JPH08105811A - Gas leak monitoring apparatus for gas breakage electric equipment - Google Patents

Gas leak monitoring apparatus for gas breakage electric equipment

Info

Publication number
JPH08105811A
JPH08105811A JP14073994A JP14073994A JPH08105811A JP H08105811 A JPH08105811 A JP H08105811A JP 14073994 A JP14073994 A JP 14073994A JP 14073994 A JP14073994 A JP 14073994A JP H08105811 A JPH08105811 A JP H08105811A
Authority
JP
Japan
Prior art keywords
gas
temperature
gas pressure
partition wall
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14073994A
Other languages
Japanese (ja)
Inventor
Shinji Honda
眞治 本多
Matsukichi Kato
松吉 加藤
Takehiko Yamada
剛彦 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takaoka Toko Co Ltd
Original Assignee
Takaoka Electric Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takaoka Electric Mfg Co Ltd filed Critical Takaoka Electric Mfg Co Ltd
Priority to JP14073994A priority Critical patent/JPH08105811A/en
Publication of JPH08105811A publication Critical patent/JPH08105811A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To provide a monitoring apparatus inexpensive and easy to maintain which makes possible early detection of a gas leak by always accomplishing a highly accurate temperature correction of an actual measured value of a gas pressure detected with a gas pressure sensor to determine a gas pressure conversion value at a reference temperature without being affected by turbulence such as energized current, sunshine, wind and rain. CONSTITUTION: A closed tank 1 of gas breakage electric equipment is provided with a gas pressure sensor 4 to detect a pressure of an insulation gas 3 sealed and a temperature sensor 7 for detecting the temperature of the surface of a partition 6 is provided inside a box 5 adjoining the closed tank 1 and on the surface of the partition separating the closed tank 1 from the box 5. A temperature correcting means 9 is provided to correct an actually measured value of a gas pressure by the surface temperature of the partition with the temperature sensor 7 and calculates a gas pressure conversion value at a reference temperature. A gas leak judging means 10 is provided to judge the presence of a gas leak by comparing the gas pressure conversion value calculated with a criterion value set previously.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ガス絶縁開閉装置など
の密閉タンクに封入された絶縁ガスの漏れを監視するガ
ス絶縁電気機器のガス漏れ監視装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas leakage monitoring device for gas insulated electrical equipment for monitoring the leakage of insulating gas sealed in a closed tank such as a gas insulated switchgear.

【0002】[0002]

【従来の技術】ガス絶縁電気機器に封入された六フッ化
硫黄などの絶縁ガスは、通電部などの電気的構成部品を
密閉タンクから電気的に絶縁し、また対流作用により密
閉タンク内を冷却する機能を備えている。したがって絶
縁ガスの漏れは電気機器の性能に大きな影響を与えるの
で、従来はガス密度スイッチを用いて監視していた。
2. Description of the Related Art Insulating gas such as sulfur hexafluoride enclosed in gas-insulated electrical equipment electrically insulates electrical components such as current-carrying parts from a sealed tank and cools the sealed tank by convection. It has a function to do. Therefore, since the leakage of the insulating gas has a great influence on the performance of the electric device, it has been conventionally monitored using a gas density switch.

【0003】また近年では、特開平3−222613号
公報にみられるようにガス圧力センサと気温センサを組
合せたガス漏れ監視装置や、特開平4−192509号
公報にみられるように最高ガス温度とガス圧力と負荷率
とを検出するガス漏れ検出装置が導入されている。
Further, in recent years, a gas leak monitoring device combining a gas pressure sensor and an air temperature sensor as shown in Japanese Patent Laid-Open No. 3-222613, and a maximum gas temperature as shown in Japanese Patent Laid-Open No. 4-192509. A gas leak detection device for detecting gas pressure and load factor has been introduced.

