立ち上がり勾配Cを求め、図2に示すように、点Tb0と点Tmxと点Pとからなる、吸熱量Qに相当する直角三角形を描いた。この実施例では、勾配C=504.5μcal/(秒・K)であった。
Subsequently, after drawing a virtual straight line P3 of Tm = Ta in FIG. 1, the straight line P2 obtained in the step (d) is extended and intersected with the straight line P3 to obtain the intersection N. read at a temperature axis of the shaft to determine the equilibrium melting temperature Tm x corresponding to the intersection N. In this example, Tm x = 269 ° C.
Against 2 that actually measured melting peak A by DSC indicated, was plotted virtual melting peak B by the following procedure using the temperature Tb 0 and the temperature Tm x. First, the heat flow (dQ / dt) p at the peak point P of the virtual melting peak B was determined from the above-described equation (1). In this example, the endothermic amount Q = 21.62 cal / g, the weight of the polymer material W = 0.28 mg, the rate of temperature increase dT / dt = 10 ° C./min, and (dQ / dt) p = 1009 μcal / second. Met. Then determine the rising slope C of the virtual melting peak B from equation (2) described above, as shown in FIG. 2, and a point Tb 0 and the point Tm x and the point P, painted right triangle corresponding to the heat absorption amount Q It was. In this example, the gradient C was 504.5 μcal / (sec · K).

更に続いて、この実施例では、Tb=258℃からTe=269℃までの温度域で、各温度でのΔQ/Qを求める。各温度は、DSC装置のサンプリングタイムの設定によって決まる。本実施例では、温度間隔は0.1℃か0.2℃に各温度毎に自動的に設定された。   Subsequently, in this embodiment, ΔQ / Q at each temperature is obtained in a temperature range from Tb = 258 ° C. to Te = 269 ° C. Each temperature is determined by the setting of the sampling time of the DSC apparatus. In this example, the temperature interval was automatically set to 0.1 ° C. or 0.2 ° C. for each temperature.

一方、前述した式(3)におけるTmに、TbからTeまでの前記(g)工程に従って補正された各温度を代入し、各温度におけるナイロン66フィルムの結晶長ζ1, ζ2, ζ3, ,,,, ζnを求めた。nはDSC装置のサンプリングタイムの設定により決まるサンプリング温度の数である。ΔQ1/Q, ΔQ2/Q, ΔQ3/Q, ,,,, ΔQn/Q及びζ1, ζ2, ζ3, ,,,, ζnから対応するΔQ/Qとζとを1個ずつ、前述した式(4)に代入し、結晶長分布関数F(ζ)による結晶長分布の決定した。その結果を図4に示す。この結晶長分布は、X線解析装置及び融解温度Tmの補正に高純度の安息香酸を用いずに、簡便で安価に求めることができた。   On the other hand, the temperatures corrected in accordance with the step (g) from Tb to Te are substituted for Tm in the above-described equation (3), and the crystal lengths ζ1, ζ2, ζ3,,, of the nylon 66 film at each temperature are substituted. , ζn was obtained. n is the number of sampling temperatures determined by the setting of the sampling time of the DSC device. .DELTA.Q1 / Q, .DELTA.Q2 / Q, .DELTA.Q3 / Q,..., .DELTA.Qn / Q and .zeta.1, .zeta.2, .zeta.3,. The crystal length distribution was determined by the crystal length distribution function F (ζ). The result is shown in FIG. This crystal length distribution could be obtained simply and inexpensively without using high-purity benzoic acid for correcting the X-ray analyzer and the melting temperature Tm.

