JPH08105813A - Gas leak detector for gas-insulated switch gear - Google Patents

Gas leak detector for gas-insulated switch gear

Info

Publication number
JPH08105813A
JPH08105813A JP14878294A JP14878294A JPH08105813A JP H08105813 A JPH08105813 A JP H08105813A JP 14878294 A JP14878294 A JP 14878294A JP 14878294 A JP14878294 A JP 14878294A JP H08105813 A JPH08105813 A JP H08105813A
Authority
JP
Japan
Prior art keywords
gas
temperature
gas pressure
temperature sensor
air temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14878294A
Other languages
Japanese (ja)
Other versions
JP3049702B2 (en
Inventor
Shinji Honda
眞治 本多
Matsukichi Kato
松吉 加藤
Takehiko Yamada
剛彦 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takaoka Toko Co Ltd
Original Assignee
Takaoka Electric Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takaoka Electric Mfg Co Ltd filed Critical Takaoka Electric Mfg Co Ltd
Priority to JP6148782A priority Critical patent/JP3049702B2/en
Publication of JPH08105813A publication Critical patent/JPH08105813A/en
Application granted granted Critical
Publication of JP3049702B2 publication Critical patent/JP3049702B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To provide an inexpensive monitoring apparatus which makes possible early detection of a gas leak by accomplishing a highly accurate temperature correction of individual gas pressures detected with a plurality of gas pressure sensors without being affected by energized current to determine a gas pressure conversion value at a reference temperature CONSTITUTION: A plurality of closed tanks 1A-1C of a gas-insulated switch gear are provided with gas pressure sensors 4A-4C respectively and a surface temperature sensor 5 is provided on the surface of an external wall of any one closed tank 1C, an air temperature sensor 6 is provided near the gas- insulated switch gear and auxiliary contacts 8A and 8B are provided to output the state of the switching parts 7A and 7B. A temperature correction means 9 is provided to fetch output signals of the gas pressure sensor 4A-4C, the surface temperature sensor 5 and the air temperature sensor 6 so that the presence of energized current is recognized from the state of the auxiliary contacts 8A and 8B to calculate a gas pressure conversion value at a reference temperature and a gas leak judging means 10 is provided to judge the presence of a gas leak by comparing the gas pressure conversion value with a criterion value set previously.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、密閉タンクに封入され
た絶縁ガスの漏れを監視するガス絶縁開閉装置のガス漏
れ監視装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas leakage monitoring device for a gas insulation switchgear for monitoring the leakage of insulating gas sealed in a closed tank.

【0002】[0002]

【従来の技術】ガス絶縁開閉装置に封入された六フッ化
硫黄などの絶縁ガスは、高圧導体や開閉部を密閉タンク
から電気的に絶縁し、また対流作用により密閉タンク内
を冷却する機能を備えている。したがって絶縁ガスの漏
れは開閉装置の性能に大きな影響を与えるので、従来は
ガス密度スイッチを用いて監視していた。
2. Description of the Related Art An insulating gas such as sulfur hexafluoride enclosed in a gas-insulated switchgear has a function of electrically insulating a high-voltage conductor and an opening / closing part from a sealed tank and cooling the inside of the sealed tank by convection. I have it. Therefore, since the leakage of the insulating gas has a great influence on the performance of the switchgear, the gas density switch is conventionally used for monitoring.

【0003】また近年では、特開平3−222613号
公報にみられるようにガス圧力センサと気温センサを組
合せたガス漏れ監視装置や、特開平4−192509号
公報にみられるように最高ガス温度とガス圧力と負荷率
とを検出するガス漏れ検出装置が導入されている。
Further, in recent years, a gas leak monitoring device combining a gas pressure sensor and an air temperature sensor as shown in Japanese Patent Laid-Open No. 3-222613, and a maximum gas temperature as shown in Japanese Patent Laid-Open No. 4-192509. A gas leak detection device for detecting gas pressure and load factor has been introduced.