【0004】[0004]

【発明が解決しようとする課題】前記従来技術のうち、
ガス密度スイッチを用いた監視では、ガス平均温度に相
当する箇所にガス密度スイッチを取付ければ良いが、実
際には密閉タンク内の温度分布は通電電流による内部発
熱と日射や風雨などの外乱の影響を受けて複雑に変化す
るために誤差を生じ、ガス漏れの判定値を厳しくすると
誤動作が発生し、判定値を緩くするとガス漏れの検出が
遅れる難点があった。また、この方法はあらかじめ設定
しておいた所定の判定値に達した時点で初めて警報を発
する方式であり、ガス圧力を常時監視してその低下傾向
から微少なガス漏れを早期に判定して、ガス漏れ箇所の
調査、修理や絶縁ガスの補充などの処置を計画的に行う
ことが困難であった。
Of the above-mentioned conventional techniques,
In monitoring using a gas density switch, the gas density switch may be installed at a location corresponding to the gas average temperature, but in reality, the temperature distribution in the closed tank is due to internal heat generation due to energizing current and disturbances such as solar radiation, wind and rain. There is a problem that an error occurs due to a complicated change due to the influence, a malfunction occurs when the judgment value of gas leak is strict, and a detection of gas leak is delayed when the judgment value is loosened. In addition, this method is a method of issuing an alarm for the first time when a predetermined judgment value set in advance is reached, and gas pressure is constantly monitored and a minute gas leak is judged early from its decreasing tendency, It was difficult to systematically take measures such as investigation of gas leaks, repairs, and supplementation of insulating gas.

【0005】上記の難点を改善するために、ガス圧力セ
ンサを用いてガス圧力の値を常時検出する装置が導入さ
れているが、ガス圧力は温度に依存して変化するので、
ガス圧力の低下が温度低下に起因するものかあるいはガ
ス漏れに起因するものかを判断することが難しい。すな
わち、前記ガス圧力センサと気温センサを組合せたガス
漏れ監視装置では、ガス平均温度の代用として外気温度
を用いて補正を行うために、通電電流が小さく、かつ日
射や風雨の影響を受けないことがガス漏れ判定時の前提
となり、適用上の制約がある。また、前記最高ガス温度
とガス圧力と負荷率とを検出する装置では、時間的に変
化する負荷率からガス平均温度を求めるために、電気機
器の熱容量や温度変化の時定数を考慮した繁雑な演算処
理が必要であり、監視装置は高価なものとなり、なおか
つ日射や風雨の影響による誤差を免れない。さらに、最
高ガス温度を測定する温度検出器は密閉タンク内に設け
られるため、温度検出器の点検、修理、交換などに際し
ては電気機器を停止してガス処理を行う必要があり、保
守に手間を要していた。
In order to improve the above-mentioned problems, a device for constantly detecting the value of gas pressure using a gas pressure sensor has been introduced. However, since the gas pressure changes depending on the temperature,
It is difficult to determine whether the gas pressure drop is due to a temperature drop or a gas leak. That is, in the gas leak monitoring device in which the gas pressure sensor and the air temperature sensor are combined, since the correction is performed by using the outside air temperature as a substitute for the gas average temperature, the energization current is small, and it is not affected by solar radiation or wind and rain. Is a prerequisite for gas leak judgment, and there are restrictions on application. Further, in the device for detecting the maximum gas temperature, the gas pressure, and the load factor, in order to obtain the gas average temperature from the load factor that changes with time, a complicated operation considering the heat capacity of the electric device and the time constant of the temperature change is complicated. Calculation processing is required, the monitoring device becomes expensive, and errors due to the effects of sunlight and wind and rain are unavoidable. In addition, since the temperature detector that measures the maximum gas temperature is installed in a closed tank, it is necessary to stop the electric equipment and perform gas processing when inspecting, repairing, or replacing the temperature detector, which is troublesome for maintenance. I needed it.