高分子物質を複数の温度で熱処理して得られた複数の融解開始温度と融解終了温度から融解温度Tb0及びTmxを求める方法を示す図である。It is a diagram illustrating a method for determining the melting temperature Tb 0 and Tm x from multiple melting initiation temperature and melting completion temperature obtained by heat-treating the polymer material at a plurality of temperatures. 結晶長分布を求めるための実測の融解ピークA及び温度Tb0及び温度Tmxを用いて作成され、ピークAと同一面積を有しかつ吸熱量Qに相当する仮想融解ピークBのモデル線図である。Built using the melting peak A and the temperature Tb 0 and the temperature Tm x actually measured for obtaining the crystal length distribution, have the same area and peak A and a model diagram of a virtual melting peak B corresponding to the heat absorption amount Q is there. 温度256℃で60分間で熱処理したナイロン66フィルムのDSC融解ピーク曲線を示す図である。It is a figure which shows the DSC melting peak curve of the nylon 66 film heat-processed for 60 minutes at the temperature of 256 degreeC. 本発明実施例による温度補正を行って、図3の実測の融解ピーク曲線から変換されたナイロン66フィルムの結晶長分布曲線を示す図である。It is a figure which shows the crystal length distribution curve of the nylon 66 film converted by the temperature correction by the Example of this invention, and converting from the actual melting peak curve of FIG.

Claims (1)