【0004】[0004]

【発明が解決しようとする課題】前記従来技術のうち、
ガス密度スイッチを用いた監視では、ガス平均温度に相
当する箇所にガス密度スイッチを取付ければ良いが、実
際には密閉タンク内の温度分布は通電電流による内部発
熱の影響を受けて複雑に変化するために誤差を生じ、ガ
ス漏れの判定値を厳しくすると誤動作が発生し、判定値
を緩くするとガス漏れの検出が遅れる難点があった。ま
た、この方法はあらかじめ設定しておいた所定の判定値
に達した時点で初めて警報を発する方式であり、ガス圧
力を常時監視してその低下傾向から微少なガス漏れを早
期に判定して、ガス漏れ箇所の調査、修理や絶縁ガスの
補充などの処置を計画的に行うことが困難であった。
Of the above-mentioned conventional techniques,
For monitoring using a gas density switch, the gas density switch may be installed at a location corresponding to the average gas temperature, but in reality the temperature distribution inside the sealed tank changes intricately due to the internal heat generated by the energizing current. Therefore, an error occurs, and if the judgment value of gas leakage is made strict, malfunction occurs, and if the judgment value is loosened, detection of gas leakage is delayed. In addition, this method is a method of issuing an alarm for the first time when a predetermined judgment value set in advance is reached, and gas pressure is constantly monitored and a slight gas leak is judged early from its decreasing tendency, It was difficult to systematically take measures such as investigation of gas leaks, repairs, and supplementation of insulating gas.

【0005】上記の難点を改善するために、ガス圧力セ
ンサを用いてガス圧力の値を常時検出する装置が導入さ
れているが、ガス圧力は温度に依存して変化するので、
ガス圧力の低下が温度低下に起因するものかあるいはガ
ス漏れに起因するものかを判断することが難しい。すな
わち、前記ガス圧力センサと気温センサを組合せたガス
漏れ監視装置では、ガス平均温度の代用として外気温度
を用いて補正を行うために、通電電流による内部発熱の
小さいことがガス漏れ判定時の前提となり、適用上の制
約がある。また、前記最高ガス温度とガス圧力と負荷率
とを検出する装置では、時間的に変化する負荷率からガ
ス平均温度を求めるために、電気機器の熱容量や温度変
化の時定数を考慮した繁雑な演算処理が必要であり、ま
た、各密閉タンクに温度センサを設ける必要上センサ数
やデータ量も多くなり、監視装置は高価なものとなって
いた。
In order to improve the above-mentioned problems, a device for constantly detecting the value of gas pressure using a gas pressure sensor has been introduced. However, since the gas pressure changes depending on the temperature,
It is difficult to determine whether the gas pressure drop is due to a temperature drop or a gas leak. That is, in the gas leak monitoring device in which the gas pressure sensor and the air temperature sensor are combined, in order to perform correction by using the outside air temperature as a substitute for the gas average temperature, it is a premise at the time of gas leak determination that the internal heat generation due to the energization current is small. There are restrictions on application. Further, in the device for detecting the maximum gas temperature, the gas pressure, and the load factor, in order to obtain the gas average temperature from the load factor that changes with time, a complicated operation considering the heat capacity of the electric device and the time constant of the temperature change is complicated. Since the number of sensors and the amount of data are large due to the necessity of arithmetic processing and the need to provide a temperature sensor in each closed tank, the monitoring device is expensive.

【0006】そこで、本発明の目的は、複数のガス圧力
センサで検出したそれぞれのガス圧力を、通電電流に影
響されることなく、高精度な温度補正を行い基準温度に
おけるガス圧力換算値を求め、ガス漏れを早期に検出す
ることのできる低廉な監視装置を提供することである。
Therefore, an object of the present invention is to obtain a gas pressure conversion value at a reference temperature by highly accurately correcting the respective gas pressures detected by a plurality of gas pressure sensors without being affected by the energizing current. An object of the present invention is to provide an inexpensive monitoring device capable of detecting a gas leak at an early stage.

【0007】[0007]

【課題を解決するための手段】本発明においては、分岐
部分を有する高圧導体ならびに開閉部を収納するガス絶
縁開閉装置の複数の密閉タンクに、封入された絶縁ガス
の圧力を検出するガス圧力センサをそれぞれ設け、密閉
タンクのいずれか1つの外壁の表面に、外壁表面温度を
検出する表面温度センサを設け、ガス絶縁開閉装置の近
傍に外気温度を検出する気温センサを設ける。また、前
記複数のガス圧力センサで検出したそれぞれのガス圧力
と前記表面温度センサで検出した外壁表面温度と前記気
温センサで検出した外気温度の出力信号を取り込み、高
圧導体に通電電流が流れている密閉タンクでは外壁表面
温度をガス平均温度とみなし、高圧導体に通電電流が流
れていない密閉タンクでは外気温度をガス平均温度とみ
なして、基準温度におけるガス圧力換算値をそれぞれ算
出する温度補正手段を設け、算出したガス圧力換算値
を、あらかじめ設定しておいた判定値と比較してガス漏
れの有無を判定するガス漏れ判定手段を設ける。
SUMMARY OF THE INVENTION In the present invention, a gas pressure sensor for detecting the pressure of insulating gas enclosed in a plurality of closed tanks of a gas-insulated switchgear for accommodating a high-voltage conductor having a branch part and an opening / closing part. A surface temperature sensor for detecting the outer wall surface temperature is provided on the surface of any one of the outer walls of the closed tank, and an air temperature sensor for detecting the outer air temperature is provided near the gas-insulated switchgear. Further, the output signals of the respective gas pressures detected by the plurality of gas pressure sensors, the outer wall surface temperature detected by the surface temperature sensor, and the outside air temperature detected by the temperature sensor are fetched, and a conducting current flows through the high-voltage conductor. The temperature of the outer wall surface is regarded as the gas average temperature in the closed tank, and the outside air temperature is regarded as the gas average temperature in the closed tank in which the energizing current does not flow in the high-voltage conductor, and the temperature correction means for calculating the gas pressure conversion value at the reference temperature is calculated. Provided is gas leakage determination means for comparing the calculated gas pressure conversion value with a determination value set in advance to determine the presence or absence of gas leakage.