【0006】そこで、本発明の目的は、ガス圧力センサ
で検出したガス圧力実測値を、通電電流や日射、風雨な
どの外乱に影響されることなく、高精度な温度補正を常
時行い、基準温度におけるガス圧力換算値を求め、ガス
漏れを早期に検出することのできる低廉で保守の容易な
監視装置を提供することである。
Therefore, an object of the present invention is to constantly perform a highly accurate temperature correction on a measured value of gas pressure detected by a gas pressure sensor without being affected by disturbances such as a current flow, solar radiation, and wind and rain to obtain a reference temperature. It is an object of the present invention to provide a low-cost and easy-to-maintain monitoring device capable of obtaining a gas pressure conversion value in (1) and detecting a gas leak at an early stage.

【0007】[0007]

【課題を解決するための手段】本発明においては、ガス
絶縁電気機器の密閉タンクに、封入された絶縁ガスの圧
力を検出するガス圧力センサを設け、密閉タンクに隣接
する箱の内部で、密閉タンクと箱とを隔てる隔壁の表面
に、隔壁表面温度を検出する温度センサを設ける。さら
に、前記ガス圧力センサで検出したガス圧力実測値を、
前記温度センサで検出した隔壁表面温度で補正して、基
準温度におけるガス圧力換算値を算出する温度補正手段
を設け、算出したガス圧力換算値を、あらかじめ設定し
ておいた判定値と比較してガス漏れの有無を判定するガ
ス漏れ判定手段を設ける。
According to the present invention, a gas pressure sensor for detecting the pressure of a sealed insulating gas is provided in a sealed tank of a gas-insulated electric device, and a gas is sealed inside a box adjacent to the sealed tank. A temperature sensor for detecting the partition wall surface temperature is provided on the surface of the partition wall that separates the tank and the box. Furthermore, the gas pressure measured value detected by the gas pressure sensor,
Corrected by the partition wall surface temperature detected by the temperature sensor, a temperature correction means for calculating a gas pressure conversion value at the reference temperature is provided, and the calculated gas pressure conversion value is compared with a preset judgment value. Gas leak determining means for determining the presence or absence of gas leak is provided.

【0008】[0008]

【作用】前記のように構成された本発明の監視装置によ
れば、ガス圧力実測値を補正して基準温度におけるガス
圧力換算値を算出する際に隔壁表面温度を用いること
で、通電電流と日射、風雨などの外乱の影響を低減する
ことができる。すなわち、通電電流による内部発熱でガ
ス平均温度が外気温度よりも上昇した場合、隔壁の厚さ
方向の熱伝導により隔壁表面温度も上昇するので、ガス
平均温度を隔壁の表面で間接的に検出することができ
る。また、日射や風雨などの外乱の影響によりガス平均
温度が外気温度から変化した場合、これらの外乱は密閉
タンクだけでなく隣接する箱にも同等の作用を及ぼすの
で、密閉タンク内の絶縁ガス、箱内の空気、および両者
を隔てる隔壁の三者は同様の温度履歴をたどり、ガス平
均温度を隔壁の表面で間接的に検出することができる。
実際には、前記の通電電流と外乱は同時に重なりあって
ガス平均温度に影響を及ぼすが、隔壁表面温度を用いる
ことによりこれらの影響を受けずに、高精度な温度補正
を行うことができ、ガス漏れを早期に検出することがで
きる。
According to the monitoring device of the present invention configured as described above, the partition wall surface temperature is used when the gas pressure measured value is corrected to calculate the gas pressure conversion value at the reference temperature. It is possible to reduce the influence of disturbances such as solar radiation and wind and rain. That is, when the gas average temperature rises above the outside air temperature due to internal heat generation due to the energizing current, the partition wall surface temperature also rises due to heat conduction in the partition thickness direction, so the gas average temperature is indirectly detected on the partition wall surface. be able to. In addition, when the gas average temperature changes from the outside air temperature due to the influence of disturbance such as solar radiation or wind and rain, these disturbances have the same effect not only on the sealed tank but also on the adjacent box, so insulating gas in the sealed tank, The air inside the box and the partition wall separating the two trace the same temperature history, and the gas average temperature can be indirectly detected on the surface of the partition wall.
In practice, the above-mentioned energizing current and the disturbance are overlapped at the same time to affect the gas average temperature, but by using the partition wall surface temperature, it is possible to perform highly accurate temperature correction without being affected by these. Gas leaks can be detected early.