(a) 高分子物質を複数の所与の温度(Ta1, Ta2, ... Tan)で熱処理して前記高分子物質の示差走査熱量測定を行う工程と、
(b) 前記熱量測定から前記複数の所与の温度(Ta1, Ta2, ... Tan)における各温度に対応する複数の融解開始温度(Tb1, Tb2, ... Tbn)及び複数の融解終了温度(Te1, Te2, ... Ten)を求める工程と、
(c) たて軸を前記高分子物質の融解温度Tm、及びよこ軸を前記熱処理温度Taとする図中に、前記複数の融解開始温度(Tb1, Tb2, ... Tbn)及び前記複数の融解終了温度(Te1, Te2, ... Ten)をそれぞれプロットする工程と、
(d) 前記プロットした複数の融解開始温度(Tb1, Tb2, ... Tbn)から得られる直線P1を前記プロットした複数の融解終了温度(Te1, Te2, ... Ten)から得られる直線P2に交差させてその交点Mに対応する温度Tb0を求める工程と、
(e) 前記図中にTm=Taの仮想直線P3を引き、前記直線P2を延長して直線P3に交差させてその交点Nに対応する平衡融解温度Tmxを求める工程と、
(f) 前記高分子物質の重量をW、前記(a)工程の示差走査熱量測定で実測された融解ピークAの物質のグラム当りの融解吸熱量をQ、昇温速度をdT/dt(Tは温度、tは時間)とし、前記(d)及び(e)工程でそれぞれ求めた温度Tb0及び温度Tmxを用いて、次の式(1)から仮想融解ピークBのピーク点Pにおけるヒートフロー(dQ/dt)pを求め、この式(1)の両辺を(Tmx−Tb0)で除すことにより得られた式(2)から仮想融解ピークBの立ち上がり勾配Cを求める工程と、
(dQ/dt)p=2QW(dT/dt)/(Tmx−Tb0) ………(1)
C=(dQ/dt)p/(Tmx−Tb0)=2QW(dT/dt)/(Tmx−Tb0)2 …(2)
(g) 前記融解ピークAの曲線と温度軸線で囲まれた吸熱量Qに相当する面積∫Tb Te(dQ/dt)dTを求め、更にTbからTeまでの各温度で単位温度当りの吸熱変化量ΔQのQに対する比ΔQ/Qに相当する(dQ/dt)/∫Tb Te(dQ/dt)dTを求める工程と、
(h) σを高分子物質中の結晶の単位面積当りの結晶末端表面自由エネルギー、huをその単位体積当りの融解熱とするとき、温度補正されたTmを用いて、次の式(3)より前記高分子結晶の結晶長ζを求める工程と、
ζ=(2σ/hu)[Tmx/(Tmx−Tm)] ………(3)
(i) 前記(g)工程で求めたΔQ/Qと、前記(h)工程で求めた結晶長ζを次の式(4)に代入して、補正された温度で規格化された結晶長分布関数F(ζ)を求め、この関数F(ζ)から結晶長分布を求める工程と
F(ζ)=(ΔQ/Q)/ζ ………(4)
を含むことを特徴とする高分子物質の示差走査熱量測定データから該物質中の結晶の結晶長分布を算出する方法。
(a) performing a differential scanning calorimetry of the polymer material by heat-treating the polymer material at a plurality of given temperatures (Ta1, Ta2, ... Tan);
(b) From the calorimetry, a plurality of melting start temperatures (Tb1, Tb2, ... Tbn) corresponding to each temperature at the plurality of given temperatures (Ta1, Ta2, ... Tan) and a plurality of melting ends A process for obtaining temperatures (Te1, Te2, ... Ten);
(c) In the figure where the vertical axis is the melting temperature Tm of the polymer material and the horizontal axis is the heat treatment temperature Ta, the plurality of melting start temperatures (Tb1, Tb2, ... Tbn) and the plurality of the melting points Plotting melting end temperatures (Te1, Te2, ... Ten) respectively;
(d) A straight line P1 obtained from the plurality of plotted melting start temperatures (Tb1, Tb2,... Tbn) is a straight line P2 obtained from the plurality of plotted melting end temperatures (Te1, Te2,... Ten). And obtaining a temperature Tb 0 corresponding to the intersection M,
drawing a virtual line P3 of Tm = Ta in (e) the figure, a step of determining the equilibrium melting temperature Tm x corresponding to the intersection N by intersecting a straight line P3 by extending the straight line P2,
(f) The weight of the polymer substance is W, the melting endotherm per gram of the substance of the melting peak A actually measured by differential scanning calorimetry in the step (a) is Q, and the rate of temperature rise is dT / dt (T temperature, t is the time), the (by using the temperature Tb 0 and the temperature Tm x obtained respectively d) and (e) step, the heat at the peak point P of the virtual melting peak B from the following equation (1) calculated flow (dQ / dt) p, and obtaining a rise slope C of the virtual melting peak B from both sides of (Tm x -Tb 0) in dividing equation obtained by the equation (1) (2) ,
(dQ / dt) p = 2QW (dT / dt) / (Tm x −Tb 0 ) (1)
C = (dQ / dt) p / (Tm x −Tb 0 ) = 2QW (dT / dt) / (Tm x −Tb 0 ) 2 (2)
(g) Obtain the area ∫ Tb Te (dQ / dt) dT corresponding to the endothermic amount Q surrounded by the curve of the melting peak A and the temperature axis, and further change the endotherm per unit temperature at each temperature from Tb to Te. corresponds to the ratio Delta] Q / Q to Q of the amount Delta] Q and obtaining a (dQ / dt) / ∫ Tb Te (dQ / dt) dT,
(h) When σ is the crystal end surface free energy per unit area of the crystal in the polymer material and hu is the heat of fusion per unit volume, using the temperature-corrected Tm, the following equation (3) A step of obtaining a crystal length ζ of the polymer crystal,
ζ = (2σ / hu) [Tm x / (Tm x −Tm)] (3)
(i) ΔQ / Q obtained in the step (g) and the crystal length ζ obtained in the step (h) are substituted into the following equation (4) to standardize the crystal length at the corrected temperature. Obtaining a distribution function F (ζ) and obtaining a crystal length distribution from the function F (ζ);
F (ζ) = (ΔQ / Q) / ζ (4)
A method for calculating the crystal length distribution of crystals in the material from differential scanning calorimetry data of the polymer material characterized by comprising:
JP2005209342A 2005-07-20 2005-07-20 Method for calculating the crystal length distribution of crystals in a material from differential scanning calorimetry data of the polymer material Active JP4228080B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005209342A JP4228080B2 (en) 2005-07-20 2005-07-20 Method for calculating the crystal length distribution of crystals in a material from differential scanning calorimetry data of the polymer material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005209342A JP4228080B2 (en) 2005-07-20 2005-07-20 Method for calculating the crystal length distribution of crystals in a material from differential scanning calorimetry data of the polymer material

Publications (2)

Publication Number Publication Date
JP2007024735A JP2007024735A (en) 2007-02-01
JP4228080B2 true JP4228080B2 (en) 2009-02-25

Family

ID=37785690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005209342A Active JP4228080B2 (en) 2005-07-20 2005-07-20 Method for calculating the crystal length distribution of crystals in a material from differential scanning calorimetry data of the polymer material

Country Status (1)

Country Link
JP (1) JP4228080B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108663393A (en) * 2018-07-27 2018-10-16 彩虹显示器件股份有限公司 A kind of test method of TFT liquid crystal substrate glass recrystallization temperature

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014041846A1 (en) 2012-09-14 2014-03-20 Pola Pharma Inc. Use of surface free energy for differential evaluation of crystal, crystal evaluated on basis of surface free energy as index, and phrmaceutical composition prepared by containing the crystal
JP7409270B2 (en) 2020-09-25 2024-01-09 株式会社プロテリアル Crystallinity estimation device, crystallinity estimation method, crystallinity estimation program, and recording medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108663393A (en) * 2018-07-27 2018-10-16 彩虹显示器件股份有限公司 A kind of test method of TFT liquid crystal substrate glass recrystallization temperature

Also Published As

Publication number Publication date
JP2007024735A (en) 2007-02-01

Similar Documents

Publication Publication Date Title
Montserrat Physical aging studies in epoxy resins. I. Kinetics of the enthalpy relaxation process in a fully cured epoxy resin
Singh et al. Determination of the mean solid-liquid interface energy of pivalic acid
Choy et al. The low-temperature thermal conductivity of a semi-crystalline polymer, polyethylene terephthalate
Pasztor Jr et al. Thermal properties of syndiotactic polystyrene
JP4228080B2 (en) Method for calculating the crystal length distribution of crystals in a material from differential scanning calorimetry data of the polymer material
Stoebe et al. Simultaneous measurement of heat capacity and in-plane density of thin free-standing liquid-crystal films
Zhang et al. Advantages of SiSb phase-change material and its applications in phase-change memory
Goia et al. Physical–chemical properties evolution and thermal properties reliability of a paraffin wax under solar radiation exposure in a real-scale PCM window system
Meschke et al. Electron thermalization in metallic islands probed by coulomb blockade thermometry
Cai et al. Thermal conductivity of anodic alumina film at (220 to 480) K by laser flash technique
Hafeli et al. Temperature dependence of surface phonon polaritons from a quartz grating
Evans et al. Thermal expansion in the orthorhombic γ phase of ZrW 2 O 8
Consul et al. Interlaminar strength in large‐scale additive manufacturing of slow crystallizing polyaryletherketone carbon composites
Ko Sensitivity of magnetic field-line pitch angle measurements to sawtooth events in tokamaks
CN105223225A (en) A kind of test macromolecular material shape-memory properties device, method of testing and application thereof
Bashir et al. Solid solutions of lithium niobate and lithium tantalate: crystal growth and the ferroelectric transition
Pourali et al. A tale of two polyamides: Comparing the crystallization kinetics of a hot-melt adhesive and a PA 6/66 copolymer
Kolouch et al. Thermal Conductivities of Polyethylene and Nylon from 1.2 to 20 K
CN112858111B (en) Method for measuring interfacial tension between polymer melts in high-pressure gas
Zhang et al. Melting curve of vanadium up to 470 GPa simulated by ab initio molecular dynamics
White et al. Thermal expansion of chromium at high temperature
Tropin et al. The calorimetric glass transition in a wide range of cooling rates and frequencies
Quach et al. The effect of pressure on the β-relaxation of polystyrene
Stein et al. Molecular probe studies of crystallinity in polyethylene
Zhuravlyov et al. Finite-size effects in the static structure factor S (k) and S (0) for a two-dimensional Yukawa liquid

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150