【0008】[0008]

【作用】前記のように構成された本発明の監視装置によ
れば、ガス圧力を補正して基準温度におけるガス圧力換
算値を算出する際に、通電電流の有無により補正に用い
る温度を、外壁表面温度あるいは外気温度から選択する
ことで通電電流の影響を無くすことができる。すなわ
ち、高圧導体に通電電流の流れている密閉タンクでは、
通電電流によるガス平均温度の上昇が密閉タンクの壁面
温度を上昇させるため、外壁の表面に設けられた表面温
度センサはガス平均温度上昇を検出することができるの
で、この温度をガス圧力の補正に用いることで、通電電
流の影響をキャンセルすることができる。一方、高圧導
体に通電電流の流れていない密閉タンクでは、外気温度
を用いることで通電電流の影響を受けずに補正を行うこ
とができる。以上、いずれの場合にも高精度な温度補正
を行うことができ、ガス漏れを早期に検出することがで
きる。
According to the monitoring apparatus of the present invention configured as described above, when the gas pressure is corrected and the gas pressure conversion value at the reference temperature is calculated, the temperature used for the correction is determined by the presence or absence of the energizing current. By selecting the surface temperature or the outside air temperature, it is possible to eliminate the influence of the energizing current. That is, in a closed tank in which a current is flowing through the high-voltage conductor,
Since the rise of the gas average temperature due to the energizing current raises the wall temperature of the closed tank, the surface temperature sensor provided on the surface of the outer wall can detect the gas average temperature rise. By using it, the influence of the energizing current can be canceled. On the other hand, in a closed tank in which the energizing current does not flow in the high-voltage conductor, the correction can be performed without being affected by the energizing current by using the outside air temperature. As described above, in any case, highly accurate temperature correction can be performed, and gas leakage can be detected early.

【0009】[0009]