【0009】[0009]

【実施例】図1は、本発明によるガス絶縁電気機器のガ
ス漏れ監視装置の一実施例である。ガス絶縁電気機器の
密閉タンク1の内部の空隙には電気的構成部品2を密閉
タンク1から電気的に絶縁し、また対流作用により密閉
タンク1の内部を冷却するために絶縁ガス3が所定の圧
力で封入されている。このガス圧力を検出するために、
密閉タンク1に配管やフランジなどを用いてガス圧力セ
ンサ4を設ける。一方、密閉タンク1に隣接する箱5の
内側で、密閉タンク1と箱5を隔てた隔壁6の表面に、
隔壁表面温度を検出する温度センサ7を設ける。また、
ガス圧力センサ4と温度センサ7から出力される電気信
号を取り込み、ガス圧力センサ4から出力されたガス圧
力実測値を温度センサ7から出力された隔壁6の表面温
度で補正して、基準温度におけるガス圧力換算値を算出
する温度補正手段9を設ける。さらに、温度補正手段9
から出力される温度補正後のガス圧力換算値を取り込
み、このガス圧力換算値をあらかじめ設定しておいた判
定値と比較してガス漏れの有無を判定するガス漏れ判定
手段10を設ける。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an embodiment of a gas leakage monitoring device for gas insulated electric equipment according to the present invention. Insulation tank 3 of the gas-insulated electrical equipment is electrically isolated from electrical component 2 in closed tank 1 by insulating gas 3 in order to cool the inside of closed tank 1 by convection. It is sealed by pressure. To detect this gas pressure,
The gas pressure sensor 4 is provided in the closed tank 1 by using a pipe, a flange and the like. On the other hand, inside the box 5 adjacent to the closed tank 1, on the surface of the partition wall 6 separating the closed tank 1 and the box 5,
A temperature sensor 7 for detecting the partition wall surface temperature is provided. Also,
The electric signals output from the gas pressure sensor 4 and the temperature sensor 7 are taken in, and the gas pressure actual measurement value output from the gas pressure sensor 4 is corrected by the surface temperature of the partition wall 6 output from the temperature sensor 7 to obtain the reference temperature at the reference temperature. A temperature correction means 9 for calculating a gas pressure conversion value is provided. Further, the temperature correction means 9
A gas leak determination means 10 is provided for fetching the temperature-corrected gas pressure converted value output from the device and comparing the gas pressure converted value with a preset determination value to determine the presence or absence of gas leakage.

【0010】なお、ガス圧力センサ4には半導体式歪ゲ
ージやポテンショメータ付圧力計、温度センサ7には白
金測温抵抗体や熱電対、温度補正手段9やガス漏れ判定
手段10にはマイクロプロセッサやパーソナルコンピュ
ータなどをそれぞれ用いる。
The gas pressure sensor 4 is a semiconductor type strain gauge or a pressure gauge with a potentiometer, the temperature sensor 7 is a platinum resistance thermometer or a thermocouple, and the temperature correction means 9 and the gas leakage determination means 10 are microprocessors or the like. A personal computer or the like is used.

【0011】次に、上記のように構成された実施例にお
けるガス漏れ監視の方法について説明する。密閉タンク
1の内部のガス圧力は、図2中の曲線Aに示すようにガ
ス平均温度に依存して変化するので、定格封入ガス圧力
として、通常は図2の状態0、すなわち基準温度t0に
おけるガス圧力P0で表現される。実際の機器運転時に
は、外気温度の変化に加えて、通電電流や日射、風雨な
どの外乱の影響を受けてガス平均温度は複雑に変化し、
またこれに伴いガス圧力も変化する。今、機器が図2の
状態Bに相当する、ガス平均温度t1、ガス圧力P1で
ある場合を想定すると、ガス圧力センサ4ならびに温度
センサ7は、それぞれ圧力P1と温度t1を検出して、
これに相当する電気信号を出力する。温度補正手段9は
これらの電気信号を取り込み、所定の補正式を用いるこ
とで図2の状態Cで示される基準温度t0でのガス圧力
換算値P2を求めることができる。ガス漏れ判定手段1
0は、ガス圧力換算値P2があらかじめ設定しておいた
判定値PNよりも小さければガス漏れと判定して、接点
出力やランプ点灯などの異常通報を行う。
Next, a method for monitoring gas leakage in the embodiment configured as described above will be described. Since the gas pressure inside the closed tank 1 changes depending on the gas average temperature as shown by the curve A in FIG. 2, the rated enclosed gas pressure is normally the state 0 in FIG. 2, that is, at the reference temperature t0. It is expressed by the gas pressure P0. During actual equipment operation, in addition to changes in the outside air temperature, the average gas temperature changes intricately under the influence of disturbances such as current flow, solar radiation, and wind and rain.
The gas pressure also changes accordingly. Assuming now that the equipment has a gas average temperature t1 and a gas pressure P1 corresponding to the state B of FIG. 2, the gas pressure sensor 4 and the temperature sensor 7 detect the pressure P1 and the temperature t1, respectively,
An electric signal corresponding to this is output. The temperature correction means 9 can obtain the gas pressure conversion value P2 at the reference temperature t0 shown in the state C of FIG. 2 by taking in these electric signals and using a predetermined correction formula. Gas leak determination means 1
When the gas pressure conversion value P2 is smaller than the preset judgment value PN, it is judged that there is a gas leak, and an abnormality notification such as contact output or lamp lighting is performed.

【0012】上記のようなガス漏れ監視の方法において
は、ガス平均温度を正確に求めることが高精度な温度補
正に不可欠であり、隔壁6の表面で温度を求める有効性
について以下に説明する。通電電流により密閉タンク1
の内部で発熱がある場合には、絶縁ガス3のガス温度T
G、隔壁6の隔壁表面温度TW、および箱5内の空気8
の空気温度TIは外気温度TOよりも上昇し、それぞれ
の熱抵抗や対流伝熱特性に従って、概略図3に示すよう
な温度分布を示す。この時、ガス温度TGは密閉タンク
1の高さ方向で異なり、ガス平均温度TG0は通常密閉
タンク1の中央付近で求められる。隔壁6が比較的薄い
場合には、その熱抵抗は小さく隔壁6の厚さ方向の温度
低下△Tは小さいため、隔壁6の中央付近の温度TW0
はガス平均温度TG0にほぼ一致する。隔壁6が厚くな
るに従って、温度低下△Tは大きくなり、無視できなく
なる。この温度低下△Tによる誤差を取り除くために2
つの方法が考えられる。第1は、隔壁6の中央付近の温
度TW0を求めておいて、温度低下△Tに相当する値を
上乗せする方法であり、第2は図3に示すように隔壁6
の中央よりも高い位置で、ガス平均温度TG0に相当す
る隔壁表面温度TW1を得られる箇所に、温度センサ7
を設ける方法である。なお、第1の方法における温度低
下△Tに相当する値や、第2の方法における隔壁表面温
度TW1を得られる箇所については、実際の電気機器を
用いて実験的に求めることができる。上記のいずれかの
方法を用いることにより、隔壁6が厚い場合にも隔壁表
面温度TW1を検出することで、通電電流が流れている
場合のガス平均温度TG0を求めることができる。
In the above gas leakage monitoring method, accurate determination of the average gas temperature is essential for highly accurate temperature correction, and the effectiveness of determining the temperature at the surface of the partition wall 6 will be described below. Sealed tank 1 by energizing current
If heat is generated inside the chamber, the gas temperature T of the insulating gas 3
G, the partition wall surface temperature TW of the partition wall 6, and the air 8 in the box 5
The air temperature TI is higher than the outside air temperature TO, and exhibits a temperature distribution as schematically shown in FIG. 3 in accordance with the respective heat resistance and convection heat transfer characteristics. At this time, the gas temperature TG is different in the height direction of the closed tank 1, and the gas average temperature TG0 is usually obtained near the center of the closed tank 1. When the partition wall 6 is relatively thin, its thermal resistance is small and the temperature drop ΔT in the thickness direction of the partition wall 6 is small, so the temperature TW0 near the center of the partition wall 6 is small.
Almost coincides with the average gas temperature TG0. As the partition wall 6 becomes thicker, the temperature decrease ΔT becomes larger and cannot be ignored. To remove the error due to this temperature drop ΔT, 2
There are two possible ways. The first is a method of obtaining a temperature TW0 near the center of the partition wall 6 and adding a value corresponding to the temperature decrease ΔT, and the second is a method of adding the partition wall 6 as shown in FIG.
Of the partition wall surface temperature TW1 corresponding to the gas average temperature TG0 at a position higher than the center of the temperature sensor 7
Is a method of providing. The value corresponding to the temperature decrease ΔT in the first method and the location where the partition wall surface temperature TW1 in the second method can be obtained can be experimentally obtained by using an actual electric device. By using any one of the above methods, even if the partition wall 6 is thick, by detecting the partition wall surface temperature TW1, the gas average temperature TG0 when the energizing current is flowing can be obtained.

【0013】次に、日射や風雨などの外乱がある場合に
ついて説明する。屋外に設置されたガス絶縁電気機器で
は、日射による放射伝熱により、密閉タンク1や箱5の
外壁温度は上昇し、これに伴い密閉タンク1の内部の絶
縁ガス3ならびに箱5内の空気8の温度も上昇する。逆
に、風雨の影響がある場合にはこれらの温度は下降す
る。この時、外乱の影響は密閉タンク1と箱5に同等の
作用を及ぼすため、ガス温度と箱5内の空気温度は同様
の温度履歴をたどる。したがって、その中間に存在する
隔壁6の隔壁表面温度も同様の温度履歴をたどるので、
外乱の影響により変化したガス温度を間接的に求めるこ
とができる。
Next, the case where there is a disturbance such as solar radiation or wind and rain will be described. In the gas-insulated electrical equipment installed outdoors, the temperature of the outer wall of the closed tank 1 and the box 5 rises due to radiative heat transfer due to solar radiation, and along with this, the insulating gas 3 inside the closed tank 1 and air 8 inside the box 5 Temperature also rises. On the contrary, when there is the effect of wind and rain, these temperatures fall. At this time, the influence of the disturbance has the same effect on the closed tank 1 and the box 5, so that the gas temperature and the air temperature in the box 5 have similar temperature histories. Therefore, since the partition wall surface temperature of the partition wall 6 existing in the middle also follows a similar temperature history,
The gas temperature changed due to the influence of disturbance can be indirectly obtained.

【0014】上記で述べたガス温度と箱5内の空気温度
の温度履歴は、厳密には密閉タンク1や箱5の形状や材
質、厚さおよび絶縁ガス3と空気8の熱的特性の違いに
より完全には一致せず、したがって隔壁表面温度をその
ままガス温度とは見なせない場合もある。この場合に
は、隔壁表面温度とガス温度の誤差をあらかじめ実験的
に求めておき、温度補正手段9におけるガス圧力の温度
補正の際に誤差を補償してやれば良い。
Strictly speaking, the temperature history of the gas temperature and the air temperature in the box 5 described above is different in the shape and material of the closed tank 1 and the box 5, the thickness, and the thermal characteristics of the insulating gas 3 and the air 8. Therefore, there is a case where the partition wall surface temperature cannot be regarded as a gas temperature as it is. In this case, the error between the partition wall surface temperature and the gas temperature may be experimentally obtained in advance, and the error may be compensated when the temperature of the gas pressure is corrected by the temperature correction means 9.

【0015】以上の説明のとおり、隔壁表面温度を検出
することにより、通電電流や日射、風雨などの外乱の影
響を受けずに、ガス平均温度を正確に求めることができ
る。したがって、ガス圧力の高精度な温度補正を行い、
ガス漏れを早期に検出することができる。
As described above, by detecting the partition wall surface temperature, the average gas temperature can be accurately obtained without being affected by disturbances such as a current flowing, solar radiation, and wind and rain. Therefore, perform highly accurate temperature correction of gas pressure,
Gas leaks can be detected early.

【0016】[0016]

【発明の効果】本発明によれば、ガス平均温度に相当す
る隔壁表面温度でガス圧力の温度補正を行うので、補正
の高精度化が図れて、ガス漏れの早期検出が可能とな
る。また、負荷率などの二次的な信号が不要であり、演
算処理の簡略化による監視装置の簡素化、低価格化がで
き、さらに密閉タンク内への温度センサ取付けも不要で
あるので、保守も容易である。
According to the present invention, since the temperature of the gas pressure is corrected at the partition wall surface temperature corresponding to the gas average temperature, the accuracy of the correction can be improved and the gas leak can be detected early. In addition, since secondary signals such as load factor are not required, the monitoring device can be simplified and the cost can be reduced by simplifying the arithmetic processing, and the temperature sensor in the sealed tank is not required. Is also easy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明によるガス絶縁電気機器のガス漏れ監視
装置の一実施例を示す図である。
FIG. 1 is a diagram showing an embodiment of a gas leakage monitoring device for gas insulated electrical equipment according to the present invention.

【図2】本発明によるガス圧力の温度補正の方法を示す
図である。
FIG. 2 is a diagram showing a method for temperature correction of gas pressure according to the present invention.

【図3】本発明によりガス平均温度を求める方法を示す
図である。
FIG. 3 is a diagram showing a method for obtaining a gas average temperature according to the present invention.

【符号の説明】[Explanation of symbols]

1 密閉タンク 2 電気的構成部品 3 絶縁ガス 4 ガス圧力センサ 5 箱 6 隔壁 7 温度センサ 8 箱内の空気 9 温度補正手段 10 ガス漏れ判定手段 1 Airtight Tank 2 Electrical Components 3 Insulating Gas 4 Gas Pressure Sensor 5 Box 6 Partition 7 Temperature Sensor 8 Air Inside Box 9 Temperature Corrector 10 Gas Leakage Judge

フロントページの続き (72)発明者 山田 剛彦 愛知県西春日井郡西枇杷島町芳野町3丁目 1番地 株式会社高岳製作所名古屋事業所 内Front page continuation (72) Takehiko Yamada Inventor Takehiko Yamada 3-1-1 Yoshino-cho, Nishibiwajima-cho, Nishikasugai-gun, Aichi Takadake Works Nagoya Works

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 密閉タンク内に通電部などの電気的構成
部品を収納して、空隙に絶縁ガスを所定の圧力で封入し
たガス絶縁電気機器において、 前記密閉タンクに設けられて、封入された絶縁ガスの圧
力を検出するガス圧力センサと、 前記密閉タンクに隣接する箱の内部で、密閉タンクと箱
とを隔てる隔壁の表面に設けられて、隔壁表面温度を検
出する温度センサと、 前記ガス圧力センサで検出したガス圧力実測値を、前記
温度センサで検出した隔壁表面温度で補正して、基準温
度におけるガス圧力換算値を算出する温度補正手段と、 算出したガス圧力換算値を、あらかじめ設定しておいた
判定値と比較してガス漏れの有無を判定するガス漏れ判
定手段と、 を有するガス絶縁電気機器のガス漏れ監視装置。
1. A gas-insulated electric device in which an electric component such as a current-carrying part is housed in a sealed tank, and an insulating gas is sealed in a gap at a predetermined pressure. A gas pressure sensor for detecting the pressure of the insulating gas, inside the box adjacent to the closed tank, provided on the surface of the partition wall separating the closed tank and the box, a temperature sensor for detecting the partition wall surface temperature, the gas The gas pressure conversion value calculated by correcting the gas pressure measurement value detected by the pressure sensor with the partition wall surface temperature detected by the temperature sensor and calculating the gas pressure conversion value at the reference temperature is preset. A gas leak monitoring device for gas insulated electrical equipment, comprising: a gas leak judging means for judging the presence or absence of a gas leak by comparing it with a predetermined judgment value.
JP14073994A 1994-06-01 1994-06-01 Gas leak monitoring apparatus for gas breakage electric equipment Pending JPH08105811A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14073994A JPH08105811A (en) 1994-06-01 1994-06-01 Gas leak monitoring apparatus for gas breakage electric equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14073994A JPH08105811A (en) 1994-06-01 1994-06-01 Gas leak monitoring apparatus for gas breakage electric equipment

Publications (1)

Publication Number Publication Date
JPH08105811A true JPH08105811A (en) 1996-04-23

Family

ID=15275589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14073994A Pending JPH08105811A (en) 1994-06-01 1994-06-01 Gas leak monitoring apparatus for gas breakage electric equipment

Country Status (1)

Country Link
JP (1) JPH08105811A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007248416A (en) * 2006-03-20 2007-09-27 Musashino Kiki Kk Level gage
WO2023210040A1 (en) * 2022-04-26 2023-11-02 株式会社日立製作所 Gas leak detection device and gas leak detection method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007248416A (en) * 2006-03-20 2007-09-27 Musashino Kiki Kk Level gage
WO2023210040A1 (en) * 2022-04-26 2023-11-02 株式会社日立製作所 Gas leak detection device and gas leak detection method

Similar Documents

Publication Publication Date Title
US10119881B2 (en) Method and apparatus for detecting gas leakage from radioactive material sealed container
JP2007263584A (en) Gas leakage detector and gas leakage detection method
JP2017026559A (en) Gas leak detection device and gas leak detection method
JP2015099083A (en) Acid dew point corrosion evaluation apparatus and acid dew point corrosion evaluation method
JPH08105811A (en) Gas leak monitoring apparatus for gas breakage electric equipment
JPH08105812A (en) Gas leak detector for gas-insulated electric equipment
JP2023101797A (en) gas safety device
JP2014142996A (en) Vacuum deterioration detector of enclosed switchgear
JPH09200918A (en) Diagnosis for internal overheating of electrical equipment
EP4075112A1 (en) A fault detection system
CN114779067A (en) Circuit breaker, and detection device and method for contact resistance of wiring terminal of circuit breaker
JPH09289731A (en) Abnormal over-heating detector for cubicle
KR20150048286A (en) Test method and system of enforcing low density alarm of gas in gas insulated switchard
JP3100512B2 (en) Method and apparatus for diagnosing overheating of contact portion of air interrupter
JP5142783B2 (en) Gas pressure detector for gas insulated switchgear
JPH0862082A (en) Inspection device for pressure sensor
JP5807748B2 (en) Abnormality detection device in distribution board
JP3049702B2 (en) Gas leak monitoring device for gas insulated switchgear
CN110749379A (en) Cable joint fault detection method and device based on non-contact infrared temperature measurement
JPH0246129A (en) System of judging abnormal temperature for electric machinery and apparatus
CN113588711B (en) Calculation device and calculation method for severe thermal decomposition area of gas insulation medium
JP2006078185A (en) Method and apparatus for inspecting heat insulating capacity
JPH11258022A (en) Gas meter
JPH0113300B2 (en)
KR102648268B1 (en) Failure diagnosis device for railway power equipment and method for diagnosing failure of railway power equipment using the same