【実施例】図1は、本発明によるガス絶縁開閉装置のガ
ス漏れ監視装置の一実施例である。ガス絶縁開閉装置の
密閉タンク1A〜1Cの内部の空隙には高圧導体2A〜
2Cや開閉部7A、7Bを密閉タンク1A〜1Cから電
気的に絶縁し、また対流作用により密閉タンク1A〜1
Cの内部を冷却するために絶縁ガス3A〜3Cが所定の
圧力で封入されている。このガス圧力を検出するため
に、密閉タンク1A〜1Cに配管やフランジなどを用い
てガス圧力センサ4A〜4Cをそれぞれ設ける。また、
密閉タンク1Cの外壁の表面に、外壁表面温度を検出す
る表面温度センサ5を設け、ガス絶縁開閉装置の近傍に
外気温度を検出する気温センサ6を設ける。また、高圧
導体2A〜2Cの通電電流の有無を検出するために、開
閉部7A、7Bの開閉状態を出力する補助接点8A、8
Bを設ける。さらに、複数のガス圧力センサ4A〜4C
で検出したそれぞれのガス圧力と、表面温度センサ5で
検出した外壁表面温度と、気温センサ6で検出した外気
温度の出力信号ならびに補助接点8A、8Bの信号を取
り込み、補助接点8Aあるいは8Bが開閉部7Aあるい
は7Bの閉路すなわち通電電流が流れている状態を示し
ていれば外壁表面温度をガス平均温度とみなし、開閉部
7Aあるいは7Bの開路すなわち通電電流が流れていな
い状態を示していれば外気温度をガス平均温度とみなし
て、基準温度におけるガス圧力換算値をそれぞれ算出す
る温度補正手段9を設け、算出したガス圧力換算値を取
り込み、あらかじめ設定しておいた判定値と比較してガ
ス漏れの有無を判定するガス漏れ判定手段10を設け
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT FIG. 1 shows an embodiment of a gas leakage monitoring device for a gas insulated switchgear according to the present invention. The high-voltage conductor 2A to the void inside the closed tank 1A to 1C of the gas insulated switchgear.
2C and the opening / closing sections 7A and 7B are electrically insulated from the closed tanks 1A to 1C, and the closed tanks 1A to 1C are formed by convection.
Insulating gases 3A to 3C are sealed at a predetermined pressure to cool the inside of C. In order to detect this gas pressure, gas pressure sensors 4A to 4C are provided in the closed tanks 1A to 1C by using pipes and flanges. Also,
A surface temperature sensor 5 for detecting the outer wall surface temperature is provided on the surface of the outer wall of the closed tank 1C, and an air temperature sensor 6 for detecting the outer air temperature is provided near the gas insulated switchgear. Further, in order to detect the presence / absence of a current flowing through the high voltage conductors 2A to 2C, auxiliary contacts 8A, 8 for outputting the open / closed state of the open / close parts 7A, 7B.
B is provided. Furthermore, a plurality of gas pressure sensors 4A-4C
Each of the gas pressures detected in step 1, the outer wall surface temperature detected by the surface temperature sensor 5, and the output signal of the outside air temperature detected by the temperature sensor 6 and the signals of the auxiliary contacts 8A, 8B are taken in, and the auxiliary contact 8A or 8B is opened and closed. If the closed state of the section 7A or 7B, that is, the state in which the energized current is flowing, the outer wall surface temperature is regarded as the gas average temperature, and if the open circuit of the opening / closing section 7A or 7B, that is, the state in which the energized current is not flowing, indicates the outside air. The temperature is regarded as the gas average temperature, and the temperature correction means 9 for calculating the gas pressure conversion value at the reference temperature is provided, and the calculated gas pressure conversion value is fetched and compared with a preset judgment value to leak gas. A gas leak determination means 10 for determining the presence or absence of the above is provided.

【0010】なお、ガス圧力センサ4A〜4Cには半導
体式歪ゲージやポテンショメータ付圧力計、表面温度セ
ンサ5や気温センサ6には白金測温抵抗体や熱電対、温
度補正手段9やガス漏れ判定手段10にはマイクロプロ
セッサやパーソナルコンピュータなどをそれぞれ用い
る。
The gas pressure sensors 4A to 4C are semiconductor strain gauges and pressure gauges with potentiometers, and the surface temperature sensor 5 and the temperature sensor 6 are platinum resistance temperature detectors, thermocouples, temperature correction means 9, and gas leak determination. For the means 10, a microprocessor, a personal computer or the like is used.

【0011】次に、上記のように構成された実施例にお
けるガス漏れ監視の方法について説明する。密閉タンク
1Cの内部のガス圧力は、図2中の曲線Xに示すように
ガス平均温度に依存して変化するので、定格封入ガス圧
力として、通常は図2の状態0、すなわち基準温度t0
におけるガス圧力P0で表現される。実際の機器運転時
には、外気温度の変化に加えて、通電電流や日射、風雨
などの外乱の影響を受けてガス平均温度は複雑に変化
し、またこれに伴いガス圧力も変化する。今、機器が図
2の状態Yに相当する、ガス平均温度t1、ガス圧力P
1である場合を想定すると、ガス圧力センサ4Cならび
に表面温度センサ5は、それぞれ圧力P1と温度t1を
検出して、これに相当する電気信号を出力する。温度補
正手段9はこれらの電気信号を取り込み、所定の補正式
を用いることで図2の状態Zで示される基準温度t0で
のガス圧力換算値P2を求めることができる。ガス漏れ
判定手段10は、ガス圧力換算値P2があらかじめ設定
しておいた判定値PNよりも小さければガス漏れと判定
して、接点出力やランプ点灯などの異常通報を行う。
Next, a method for monitoring gas leakage in the embodiment configured as described above will be described. Since the gas pressure inside the closed tank 1C changes depending on the gas average temperature as shown by the curve X in FIG. 2, the rated enclosed gas pressure is normally 0 in FIG. 2, that is, the reference temperature t0.
It is expressed by the gas pressure P0 at. During the actual operation of the equipment, in addition to the change in the outside air temperature, the mean gas temperature changes in a complicated manner under the influence of disturbances such as energizing current, solar radiation and wind and rain, and the gas pressure also changes accordingly. Now, the device corresponds to the state Y in FIG. 2, the gas average temperature t1 and the gas pressure P.
Assuming the case of 1, the gas pressure sensor 4C and the surface temperature sensor 5 detect the pressure P1 and the temperature t1, respectively, and output an electric signal corresponding to these. The temperature correction means 9 can obtain the gas pressure conversion value P2 at the reference temperature t0 shown by the state Z in FIG. 2 by taking in these electric signals and using a predetermined correction formula. When the gas pressure conversion value P2 is smaller than a preset determination value PN, the gas leakage determination means 10 determines that there is a gas leakage, and issues a contact output or lamp abnormality notification.

【0012】ここで、図1の11A、11B、11Cは
それぞれガス絶縁開閉装置の引出し端子を示しており、
それぞれ他の機器や送電線などに連係して運転する。開
閉部7Aが閉、開閉部7Bが開の状態を想定すると、引
出し端子11Aと11Cの間が接続されて通電電流が高
圧導体2Aと2Cに流れ、ジュール熱などの内部発熱を
生じ、密閉タンク1Aと1Cの内部の絶縁ガス3Aと3
Cは温度上昇し、これに伴いガス圧力も上昇する。この
時、絶縁ガス3Cの温度上昇に伴い密閉タンク1Cの外
壁の温度も上昇し、外壁表面温度はガス平均温度にほぼ
一致するため密閉タンク1Cの外壁の表面に設けられた
表面温度センサ5により、絶縁ガス3Cの平均温度を間
接的に求めることができる。したがって、温度補正手段
9において密閉タンク1Cに設けたガス圧力センサ4C
で検出した圧力を表面温度センサ5で検出した外壁表面
温度で補正することにより、通電電流の影響をキャンセ
ルして正確なガス圧力換算値を求めることができる。
Here, 11A, 11B, and 11C in FIG. 1 respectively represent the lead terminals of the gas-insulated switchgear,
Operate in coordination with other equipment and power lines. Assuming that the opening / closing part 7A is closed and the opening / closing part 7B is open, the lead terminals 11A and 11C are connected to each other, and a conducting current flows through the high-voltage conductors 2A and 2C, causing internal heat generation such as Joule heat, thereby causing a sealed tank. Insulating gas 3A and 3 inside 1A and 1C
The temperature of C rises, and the gas pressure rises accordingly. At this time, as the temperature of the insulating gas 3C rises, the temperature of the outer wall of the closed tank 1C also rises, and the surface temperature of the outer wall almost matches the gas average temperature. Therefore, the surface temperature sensor 5 provided on the surface of the outer wall of the closed tank 1C The average temperature of the insulating gas 3C can be indirectly obtained. Therefore, the gas pressure sensor 4C provided in the closed tank 1C in the temperature correction means 9
By correcting the pressure detected in 1 above with the outer wall surface temperature detected by the surface temperature sensor 5, it is possible to cancel the influence of the energized current and obtain an accurate gas pressure conversion value.

【0013】密閉タンク1Aの場合、内部の絶縁ガス3
Aの温度は当該タンク1Aの外壁表面では検出していな
いが、通電電流の多少による温度上昇の程度は密閉タン
ク1Cと同様である。したがって、温度補正手段9にお
いて補助接点8Aにより通電電流の流れていることを認
識して、ガス圧力センサ4Aで検出したガス圧力を密閉
タンク1Cの外壁表面温度センサ5で検出した外壁表面
温度で補正することにより、通電電流の影響をキャンセ
ルして正確なガス圧力換算値を求めることができる。
In the case of the closed tank 1A, the insulating gas 3 inside
Although the temperature of A is not detected on the outer wall surface of the tank 1A, the degree of temperature rise due to the amount of the energizing current is the same as that of the closed tank 1C. Therefore, the temperature correction means 9 recognizes that the energizing current is flowing through the auxiliary contact 8A, and corrects the gas pressure detected by the gas pressure sensor 4A with the outer wall surface temperature detected by the outer wall surface temperature sensor 5 of the closed tank 1C. By doing so, it is possible to cancel the influence of the energizing current and obtain an accurate gas pressure conversion value.

【0014】密閉タンク1Bの場合、開閉部7Bが開路
されて高圧導体2Bには通電電流は流れていないため、
内部の絶縁ガス3Bは温度上昇せず、ガス平均温度は外
気温度に一致する。したがって温度補正手段9におい
て、補助接点8Bにより通電電流の流れていないことを
認識して、ガス圧力センサ4Bで検出したガス圧力を気
温センサ6で検出した外気温度で補正することにより、
正確なガス圧力換算値を求めることができる。
In the case of the closed tank 1B, since the opening / closing part 7B is opened and no current is flowing through the high voltage conductor 2B,
The temperature of the insulating gas 3B inside does not rise, and the gas average temperature matches the outside air temperature. Therefore, in the temperature correction means 9, by recognizing that the energizing current is not flowing through the auxiliary contact 8B and correcting the gas pressure detected by the gas pressure sensor 4B with the outside air temperature detected by the temperature sensor 6,
An accurate gas pressure conversion value can be obtained.

【0015】前記の想定とは逆に、開閉部7Aが開、開
閉部7Bが閉の状態では、通電電流は高圧導体2Bと2
Cに流れる。したがって、温度補正手段9において、ガ
ス圧力センサ4Bと4Cで検出した圧力を表面温度セン
サ5で検出したガス平均温度で補正し、通電電流の影響
を受けないガス圧力センサ4Aで検出したガス圧力を気
温センサ5で検出した外気温度で補正することにより、
いずれの密閉タンク1A、1Bについても正確なガス圧
力換算値を求めることができる。
Contrary to the above assumption, when the opening / closing portion 7A is open and the opening / closing portion 7B is closed, the energizing current is equal to the high voltage conductors 2B and 2B.
It flows to C. Therefore, in the temperature correction means 9, the pressure detected by the gas pressure sensors 4B and 4C is corrected by the gas average temperature detected by the surface temperature sensor 5, and the gas pressure detected by the gas pressure sensor 4A that is not affected by the energizing current is calculated. By correcting with the outside air temperature detected by the temperature sensor 5,
An accurate gas pressure conversion value can be obtained for any of the closed tanks 1A and 1B.

【0016】上記で述べているように、温度補正手段9
において、補正を行う際の温度として外壁表面温度と外
気温度のいずれを選択するかについては、開閉部7A、
7Bの開閉状態を出力する補助接点を参照して次のよう
に決定する。すなわち、密閉タンク1A、1Bでは開閉
部7A、7Bの状態により通電電流の有無を認識して、
開状態では外気温度、閉状態では外壁表面温度を選択す
ればよく、密閉タンク1Cでは常時通電電流が流れるの
で、常時外壁表面温度を選択すればよい。
As mentioned above, the temperature correction means 9
In regard to which of the outer wall surface temperature and the outside air temperature is selected as the temperature at the time of correction, the opening / closing unit 7A,
It is determined as follows with reference to the auxiliary contact that outputs the open / closed state of 7B. That is, in the closed tanks 1A and 1B, the presence / absence of the energizing current is recognized by the state of the opening / closing portions 7A and 7B,
The outside air temperature may be selected in the open state, and the outer wall surface temperature may be selected in the closed state. Since the energization current always flows in the closed tank 1C, the outer wall surface temperature may be always selected.

【0017】以上の説明のとおり、開閉部7A、7Bの
開閉状態から通電電流の有無を認識して、外壁表面温度
あるいは外気温度のいずれか一方を選択してガス圧力を
補正することにより、正確なガス圧力換算値を求めるこ
とができる。したがって、ガス漏れ判定手段10におけ
る判定値を厳しく設定して、ガス漏れを早期に検出する
ことができる。
As described above, the presence / absence of the energizing current is recognized from the open / closed states of the open / close sections 7A and 7B, and either the outer wall surface temperature or the outside air temperature is selected to correct the gas pressure, thereby making it accurate. It is possible to obtain a gas gas converted value. Therefore, the determination value in the gas leakage determination means 10 can be set strictly so that the gas leakage can be detected early.

【0018】[0018]

【発明の効果】本発明によれば、通電電流の有無を認識
して、外壁表面温度あるいは外気温度のいずれか一方を
選択してガス圧力を補正するので、正確なガス圧力換算
値を求めて、ガス漏れを早期に検出することができる。
また、従来と比較して温度センサの数も減少させること
ができ、処理するデータ量も含め、監視装置の低廉化を
図ることができる。
According to the present invention, the gas pressure is corrected by recognizing the presence or absence of an energizing current and selecting either the outer wall surface temperature or the outside air temperature, so that an accurate gas pressure conversion value can be obtained. The gas leak can be detected early.
Further, the number of temperature sensors can be reduced as compared with the conventional one, and the cost of the monitoring device including the amount of data to be processed can be reduced.

【0019】前記実施例では、3個の密閉タンクにガス
圧力センサ3個と表面温度センサ1個、気温センサ1個
を用いるのに対して、従来の技術では3個の密閉タンク
それぞれにガス圧力センサと温度センサが必要であり、
温度センサを1個節約できる。1箇所に多数のガス絶縁
開閉装置が設置される場合には温度センサ節約の効果は
顕著であり、例えば前記実施例に示すガス絶縁開閉装置
10台が設置されている場合、従来の技術では温度セン
サは全密閉タンク数=3×10=30個必要であるのに
対して、本発明によれば、いずれか1つの密閉タンクに
設ける表面温度センサ10個と共通の気温センサ1個の
計11個の温度センサで済み、19個の温度センサを節
約することができる。
In the above-mentioned embodiment, three gas pressure sensors, one surface temperature sensor and one air temperature sensor are used for the three closed tanks, whereas in the prior art, the gas pressure is applied to each of the three closed tanks. I need a sensor and a temperature sensor,
You can save one temperature sensor. When a large number of gas-insulated switchgears are installed at one location, the effect of saving the temperature sensor is remarkable. For example, when 10 gas-insulated switchgears shown in the above-mentioned embodiment are installed, the temperature is reduced by the conventional technique. According to the present invention, the number of sensors is 3 × 10 = 30, whereas the surface temperature sensor provided in any one of the closed tanks and the air temperature sensor in common are 11 in total. Only 19 temperature sensors are needed, and 19 temperature sensors can be saved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明によるガス絶縁開閉装置のガス漏れ監視
装置の一実施例を示す図である。
FIG. 1 is a diagram showing an embodiment of a gas leakage monitoring device of a gas insulated switchgear according to the present invention.

【図2】本発明によるガス圧力の温度補正の方法を示す
図である。
FIG. 2 is a diagram showing a method for temperature correction of gas pressure according to the present invention.

【符号の説明】[Explanation of symbols]

1A〜1C 密閉タンク 2A〜2C 電気的構成部品 3A〜3C 絶縁ガス 4A〜4C ガス圧力センサ 5 表面温度センサ 6 気温センサ 7A、7B 開閉部 8A、8B 開閉状態を出力する補助接点 9 温度補正手段 10 ガス漏れ判定手段 11A〜11C 引出し端子 1A to 1C Closed tank 2A to 2C Electrical components 3A to 3C Insulating gas 4A to 4C Gas pressure sensor 5 Surface temperature sensor 6 Air temperature sensor 7A, 7B Opening / closing part 8A, 8B Auxiliary contact 9 for outputting open / closed state 9 Temperature correction means 10 Gas leak determination means 11A to 11C Lead terminal

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 複数の密閉タンク内に、分岐部分を有す
る高圧導体ならびに開閉部を収納して、空隙に絶縁ガス
を所定の圧力で封入したガス絶縁開閉装置において、 前記複数の密閉タンクにそれぞれ設けられて、封入され
た絶縁ガスの圧力を検出する複数のガス圧力センサと、 前記密閉タンクのいずれか1つの外壁の表面に設けられ
て、外壁表面温度を検出する表面温度センサと、 前記ガス絶縁開閉装置の近傍に設けられて、外気温度を
検出する気温センサと、 前記複数のガス圧力センサで検出したそれぞれのガス圧
力と前記表面温度センサで検出した外壁表面温度および
前記気温センサで検出した外気温度の出力信号を取り込
み、前記高圧導体に通電電流が流れている前記密閉タン
クでは外壁表面温度をガス平均温度とみなし、前記高圧
導体に通電電流が流れていない前記密閉タンクでは外気
温度をガス平均温度とみなして、基準温度におけるガス
圧力換算値をそれぞれ算出する温度補正手段と、 算出したガス圧力換算値を、あらかじめ設定しておいた
判定値と比較してガス漏れの有無を判定するガス漏れ判
定手段と、 を有するガス絶縁開閉装置のガス漏れ監視装置。
1. A gas-insulated switchgear in which a high-voltage conductor having a branched portion and an opening / closing part are housed in a plurality of closed tanks, and an insulating gas is sealed in a gap at a predetermined pressure. A plurality of gas pressure sensors that are provided to detect the pressure of the enclosed insulating gas; a surface temperature sensor that is provided on the surface of any one of the outer walls of the closed tank to detect the outer wall surface temperature; An air temperature sensor provided in the vicinity of the insulating switchgear to detect the outside air temperature, each gas pressure detected by the plurality of gas pressure sensors, and an outer wall surface temperature detected by the surface temperature sensor and the air temperature sensor detected. The output signal of the outside air temperature is taken in, and in the closed tank in which a current is flowing through the high-voltage conductor, the outer wall surface temperature is regarded as the gas average temperature, In the closed tank where no current is flowing to the body, the outside air temperature is regarded as the gas average temperature, and the temperature correction means for calculating the gas pressure conversion value at the reference temperature, and the calculated gas pressure conversion value are set in advance. A gas leak monitoring device for a gas insulated switchgear, comprising: a gas leak judging means for judging whether or not there is a gas leak by comparing with a judgment value set.
JP6148782A 1994-06-08 1994-06-08 Gas leak monitoring device for gas insulated switchgear Expired - Fee Related JP3049702B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6148782A JP3049702B2 (en) 1994-06-08 1994-06-08 Gas leak monitoring device for gas insulated switchgear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6148782A JP3049702B2 (en) 1994-06-08 1994-06-08 Gas leak monitoring device for gas insulated switchgear

Publications (2)

Publication Number Publication Date
JPH08105813A true JPH08105813A (en) 1996-04-23
JP3049702B2 JP3049702B2 (en) 2000-06-05

Family

ID=15460561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6148782A Expired - Fee Related JP3049702B2 (en) 1994-06-08 1994-06-08 Gas leak monitoring device for gas insulated switchgear

Country Status (1)

Country Link
JP (1) JP3049702B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018150949A1 (en) * 2017-02-20 2018-08-23 株式会社フジキン Anomaly detection device for fluid controller, anomaly detection system, anomaly detection method, and fluid controller

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018150949A1 (en) * 2017-02-20 2018-08-23 株式会社フジキン Anomaly detection device for fluid controller, anomaly detection system, anomaly detection method, and fluid controller
KR20190077496A (en) * 2017-02-20 2019-07-03 가부시키가이샤 후지킨 An abnormality detecting device of a fluid controller, an abnormality detecting system, an abnormality detecting method and a fluid controller
CN109983318A (en) * 2017-02-20 2019-07-05 株式会社富士金 Abnormal detector, abnormality detection system, method for detecting abnormality and the fluid control of fluid control
JPWO2018150949A1 (en) * 2017-02-20 2020-01-23 株式会社フジキン Fluid controller abnormality detection device, abnormality detection system, abnormality detection method, and fluid controller
TWI687658B (en) * 2017-02-20 2020-03-11 日商富士金股份有限公司 Abnormality detection device of fluid controller, abnormality detection system, abnormality detection method, and fluid controller
US11226257B2 (en) 2017-02-20 2022-01-18 Fujikin Inc. Anomaly detection device for fluid controller, anomaly detection system, anamoly detection method, and fluid controller

Also Published As

Publication number Publication date
JP3049702B2 (en) 2000-06-05

Similar Documents

Publication Publication Date Title
CN108287288B (en) Switch cabinet thermal defect monitoring system, analysis method and comprehensive measurement and control device
US20210341529A1 (en) Gas monitoring system for gas-insulated switchgears
US6661234B2 (en) Failure determining apparatus of gas-insulated electrical appliance
KR100692586B1 (en) Trouble diagnosis method and system for circuit breaker
KR20090130992A (en) The electrical device with sensor for temperature
JPH08105813A (en) Gas leak detector for gas-insulated switch gear
JP4157257B2 (en) Failure determination device for gas insulated electrical equipment and monitoring device for gas insulated electrical equipment
JPH08105812A (en) Gas leak detector for gas-insulated electric equipment
JP2002118912A (en) Gas-insulated electric apparatus and anomaly detecting method therein
JPH09289731A (en) Abnormal over-heating detector for cubicle
JP5807748B2 (en) Abnormality detection device in distribution board
JP2644813B2 (en) Switching device abnormality monitoring device
JPH08105811A (en) Gas leak monitoring apparatus for gas breakage electric equipment
KR200263817Y1 (en) Apparatus for monitoring temterature of a metal clad switch gear
JPH08241654A (en) Failure detecting device for gas-blast circuit-breaker
JPH027830A (en) Monitor device of gas insulation type electrical equipment
JPH11251153A (en) Anomaly detection device
JPH03262979A (en) Internal abnormality detecting method for gas insulation equipment
JPH0862082A (en) Inspection device for pressure sensor
JP2569638Y2 (en) GIS internal abnormal overheat monitoring device
JP2000152448A (en) Gas-insulated device fault detecting apparatus
KR20240011312A (en) Distribution board for abnormal sign monitoring using reference values
JPH09121414A (en) Method and device for monitoring gas enclosed in gas insulated switchgear
JP2024034649A (en) Detection device and judgment system
JPH0246129A (en) System of judging abnormal temperature for electric machinery and apparatus

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080331

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20090331

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090331

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20100331

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100331

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20110331

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20110331

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120331

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees