JPH0810580A - Treatment of mixed waste liquid and device therefor - Google Patents
Treatment of mixed waste liquid and device thereforInfo
- Publication number
- JPH0810580A JPH0810580A JP15183494A JP15183494A JPH0810580A JP H0810580 A JPH0810580 A JP H0810580A JP 15183494 A JP15183494 A JP 15183494A JP 15183494 A JP15183494 A JP 15183494A JP H0810580 A JPH0810580 A JP H0810580A
- Authority
- JP
- Japan
- Prior art keywords
- ammonia
- acid
- waste liquid
- mixed waste
- liquid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000010812 mixed waste Substances 0.000 title claims abstract description 49
- 239000007788 liquid Substances 0.000 title claims description 125
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims abstract description 193
- 239000002253 acid Substances 0.000 claims abstract description 80
- 229910021529 ammonia Inorganic materials 0.000 claims abstract description 79
- 238000000034 method Methods 0.000 claims abstract description 34
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 33
- 239000002699 waste material Substances 0.000 claims abstract description 26
- 238000010521 absorption reaction Methods 0.000 claims abstract description 20
- 230000007935 neutral effect Effects 0.000 claims abstract description 16
- 150000003839 salts Chemical class 0.000 claims abstract description 16
- 239000007785 strong electrolyte Substances 0.000 claims abstract description 16
- 238000011084 recovery Methods 0.000 claims description 36
- 238000000909 electrodialysis Methods 0.000 claims description 29
- 238000010438 heat treatment Methods 0.000 claims description 19
- 239000003513 alkali Substances 0.000 claims description 11
- 238000000926 separation method Methods 0.000 claims description 5
- 238000004140 cleaning Methods 0.000 abstract description 4
- 239000006096 absorbing agent Substances 0.000 abstract description 3
- 239000007789 gas Substances 0.000 description 30
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 19
- 239000000243 solution Substances 0.000 description 16
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 15
- 235000011114 ammonium hydroxide Nutrition 0.000 description 15
- 239000000908 ammonium hydroxide Substances 0.000 description 14
- 239000003153 chemical reaction reagent Substances 0.000 description 11
- 238000010612 desalination reaction Methods 0.000 description 11
- 238000010586 diagram Methods 0.000 description 10
- 239000012535 impurity Substances 0.000 description 7
- 239000012071 phase Substances 0.000 description 7
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 238000011033 desalting Methods 0.000 description 6
- 239000001257 hydrogen Substances 0.000 description 6
- 229910052739 hydrogen Inorganic materials 0.000 description 6
- 239000007791 liquid phase Substances 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 239000003792 electrolyte Substances 0.000 description 5
- 239000012530 fluid Substances 0.000 description 5
- 239000012528 membrane Substances 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 238000005341 cation exchange Methods 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- -1 ammonium ions Chemical class 0.000 description 3
- 150000003863 ammonium salts Chemical class 0.000 description 3
- 239000003011 anion exchange membrane Substances 0.000 description 3
- 238000000502 dialysis Methods 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 239000012808 vapor phase Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 238000005187 foaming Methods 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 101100493710 Caenorhabditis elegans bath-40 gene Proteins 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229910001424 calcium ion Inorganic materials 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000002242 deionisation method Methods 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000002309 gasification Methods 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 230000007096 poisonous effect Effects 0.000 description 1
- 239000008213 purified water Substances 0.000 description 1
- 239000000941 radioactive substance Substances 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
Abstract
Description
【産業上の利用分野】本発明は、産業界の様々な分野で
発生する酸とアルカリを含む混合廃液処理方法および装
置に係り、廃液の中から酸とアルカリとを回収し、再利
用することによって、酸やアルカリの環境への廃棄量を
低減するに好適な廃液処理方法および廃液処理装置に関
するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for treating a mixed waste liquid containing an acid and an alkali generated in various fields of industry, and recovering and recycling the acid and the alkali from the waste liquid. Accordingly, the present invention relates to a waste liquid treatment method and a waste liquid treatment device suitable for reducing the amount of acid or alkali to be discarded into the environment.
【0002】[0002]
【従来の技術】メッキ、イオン交換樹脂の再生、金属類
の溶解、洗浄等においては、種々の酸やアルカリとが使
用され、最終的には中和された状態になるように処理さ
れている。従来、これらの多くは、そのまま、或いは薄
めて河川や海に捨てられるたり、廃液中に毒物や放射性
物質が含まれている場合には、硬化させたセメント中に
含有させて特別な場所に貯蔵されたりしていた。2. Description of the Related Art Various acids and alkalis are used in plating, regeneration of ion exchange resins, dissolution of metals, washing, etc., and they are treated so as to be finally in a neutralized state. . Conventionally, most of these are stored in a special place by being contained in hardened cement when they are discarded or diluted and then discarded in rivers or the sea, or when waste liquid contains poisonous substances and radioactive substances. It was being done.
【0003】しかしながら、最近、環境保護の観点か
ら、廃棄物を回収し、薬品として再利用し、廃棄物の投
棄量を可能な限り低減することが要求され始め、有効な
手段として電気透析技術を用いた装置が利用されるよう
になってきた。上記電気透析装置のうち、設備コストの
安価、処理の簡易さから廃棄物中の複数種の薬品を一度
の処理により回収しうる三室式電気透析装置を用いる処
理方法が検討されている。However, recently, from the viewpoint of environmental protection, it is required to collect waste, reuse it as a chemical, and reduce the amount of waste dumped as much as possible, and electrodialysis technology is an effective means. The equipment used has come to be used. Among the above electrodialyzers, a treatment method using a three-chamber electrodialyzer capable of recovering a plurality of types of chemicals in wastes by one treatment is being studied because of low equipment cost and ease of treatment.
【0004】三室式電気透析装置の原理は、例えば特開
昭58−37596号公報に示されているが、中央室で
廃液を脱塩し、陽極室には廃液中の酸、陰極室には廃液
中のアルカリをそれぞれ単独に取りだすことができるた
め、酸およびアルカリとして再利用できる可能性があ
り、再利用できれば廃棄物の発生量を大幅に低減するこ
とが可能となり、優れた技術として注目された。しかし
ながら、透析効率について配慮が不足しており、低濃度
の酸、アルカリが回収されていた。The principle of the three-chamber type electrodialyzer is shown in, for example, Japanese Patent Laid-Open No. 58-37596, in which the waste liquid is desalted in the central chamber, the acid in the waste liquid is stored in the anode chamber, and the cathode chamber is Since each alkali in the waste liquid can be taken out independently, there is a possibility that it can be reused as an acid and an alkali, and if it can be reused, it will be possible to significantly reduce the amount of waste, and it will be noted as an excellent technology. It was However, consideration for dialysis efficiency was insufficient, and low concentrations of acids and alkalis were recovered.
【0005】[0005]
【発明が解決しようとする課題】上記従来の三室式電気
透析装置を用いる処理方法および装置においては、アル
カリがアンモニアである場合、次のような問題があっ
た。図3ないし図5を参照して発明が解決しようとする
課題を明確にする。図3は、液相中のアンモニアの気相
分圧を示す線図、図4は、三室式電気透析の陰極室内の
物質の移動を表す説明図、図5は、各試薬の電解質濃度
と比電気伝導度との関係を示す線図である。The above-mentioned conventional treatment method and apparatus using the three-chamber type electrodialyzer has the following problems when the alkali is ammonia. The problem to be solved by the invention will be clarified with reference to FIGS. FIG. 3 is a diagram showing the vapor phase partial pressure of ammonia in the liquid phase, FIG. 4 is an explanatory diagram showing the movement of substances in the cathode chamber of three-chamber electrodialysis, and FIG. 5 is the electrolyte concentration and ratio of each reagent. It is a diagram which shows the relationship with electric conductivity.
【0006】(1)図3は、液相中のアンモニアの気相
分圧を示しているが、図中、黒四角印は10℃、白角印
は20℃、黒菱印は25℃における液相濃度〔wt%〕
と気相分圧〔atm〕であるが、他のアルカリ、例えば
水酸化ナトリウムなどは気相分圧が極めて小さいのに対
し、アンモニアは非常に大きく、液体として回収しても
ガス化しやすい。 (2)図4は、三室式電気透析の陰極室内の物質の移動
状態を表しているが、陰極においては水素が発生してお
り、静的な状態でもガス化しやすいアンモニアが前記水
素に同伴されてガス化が促進され、液体としての回収が
困難である。テスト結果より、従来技術の三室式電気透
析装置が用いられる処理方法においては、3mol/l
程度で平衡になることが確認されており、高濃度回収が
不可能である。 (3)陰極液にはアンモニアの他に廃液中に不純物とし
て含まれていた金属イオン、例えば二価のCaイオン、
一価のNaイオンが移動し、前記アンモニアと結合し濃
縮されるため、交換が必要になる。その時に液中に残存
するアンモニアを処理、回収する必要がある。 (4)図5は、各試薬の電解質濃度と比電気伝導度と関
係を示しているが、水酸化アンモニウムの比電気伝導度
は非常に低いため、電気透析を行うのに適切な電流を流
すためには高電圧が必要であり、電流効率も低い。(1) FIG. 3 shows the gas phase partial pressure of ammonia in the liquid phase. In the figure, the black squares are at 10 ° C., the white squares are at 20 ° C., and the black diamonds are at 25 ° C. Liquid phase concentration [wt%]
The gas phase partial pressure [atm] is such that, although other alkalis such as sodium hydroxide have a very small gas phase partial pressure, ammonia is very large and is easily gasified even when recovered as a liquid. (2) FIG. 4 shows the movement state of substances in the cathode chamber of three-chamber electrodialysis. Hydrogen is generated at the cathode, and ammonia, which is easily gasified even in a static state, is entrained in the hydrogen. Gasification is promoted and it is difficult to recover as a liquid. From the test results, in the treatment method using the conventional three-chamber electrodialysis device, 3 mol / l
It has been confirmed that equilibrium is achieved to some extent, and high-concentration recovery is impossible. (3) In the catholyte, in addition to ammonia, metal ions contained as impurities in the waste liquid, for example, divalent Ca ions,
Exchange is necessary because monovalent Na ions move, combine with the ammonia and are concentrated. At that time, it is necessary to treat and recover the ammonia remaining in the liquid. (4) FIG. 5 shows the relationship between the electrolyte concentration and the specific electric conductivity of each reagent. Since ammonium hydroxide has a very low specific electric conductivity, an appropriate electric current is applied to perform electrodialysis. Therefore, high voltage is required, and current efficiency is low.
【0007】本発明は、上記従来技術の問題点を解決す
るためになされたもので、電流効率が高い電気透析を行
うことができ、気相分圧が極めて高いアンモニアを含む
混合廃液から高濃度の酸とアンモニアを液体として回
収、再利用し、従来周囲環境に放出されていた廃棄物量
を大幅に低減した混合廃液処理方法を提供することをそ
の第一の目的とする。本発明の第二の目的は、前記第一
の目的に係る混合廃液処理方法に用いられる混合廃液処
理装置を提供することにある。The present invention has been made in order to solve the above-mentioned problems of the prior art, and is capable of performing electrodialysis with high current efficiency and having a high concentration from a mixed waste liquid containing ammonia having an extremely high gas phase partial pressure. It is a first object of the present invention to provide a mixed waste liquid treatment method in which the acid and ammonia are recovered as liquids and reused, and the amount of wastes conventionally discharged to the surrounding environment is greatly reduced. A second object of the present invention is to provide a mixed waste liquid treatment apparatus used in the mixed waste liquid treatment method according to the first object.
【0008】[0008]
【課題を解決するための手段】上記第一の目的を達成す
るため、本発明に係る電気透析法をもちいた酸とアンモ
ニアをふくむ混合廃液処理方法は、酸とアンモニアとを
含む廃液を三室式電気透析装置により、酸と、アンモニ
アとを各々独立に回収する混合廃液処理方法において、
アンモニアが回収される陰極室から発生するガスを回収
系に導き、ガス中にふくまれるアンモニアを回収するこ
とを特徴とするものである。また、陰極室液に強酸ある
いは強電解質中性塩のいずれかを添加することを特徴と
するものである。また、強酸が添加され陰極室にて処理
されたアンモニア含有液は強アルカリを添加して加熱操
作を施し、あるいは強電解質中性塩が添加され陰極室に
て処理されたアンモニア含有液はそのままの状態にて加
熱操作を施すことによりアンモニアガスを分離し、前記
分離されたアンモニアガスを回収系により回収すること
を特徴とするものである。また、回収系は、吸収液とし
て、第一段階として温度が制御された水を用い、第二段
階として混合廃液にふくまれる酸と同一成分の酸を用い
られることを特徴とするものである。In order to achieve the above-mentioned first object, a mixed waste liquid treatment method including an acid and ammonia using the electrodialysis method according to the present invention is a three-chamber type waste liquid treatment containing an acid and ammonia. In the mixed waste liquid treatment method of independently recovering acid and ammonia by an electrodialysis device,
It is characterized in that the gas generated from the cathode chamber in which ammonia is recovered is introduced into a recovery system to recover the ammonia contained in the gas. Further, it is characterized in that either a strong acid or a neutral salt of a strong electrolyte is added to the cathode chamber liquid. Further, the ammonia-containing liquid added with a strong acid and treated in the cathode chamber is subjected to a heating operation by adding a strong alkali, or the ammonia-containing liquid treated with a strong electrolyte neutral salt and treated in the cathode chamber remains the same. Ammonia gas is separated by performing a heating operation in this state, and the separated ammonia gas is recovered by a recovery system. In addition, the recovery system is characterized in that temperature-controlled water is used as the first stage as the absorbing liquid, and an acid having the same component as the acid contained in the mixed waste liquid is used as the second stage.
【0009】上記第二の目的を達成するため、本発明に
係る電気透析法をもちいた酸とアンモニアをふくむ混合
廃液処理装置は、酸とアンモニアとを含む廃液より、酸
と、アンモニアとを各々独立に回収する三室式電気透析
装置をふくむ混合廃液処理装置において、前記三室式電
気透析装置の後段に回収系を設け、この回収系に陰極室
から発生するガスを導き、前記ガス中にふくまれるアン
モニアを回収するように構成したことを特徴とするもの
である。また、陰極室液に強酸あるいは強電解質中性塩
のいずれかを加える添加槽を設けて構成したことを特徴
とするものである。また、陰極室にて処理されたアンモ
ニア含有液に強アルカリを添加する添加部と、前記アン
モニア含有液を加熱する加熱部とを具備したアンモニア
ガス分離部を設け、前記分離されたアンモニアガスを回
収系により回収されるように構成したことを特徴とする
ものである。回収系は、吸収液として温度が制御された
水を用いた第一の回収部と、吸収液として混合廃液にふ
くまれる酸と同一成分の酸を用いた第二の回収部とから
構成したことを特徴とするものである。In order to achieve the above-mentioned second object, a mixed waste liquid treatment apparatus containing an acid and ammonia using the electrodialysis method according to the present invention is arranged so that the acid and the ammonia are respectively removed from the waste liquid containing the acid and the ammonia. In a mixed waste liquid treatment device including a three-chamber type electrodialysis device that collects independently, a collection system is provided in the latter stage of the three-chamber type electrodialysis device, and the gas generated from the cathode chamber is introduced into this collection system and included in the gas. It is characterized in that it is configured to recover ammonia. Further, the present invention is characterized in that an addition tank for adding either strong acid or neutral salt of strong electrolyte is provided to the cathode chamber liquid. In addition, an ammonia gas separation unit including an addition unit for adding a strong alkali to the ammonia-containing liquid treated in the cathode chamber and a heating unit for heating the ammonia-containing liquid is provided, and the separated ammonia gas is recovered. It is characterized in that it is configured to be collected by the system. The recovery system was composed of a first recovery section using water whose temperature was controlled as an absorption liquid, and a second recovery section using an acid having the same component as the acid contained in the mixed waste liquid as the absorption liquid. It is characterized by.
【0010】[0010]
【作用】前記各技術的手段の働きはつぎのとおりであ
る。本発明の構成によれば、アンモニアが回収される陰
極室から発生するアンモニアを伴つた電極ガスを回収系
に導き、ガス中にふくまれるアンモニアを吸収液に吸収
させ、液体として回収させることができ、脱塩された処
理水も回収することができる。また、陰極室液に強酸あ
るいは強電解質中性塩のいずれかを添加することによ
り、電気伝導度を上げることにより電圧を低下させ、電
流効率を向上させることができ、二次的には陰極室のア
ンモニアガスの気相分圧を大きくすることができる。ま
た、強酸が添加され陰極室にて処理されたアンモニア含
有液に強アルカリを添加して加熱操作を施し、強電解質
中性塩が添加され陰極室にて処理されたアンモニア含有
液をそのままの状態にて加熱操作を施す分離部によりア
ンモニアガスを分離し、前記分離ガスを回収系により回
収することができる。また、回収系は、吸収液に低温に
制御された水を用いる第一の回収部により高濃度のアン
モニア回収液が得られ、吸収液に混合廃液にふくまれる
酸と同一成分の酸を用いる第二の回収部によりアンモニ
アガスをほぼ完全に回収することができる。The operation of each of the above technical means is as follows. According to the configuration of the present invention, the electrode gas accompanied by ammonia generated from the cathode chamber where ammonia is recovered is guided to the recovery system, and the ammonia contained in the gas is absorbed by the absorbing liquid and can be recovered as a liquid. The desalted treated water can also be collected. Also, by adding either strong acid or neutral salt of strong electrolyte to the cathode chamber liquid, it is possible to lower the voltage by increasing the electrical conductivity and improve the current efficiency. The vapor phase partial pressure of the ammonia gas can be increased. In addition, a strong alkali is added to the ammonia-containing liquid that has been treated in the cathode chamber with a strong acid added and subjected to a heating operation, and the ammonia-containing liquid that has been treated with a strong electrolyte neutral salt and that has been treated in the cathode chamber remains as it is. The ammonia gas can be separated by the separation unit that performs the heating operation in 1. and the separated gas can be recovered by the recovery system. In the recovery system, a high-concentration ammonia recovery liquid is obtained by the first recovery unit that uses water whose temperature is controlled to a low temperature as the absorption liquid, and the absorption liquid uses the same acid as the acid contained in the mixed waste liquid. The ammonia gas can be almost completely recovered by the second recovery part.
【0011】[0011]
【実施例】以下、本発明に係る一実施例を図1、2を参
照して説明する。 〔実施例 1〕図1は、本発明の一実施例に係る電気透
析法を用いた酸とアンモニアを含む混合廃液処理方法お
よび混合廃液処理装置の系統を示す構成図、図2は、測
定圧1〔atm〕におけるアンモニアの水に対する溶解
度と、温度との関係を示す線図である。図1において、
細線は従来技術の混合廃液処理方法および装置を示し、
太線は本発明の一実施例に係る混合廃液処理方法および
装置の特徴部分を示すものである。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment according to the present invention will be described below with reference to FIGS. [Embodiment 1] FIG. 1 is a configuration diagram showing a system of a mixed waste liquid treatment method and a mixed waste liquid treatment apparatus containing an acid and ammonia using an electrodialysis method according to an embodiment of the present invention, and FIG. FIG. 3 is a diagram showing the relationship between the solubility of ammonia in water at 1 [atm] and temperature. In FIG.
The thin line shows the prior art mixed waste liquid treatment method and device,
The thick lines show the characteristic parts of the mixed waste liquid treatment method and apparatus according to one embodiment of the present invention.
【0012】また、図1に示す本発明に係る混合廃液処
理方法およびその装置の前段には、本実施例により回収
された酸とアンモニアとを使用する公知の廃液処理工程
と、前記処理された廃液を稀釈、濃縮する公知の稀釈、
濃縮工程とが接続して使用するクローズドシステムとし
ても可であり、また、処理すべき廃液を処理し、回収し
た酸とアンモニア水とを他の場所にて再利用しても差し
支えない。本実施例においては、前者の場合について説
明するが、本発明はこれに限定されるものでない。前記
公知の廃液処理工程と、公知の稀釈、濃縮工程との図示
と説明は、煩瑣となるので省略する。Further, prior to the mixed waste liquid treatment method and apparatus according to the present invention shown in FIG. 1, a known waste liquid treatment step using the acid and ammonia recovered in this example, and the above-mentioned treatment. Known dilution for diluting and concentrating waste liquid,
It can be used as a closed system connected to the concentration step, and the waste liquid to be treated can be treated, and the recovered acid and ammonia water can be reused in another place. In the present embodiment, the former case will be described, but the present invention is not limited to this. Illustration and description of the known waste liquid treatment step and the known dilution and concentration steps are omitted because they are troublesome.
【0013】図1において、1は、脱塩室と陽極室と陰
極室とからなる三室式電気透析槽、2は陽イオン交換
膜、3は陰イオン交換膜、4は陰極、5は陽極、6は脱
塩室、7は陰極室、8は陽極室、9は脱塩液循環タン
ク、10は陰極液循環槽、11は陽極液循環槽、12は
処理水を受け入れる処理水回収タンク、13は濃縮アン
モニア回収タンク、14は濃縮酸回収タンク、15は、
未処理混合廃液の受入タンク、16は、混合廃液中の不
純物を除去する不純物除去装置、17は余剰陰極液回収
タンク、18は、陰極液にふくまれるアンモニアを分離
する加熱分離器、19は、第一段階としてアンモニアガ
スを回収する多段式冷水吸収装置、20は、処理水の濃
度を計測する処理水濃度計、21は陰極液が濃縮限界に
達したことを計測する陰極液濃度計、22は陽極室循環
液の濃度を計測する陽極液濃度計、23は酸とアンモニ
アとを含む混合廃液、24は脱塩室循環液、25は陽極
液、26は陰極液、27は三室式電気透析脱塩室供給
液、28は加熱分離器に備えたヒーター、29は回収濃
縮酸液、30は温度制御された冷水、31は、加熱分離
器18に強アルカリ液を添加する強アルカリ液添加槽、
31′は強アルカリ液、32は蒸発アンモニアガス、3
3は電極水素ガスとアンモニアガスとの混合ガス、34
は濃縮回収水酸化アンモニウム、35は陰極室循環液が
オーバーした余剰陰極液、36は、透析により陰極室7
にて濃縮され濃縮限界に達した処理陰極液、37は脱塩
室6にて処理された脱塩水、38は陽極室循環液、39
は陰極室循環液、40は強酸あるいは強電解質中性塩の
いずれかの試薬添加槽、40′は強酸あるいは強電解質
中性塩のいずれかの試薬、41は回収処理されたガス、
42は、多段式冷水吸収装置19にて回収されなかった
アンモニアガスを吸収させる第二段階としての酸洗浄吸
収塔、43は、アンモニアガスを吸収させる酸溶液であ
る。これらの機器、部材が必要な配管により接続され、
本発明の一実施例に係る電気透析法を用いた酸とアンモ
ニアを含む混合廃液処理方法および混合廃液処理装置の
系統が構成されている。前記配管接続については、煩瑣
となるので説明を省略する。In FIG. 1, 1 is a three-chamber electrodialysis tank consisting of a desalting chamber, an anode chamber and a cathode chamber, 2 is a cation exchange membrane, 3 is an anion exchange membrane, 4 is a cathode, 5 is an anode, 6 is a desalting chamber, 7 is a cathode chamber, 8 is an anode chamber, 9 is a desalination solution circulation tank, 10 is a catholyte circulation tank, 11 is an anolyte circulation tank, 12 is a treated water recovery tank for receiving treated water, 13 Is a concentrated ammonia recovery tank, 14 is a concentrated acid recovery tank, and 15 is
An untreated mixed waste liquid receiving tank, 16 is an impurity removing device for removing impurities in the mixed waste liquid, 17 is an excess catholyte recovery tank, 18 is a heating separator for separating ammonia contained in the catholyte, and 19 is As a first step, a multi-stage cold water absorption device for recovering ammonia gas, 20 is a treated water concentration meter for measuring the concentration of treated water, 21 is a catholyte concentration meter for measuring that the catholyte has reached the concentration limit, 22 Is an anolyte concentration meter for measuring the concentration of the circulating fluid in the anode chamber, 23 is a mixed waste liquid containing acid and ammonia, 24 is a circulating fluid in a desalting chamber, 25 is an anolyte, 26 is a catholyte, 27 is a three-chamber electrodialysis Desalination chamber supply liquid, 28 is a heater provided in a heating separator, 29 is a concentrated concentrated acid liquid, 30 is temperature-controlled cold water, and 31 is a strong alkaline liquid addition tank for adding a strong alkaline liquid to the heating separator 18. ,
31 'is a strong alkaline liquid, 32 is evaporated ammonia gas, 3
3 is a mixed gas of electrode hydrogen gas and ammonia gas, 34
Is concentrated and recovered ammonium hydroxide, 35 is the excess catholyte which the circulating fluid of the cathode chamber has exceeded, and 36 is the cathode chamber 7 by dialysis.
In the deionization chamber 6, 37 is the deionized water treated in the desalting chamber 6, 38 is the circulating liquid in the anode chamber, 39
Is a circulating fluid of the cathode chamber, 40 is a reagent addition tank of either strong acid or neutral salt of strong electrolyte, 40 'is a reagent of either strong acid or neutral salt of strong electrolyte, 41 is a recovered gas,
42 is an acid washing absorption tower as a second stage for absorbing the ammonia gas which has not been recovered by the multi-stage cold water absorption device 19, and 43 is an acid solution for absorbing the ammonia gas. These devices and members are connected by necessary piping,
A system of a mixed waste liquid treatment method and a mixed waste liquid treatment apparatus including an acid and ammonia using an electrodialysis method according to an embodiment of the present invention is configured. The pipe connection is complicated and will not be described.
【0014】図1に示す本発明の一実施例に係る電気透
析法を用いた酸とアンモニアを含む混合廃液処理方法お
よび混合廃液処理装置の処理手順、動作を説明する。図
示最下段左より受入れタンク15に流入した酸とアンモ
ニアを含む混合廃液23は、不純物除去装置16、例え
ば電解発泡濾過装置へ流入する。この電解発泡濾過装置
においては、三室式電気透析を行う際に、膜の劣化等の
原因となる不純物の除去が行われる。不純物除去装置1
6を出た酸とアンモニアとを含む混合廃液23は、脱塩
水循環槽9へ流入させ、切り替えバルブを経て三室式電
気透析室1の脱塩室6に送られる。A method of treating a mixed waste liquid containing acid and ammonia and a treatment procedure and an operation of the mixed waste liquid treatment apparatus using the electrodialysis method according to one embodiment of the present invention shown in FIG. 1 will be described. The mixed waste liquid 23 containing acid and ammonia, which has flowed into the receiving tank 15 from the lower left in the drawing, flows into the impurity removing device 16, for example, the electrolytic foaming filtration device. In this electrolytic foaming filtration device, impurities that cause deterioration of the membrane are removed during three-chamber electrodialysis. Impurity remover 1
The mixed waste liquid 23 containing the acid and ammonia that has exited 6 is made to flow into the desalination water circulation tank 9, and is sent to the desalination chamber 6 of the three-chamber electrodialysis chamber 1 via the switching valve.
【0015】一方、陽極液25と陰極液26とをそれぞ
れ陽極液循環槽11、陰極液循環槽10へ流入させ、陽
極循環液38、陰極循環液39として循環させる。ここ
で、三室式電気透析槽1の陰極4と陽極5との間に電圧
が印加されると、両電極4、5間に電流が流れ、プラス
に帯電したアンモニウムイオンは、陽イオン交換膜2を
通過して陰極室7へ、マイナスに帯電した酸イオンは、
陰イオン交換膜3を通過して陽極室8へ移動する。On the other hand, the anolyte solution 25 and the catholyte solution 26 are introduced into the anolyte solution circulation tank 11 and the catholyte solution circulation tank 10, respectively, and are circulated as the anode circulation solution 38 and the cathode circulation solution 39, respectively. Here, when a voltage is applied between the cathode 4 and the anode 5 of the three-chamber electrodialysis tank 1, a current flows between the electrodes 4 and 5, and the positively charged ammonium ions are charged into the cation exchange membrane 2 The negatively charged acid ions pass through the
It passes through the anion exchange membrane 3 and moves to the anode chamber 8.
【0016】その結果、前記脱塩室6の混合廃液は、移
動した酸イオンやアンモニアイオンの量だけ濃度が減
じ、やがて脱塩された脱塩水37が得られ、前記脱塩室
6の上方からは、前記脱塩水37が濃度計20で排出濃
度に達したことを確認後、前記濃度計20と連動するバ
ルブが切り替わり、脱塩室6に送られず、処理水回収タ
ンク12へ送られる。さらに、三室式電気透析脱塩液2
7として受入れタンク15ヘもどされる。As a result, the concentration of the mixed waste liquid in the desalting chamber 6 is reduced by the amount of acid ions or ammonia ions that have moved, and desalted water 37 is eventually obtained. After confirming that the desalted water 37 has reached the discharge concentration by the densitometer 20, the valve interlocking with the densitometer 20 is switched and is not sent to the desalination chamber 6 but sent to the treated water recovery tank 12. Furthermore, three-chamber electrodialysis desalination solution 2
7 is returned to the receiving tank 15.
【0017】一方、陽極室8においては、陽極循環液3
8が酸素を定量的に発生すると共に、酸イオンが累加し
徐々に濃縮されていき、濃度計22で回収濃度に達した
ことを確認後、前記濃度計22と連動するバルブが切り
替わり陽極室8へ送られず、陽極液循環槽11から濃縮
酸回収タンク14へ回収される。回収濃縮酸29は、再
利用するため再び図示しない前段工程へ送られる。な
お、前記発生する酸素は大気中に放出される。On the other hand, in the anode chamber 8, the anode circulating fluid 3
8 generated oxygen quantitatively, accumulated acid ions and gradually concentrated, and after confirming that the concentration was recovered by the densitometer 22, the valve interlocking with the densitometer 22 was switched and the anode chamber 8 Instead of being sent to the concentrated acid recovery tank 14 from the anolyte circulation tank 11. The recovered concentrated acid 29 is sent again to the preceding step (not shown) for reuse. The generated oxygen is released into the atmosphere.
【0018】一方、陰極室7においては、脱塩室よりア
ンモニウムイオンが移行し、徐々に濃縮されていく。し
かし、前記アンモニアは、液相中の気相分圧が高いの
で、常圧下では3mol/l程度で溶解度平衡に達し、
そののちは溶解せず、気相で存在する。よって、陰極循
環液39からは当量の水素と、アンモニアガスが発生す
る。前記陰極循環液39は、水素、アンモニアガスを含
んだ気、液混合状態で陰極液循環槽10に流入し、前記
陰極液循環槽10において気、液に分離される。On the other hand, in the cathode chamber 7, ammonium ions are transferred from the desalting chamber and gradually concentrated. However, since the ammonia has a high gas phase partial pressure in the liquid phase, it reaches a solubility equilibrium at about 3 mol / l under normal pressure,
After that, it does not dissolve and exists in the gas phase. Therefore, an equivalent amount of hydrogen and ammonia gas are generated from the cathode circulating liquid 39. The catholyte circulation liquid 39 flows into the catholyte circulation tank 10 in a gas / liquid mixture state containing hydrogen and ammonia gas, and is separated into gas and liquid in the catholyte circulation tank 10.
【0019】分離された溶解度平衡に達した液相の陰極
循環液39は、濃度計21により溶解度平衡に達したこ
とを確認し、連動するバルブを切り替えられ、陰極室7
へ送られず、低濃度にアンモニアが飽和した陰極処理液
36として回収されていた。一方、水素ガス、アンモニ
ウムガスは、公知の分離技術により分離され、水素ガス
は放出され、アンモニウムガスは、悪臭を生じない程度
に回収され、放出されていた。The separated liquid-phase cathode circulating liquid 39, which has reached the solubility equilibrium, is confirmed by the densitometer 21 that the solubility equilibrium has been reached, and the interlocking valve is switched to make the cathode chamber 7
However, it was recovered as the cathodic treatment liquid 36 in which ammonia was saturated to a low concentration. On the other hand, hydrogen gas and ammonium gas were separated by a known separation technique, hydrogen gas was released, and ammonium gas was collected and released to such an extent that a bad odor was not generated.
【0020】このように、上記従来の処理工程では、高
濃度の酸溶液のみを回収し、アンモニアを高濃度の液体
として回収できないため、処理コストも低減することが
できない。また、前記の陰極4と陽極5との間に印加す
る電圧は、通常の適切な透析条件に比べ高電圧であり、
電流効率も低い。As described above, in the above conventional treatment process, only the high-concentration acid solution is recovered, and ammonia cannot be recovered as the high-concentration liquid, so that the treatment cost cannot be reduced. In addition, the voltage applied between the cathode 4 and the anode 5 is a high voltage as compared with usual appropriate dialysis conditions,
Current efficiency is also low.
【0021】本実施例では、上記従来の三室式電気透析
装置をふくむ処理工程に下記の特徴的処理工程および設
備を付加した。第一の特徴的処理工程は、前記陰極液循
環槽10へ流入させる前記陰極液26に、電気伝導度を
上げるために試薬添加槽40を設け、これより強酸ある
いは強電解質中性塩のいずれかの試薬40′を添加す
る。前記試薬40′は、水酸化アンモニウムよりも比電
気伝導度が高く、のちに施される分離除去操作が容易に
出来るものであれば、特に限定されるものではなく、強
酸でも、強電解質中性塩でもいずれでも差し支えない。In this example, the following characteristic treatment steps and equipment were added to the treatment steps including the conventional three-chamber electrodialysis apparatus. In the first characteristic treatment step, the catholyte 26 that is introduced into the catholyte circulation tank 10 is provided with a reagent addition tank 40 for increasing electric conductivity, and either a strong acid or a strong electrolyte neutral salt is used. Reagent 40 'is added. The reagent 40 'is not particularly limited as long as it has a higher specific electric conductivity than ammonium hydroxide and can be easily separated and removed later, and it can be a strong acid or a strong electrolyte neutral. Either salt or both is acceptable.
【0022】各試薬の電解質濃度と比電気伝導度との関
係は、上記図5に示されているが、電気伝導度は、電解
質濃度が3mol/l程度のところでは水酸化アンモニ
ウムに対して100倍前後高い窒素態の化合物が存在し
ており、上記添加操作をすることにより、前記陰極液2
6の電気伝導度は改善される。例えば、水酸化アンモニ
ウムに水酸化アンモニウムの1/10程度の濃度である
硫酸を添加した場合には、電気伝導度が約20倍に増加
することを確認した。これにより印加電圧を低減し、電
流効率を向上させ、二次的には陰極室7におけるアンモ
ニアガスの発生を活性化し、アンモニアガスの気相分圧
を大きくする。The relationship between the electrolyte concentration of each reagent and the specific electric conductivity is shown in FIG. 5 above. The electric conductivity is 100 relative to ammonium hydroxide when the electrolyte concentration is about 3 mol / l. There is a compound in the nitrogen state that is about twice as high, and the catholyte 2
The electrical conductivity of 6 is improved. For example, it was confirmed that when sulfuric acid having a concentration about 1/10 that of ammonium hydroxide was added to ammonium hydroxide, the electric conductivity increased about 20 times. This reduces the applied voltage, improves the current efficiency, and secondarily activates the generation of ammonia gas in the cathode chamber 7, thereby increasing the vapor phase partial pressure of ammonia gas.
【0023】第二の特徴的処理工程は、前記陰極液循環
槽10の後段に多段式冷水アンモニア吸収装置19を設
置し、当該陰極循環槽10からの水素、アンモニアガス
の混合ガス33と図示しない制御装置により低温に制御
された冷水30とを向流接触させることにより、アンモ
ニアガスを冷水に吸収させるものである。従来の技術で
は、第一の特徴的処理工程において説明したごとく、前
記陽極室8では電極ガスとして酸素が発生し、前記陰極
室7では、水素ガスが発生しているが、陰極室7では前
記水素ガス以外に溶解度平衡に達して溶液中に溶解しき
れないアンモニアもガス化している。これらのガスのう
ち、酸素、水素は放出され、アンモニアガスは、悪臭を
発しない程度に処理されており、高濃度の水酸化アンモ
ニウムを得ることは不可能であつた。In the second characteristic treatment step, a multi-stage cold water ammonia absorption device 19 is installed after the catholyte circulation tank 10, and a mixed gas 33 of hydrogen and ammonia gas from the cathode circulation tank 10 and not shown. By countercurrently contacting the cold water 30 whose temperature is controlled by the control device, the cold water absorbs the ammonia gas. In the conventional technique, as described in the first characteristic treatment step, oxygen is generated as an electrode gas in the anode chamber 8 and hydrogen gas is generated in the cathode chamber 7, but in the cathode chamber 7, the oxygen gas is generated. In addition to hydrogen gas, ammonia that has reached the solubility equilibrium and cannot be completely dissolved in the solution is also gasified. Of these gases, oxygen and hydrogen were released, and ammonia gas was treated so as not to give off a bad odor, and it was impossible to obtain a high concentration of ammonium hydroxide.
【0024】上記、アンモニアガスだけを冷水に吸収さ
せるプロセスにおいて、アンモニアガスと水素ガスの溶
解度は、ostwald溶解度係数値(実験温度10
℃)において、それぞれ、406.6cm3、202.
1cm3程度である。したがって、アンモニアガスは、
水素ガスの約二倍の溶解度があるが、これら2種類のガ
スを混合した場合の溶解度は、それぞれの気体の分圧に
よって、変化する。In the above process of absorbing only ammonia gas in cold water, the solubilities of ammonia gas and hydrogen gas are ostwald solubility coefficient values (experimental temperature 10
C.) at 406.6 cm 3 , 202.
It is about 1 cm 3 . Therefore, ammonia gas is
Although it has about twice the solubility of hydrogen gas, the solubility when these two types of gas are mixed changes depending on the partial pressure of each gas.
【0025】さらに、前述のとおり、アンモニアガスの
溶解度は、相対的に高いとはいえず水素ガスの溶解度の
約二倍程度であり、再利用可能な水酸化アンモニウムと
するためには、かなりの高濃度、例えば8mol/l程
度にする必要が有る。この目的を達成するためには、ア
ンモニアガスの分圧を可能な限り高くすること同時に、
吸収させる前記冷水の温度を低く保つことも大切な因子
となる。図2は、測定圧1〔atm〕におけるアンモニ
アの水に対する溶解度と温度との関係を示すが、低温度
になるほどアンモニアの水に対する溶解度が大となるの
で10℃以下に制御されることが好ましい。Further, as described above, the solubility of ammonia gas is not relatively high, but is about twice the solubility of hydrogen gas, which is considerably high for making reusable ammonium hydroxide. It is necessary to make the concentration high, for example, about 8 mol / l. To achieve this goal, the ammonia gas partial pressure should be as high as possible,
Keeping the temperature of the cold water to be absorbed low is also an important factor. FIG. 2 shows the relationship between the solubility of ammonia in water and the temperature at a measurement pressure of 1 [atm]. Since the solubility of ammonia in water increases as the temperature decreases, it is preferably controlled to 10 ° C. or lower.
【0026】第三の特徴的処理工程の一つは、前記陰極
液循環槽10の後段に、強アルカリ液添加槽31とヒー
ター28とを備えた加熱分離器18を設置するものであ
る。従来技術では、陽イオン交換膜2を通過して陰極室
7へ移動する水の移行によって陰極循環液39が余剰と
なる。この余剰となる陰極循環液39は余剰陰極液35
として、図示しない新たにタンクを設け貯溜し、ふたた
び陰極液26として使用していた。One of the third characteristic treatment steps is to install a heating separator 18 provided with a strong alkaline liquid addition tank 31 and a heater 28 at the subsequent stage of the catholyte circulation tank 10. In the conventional technique, the cathode circulating liquid 39 becomes an excess due to the transfer of water that moves through the cation exchange membrane 2 to the cathode chamber 7. The excess cathode circulating liquid 39 is the excess cathode liquid 35.
For this reason, a new tank (not shown) was provided and stored, and used again as the catholyte 26.
【0027】前記余剰陰極液35、上記低濃度にアンモ
ニアが飽和した陰極処理液36は、陰極循環槽10に
て、第一の特徴的処理工程中において、試薬添加槽40
からの試薬40′、すなわち強酸あるいは強電解質中性
塩のいずれかが添加された。強酸を添加した場合には、
水酸化アンモニウムとアンモニウム塩とが混在し、強電
解質中性塩を添加した場合には、水酸化アンモニウムと
添加した強電解質中性塩とが混在する。前記水酸化アン
モニウムおよびアンモニウム塩中のアンモニアを多段式
冷水アンモニア吸収装置19により回収するためには、
ガス化しなければならない。The surplus catholyte 35 and the cathodic treatment liquid 36 saturated with ammonia to the above-mentioned low concentration are added to the reagent circulating bath 40 in the cathode circulation bath 10 during the first characteristic treatment step.
40 'from E.C., ie either a strong acid or a strong electrolyte neutral salt was added. If strong acid is added,
When ammonium hydroxide and ammonium salt are mixed and the strong electrolyte neutral salt is added, ammonium hydroxide and the added strong electrolyte neutral salt are mixed. In order to recover the ammonia in the ammonium hydroxide and the ammonium salt by the multi-stage cold water ammonia absorption device 19,
Must be gasified.
【0028】前記アンモニウム塩中のアンモニアをガス
化する場合には、上述のごとく、陰極液循環槽10の後
段に、強アルカリ液添加槽31とヒーター28とを備え
た加熱分離器18を設け、前記加熱分離器18に前記強
アルカリ液添加槽31から、例えば水酸化ナトリウム3
1′を添加し、アンモニウムイオンと置換、分離させ、
前記ヒーター28により加熱し、アンモニアガス32を
発生させる。前記水酸化アンモニウムの場合には、前記
余剰陰極液35、前記陰極処理液36は、そのままにて
ヒーター28により加熱し、アンモニアガス32を発生
させる。When the ammonia in the ammonium salt is gasified, as described above, the heating separator 18 including the strong alkaline liquid addition tank 31 and the heater 28 is provided at the subsequent stage of the catholyte circulation tank 10. From the strong alkaline liquid addition tank 31 to the heating separator 18, for example, sodium hydroxide 3
Add 1'to replace ammonium ion and separate,
Ammonia gas 32 is generated by heating with the heater 28. In the case of ammonium hydroxide, the excess catholyte solution 35 and the cathodic treatment solution 36 are heated as they are by the heater 28 to generate the ammonia gas 32.
【0029】前記吸収装置19へ前記発生させたアンモ
ニアガス32を送り、上記混合ガス33に対して行なっ
たのと同様の操作をこのアンモニアガス32にも施し、
前記吸収装置19によってアンモニアガスを回収する。
そして得られた回収された濃縮水酸化アンモニウム34
は、濃縮アンモニウム回収タンク13に貯えられ、再利
用されるため、再び図示しない前段工程へと送られる。The generated ammonia gas 32 is sent to the absorption device 19, and the same operation as that for the mixed gas 33 is performed on the ammonia gas 32,
Ammonia gas is recovered by the absorption device 19.
And the recovered concentrated ammonium hydroxide 34 obtained
Is stored in the concentrated ammonium recovery tank 13 and reused, so that it is sent again to the preceding step (not shown).
【0030】さらに、第三の特徴的処理工程の他の一つ
は、前記多段式冷水アンモニア吸収装置19から出てき
た処理済みガス41中に回収することができなかったア
ンモニアガス32が存在する場合を考慮して、酸洗浄吸
収塔42を前記冷水アンモニア吸収装置19の後段に設
置するものである。前記酸洗浄吸収塔42においては、
酸をシャワさせ、前記未回収のアンモニアガス32と接
触させ、処理廃液と同一の成分とする。この処理後の液
は、受入れタンク15におくられ、ふたたび三室式電気
透析装置1にて処理される。Further, in the other one of the third characteristic treatment steps, the ammonia gas 32 which could not be recovered is present in the treated gas 41 coming out from the multi-stage cold water ammonia absorption device 19. In consideration of the case, the acid cleaning absorption tower 42 is installed in the latter stage of the cold water ammonia absorption device 19. In the acid cleaning absorption tower 42,
The acid is showered, brought into contact with the unrecovered ammonia gas 32, and made to have the same component as the treatment waste liquid. The liquid after this treatment is placed in the receiving tank 15 and is treated again in the three-chamber electrodialysis device 1.
【0031】以上三つの特徴的処理工程を三室式電気透
析装置につけ加えることにより、本発明の目的である、
廃液の処理と、アンモニアの高濃度回収とを効率よく行
い、回収した酸とアンモニア回収液を再利用することが
可能となる。It is an object of the present invention to add the above three characteristic treatment steps to a three-chamber electrodialyzer.
It becomes possible to efficiently perform the treatment of the waste liquid and the high-concentration recovery of ammonia, and reuse the recovered acid and ammonia recovery liquid.
【0032】[0032]
【発明の効果】以上詳細に説明したように、本発明の構
成によれば、酸とアンモニアをふくむ混合廃液から再利
用可能な高濃度の酸とアンモニアとを効率良く分離、回
収することにより、回収した酸とアンモニア回収液を再
利用し、周囲環境に放出されていた廃棄物の発生量を大
幅に低減し、浄化された水を得ることが可能な電気透析
法をもちいた酸とアンモニアをふくむ混合廃液処理方法
およびその装置を提供することができる。As described in detail above, according to the constitution of the present invention, by efficiently separating and recovering a high concentration of reusable acid and ammonia from a mixed waste liquid containing acid and ammonia, By reusing the recovered acid and ammonia recovery solution, the amount of waste generated in the surrounding environment can be greatly reduced, and acid and ammonia produced by electrodialysis can be used to obtain purified water. It is possible to provide a mixed waste liquid treatment method including a device and an apparatus thereof.
【図1】本発明の一実施例に係る電気透析法をもちいた
酸とアンモニアを含む混合廃液処理方法およびその装置
の系統を示す構成図である。FIG. 1 is a configuration diagram showing a system of a mixed waste liquid treatment method containing an acid and ammonia using an electrodialysis method according to an embodiment of the present invention, and an apparatus thereof.
【図2】アンモニアの水に対する溶解度と温度とのが関
係を表す線図である。FIG. 2 is a diagram showing the relationship between the solubility of ammonia in water and temperature.
【図3】アンモニアの液相濃度と気相分圧との関係を表
す線図である。FIG. 3 is a diagram showing a relationship between a liquid phase concentration of ammonia and a gas phase partial pressure.
【図4】三室式電気透析の陰極室内の物質の移動を表す
説明図である。FIG. 4 is an explanatory diagram showing movement of substances in a cathode chamber of three-chamber electrodialysis.
【図5】各電解質の比電気伝導度を表す線図である。FIG. 5 is a diagram showing the specific electric conductivity of each electrolyte.
1…三室式電気透析槽 2…陽イオン交換膜 3…陰イオン交換膜 4…陰極 5…陽極 6…脱塩室 7…陰極室 8…陽極室 9…脱塩液循環タンク 10…陰極液循環槽 11…陽極液循環槽 12…処理水回収タンク 13…濃縮アンモニア回収タンク 14…濃縮酸回収タンク 15…受入タンク 16…不純物除去装置 18…加熱分離器 19…多段式冷水吸収装置 20…脱塩液濃度計 21…陰極液濃度計 22…陽極液濃度計 23…酸とアンモニアを含む混合廃液 24…脱塩室循環液 25…陽極液 26…陰極液 27…電気透析脱塩室供給液 28…加熱分離器に備えられたヒーター 29…回収濃縮酸液 30…温度制御された冷水 31…強アルカリ液添加槽 31′…添加強アルカリ液 32…蒸発アンモニアガス 33…電極水素ガスとアンモニアガスとの混合ガス 34…濃縮回収水酸化アンモニウム 35…余剰陰極液 36…処理陰極液 37…脱塩水 38…陽極室循環液 39…陰極室循環液 40…試薬添加槽 40′…添加試薬 41…処理済みガス 42…酸洗浄吸収器 43…酸溶液 1 ... Three-chamber electrodialysis tank 2 ... Cation exchange membrane 3 ... Anion exchange membrane 4 ... Cathode 5 ... Anode 6 ... Desalination chamber 7 ... Cathode chamber 8 ... Anode chamber 9 ... Desalination solution circulation tank 10 ... Catholyte circulation Tank 11 ... Anolyte circulation tank 12 ... Treated water recovery tank 13 ... Concentrated ammonia recovery tank 14 ... Concentrated acid recovery tank 15 ... Receiving tank 16 ... Impurity removing device 18 ... Heating separator 19 ... Multi-stage cold water absorbing device 20 ... Desalination Liquid concentration meter 21 ... Catholyte concentration meter 22 ... Anolyte concentration meter 23 ... Mixed waste liquid containing acid and ammonia 24 ... Desalination chamber circulating liquid 25 ... Anolyte 26 ... Catholyte 27 ... Electrodialysis desalination chamber supply liquid 28 ... Heater provided in the heating separator 29 ... Recovered concentrated acid liquid 30 ... Temperature-controlled cold water 31 ... Strong alkaline liquid addition tank 31 '... Added strong alkaline liquid 32 ... Evaporated ammonia gas 33 ... Electrode hydrogen gas and ammonia Mixed gas with gas 34 ... Concentrated and recovered ammonium hydroxide 35 ... Surplus catholyte 36 ... Treated catholyte 37 ... Demineralized water 38 ... Anode chamber circulating liquid 39 ... Cathode chamber circulating liquid 40 ... Reagent addition tank 40 '... Additive reagent 41 ... Treated gas 42 ... Acid cleaning absorber 43 ... Acid solution
───────────────────────────────────────────────────── フロントページの続き (72)発明者 石井 淑升 神奈川県横須賀市内川2丁目3番1号 日 本ニユクリア・フユエル株式会社 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoshinori Ishii 2-3-1 Kawa, Yokosuka City, Kanagawa Nihon Niclear Clear Fuel Co., Ltd.
Claims (9)
式電気透析装置により、酸と、アンモニアとを各々独立
に回収する混合廃液処理方法において、 アンモニアが回収される陰極室から発生するガスを回収
系に導き、前記ガス中にふくまれるアンモニアを回収す
ることを特徴とする混合廃液処理方法。1. A mixed waste liquid treatment method in which an acid and ammonia are independently recovered from a waste liquid containing acid and ammonia by a three-chamber electrodialyzer, and a gas generated from a cathode chamber in which ammonia is recovered is used. A method for treating a mixed waste liquid, which comprises leading to a recovery system and recovering ammonia contained in the gas.
のいずれかを添加することを特徴とする請求項1記載の
混合廃液処理方法。2. The mixed waste liquid treatment method according to claim 1, wherein either a strong acid or a strong electrolyte neutral salt is added to the cathode chamber liquid.
ンモニア含有液には強アルカリを添加したのちに加熱操
作を施し、アンモニアガスを分離し回収系により回収す
ることを特徴とする請求項1、2記載の混合廃液処理方
法。3. The ammonia-containing liquid treated with a strong acid and treated in the cathode chamber is subjected to a heating operation after adding a strong alkali, and ammonia gas is separated and recovered by a recovery system. The method for treating a mixed waste liquid according to 1, 2
理されたアンモニア含有液にはその状態にて加熱操作を
施し、アンモニアガスを分離し回収系により回収するこ
とを特徴とする請求項1、2記載の混合廃液処理方法。4. The ammonia-containing liquid, to which the strong electrolyte neutral salt has been added and which has been treated in the cathode chamber, is subjected to a heating operation in that state to separate the ammonia gas and recover it by a recovery system. Item 1. A mixed waste liquid treatment method according to items 1 and 2.
度を制御した水が用いられ、第二段階として、吸収液に
混合廃液がふくむ酸と同一成分の酸が用いられることを
特徴とする請求項1ないし4記載のいずれかの混合廃液
処理方法。5. The recovery system is characterized in that water having a controlled temperature is used as an absorption liquid in the first step, and an acid having the same component as the acid contained in the mixed waste liquid is used in the absorption liquid as the second step. The mixed waste liquid treatment method according to any one of claims 1 to 4.
と、アンモニアとを各々独立に回収する三室式電気透析
装置をふくむ混合廃液処理装置において、 前記三室式電気透析装置の後段に回収系を設け、この回
収系に陰極室から発生するガスを導き、前記ガス中にふ
くまれるアンモニアを回収するように構成したことを特
徴とする混合廃液処理装置。6. A mixed waste liquid treatment device including a three-chamber electrodialysis device for independently recovering acid and ammonia from a waste liquid containing an acid and ammonia, wherein a recovery system is provided at a stage subsequent to the three-chamber electrodialysis device. A mixed waste liquid treatment apparatus, which is provided so that a gas generated from a cathode chamber is introduced into the recovery system to recover ammonia contained in the gas.
のいずれかを加える添加槽を設けて構成したことを特徴
とする請求項5記載の混合廃液処理装置。7. The mixed waste liquid treatment apparatus according to claim 5, wherein an addition tank for adding either strong acid or strong electrolyte neutral salt to the cathode chamber liquid is provided.
に強アルカリを加える添加部と、前記含有液を加熱する
加熱部とを具備したアンモニアガス分離部を設け、前記
分離部により分離されたアンモニアガスを回収系により
回収されるように構成したことを特徴とする請求項6、
7記載のいずれかの混合廃液処理方法。8. An ammonia gas separation unit provided with an addition unit for adding a strong alkali to the ammonia-containing liquid treated in the cathode chamber and a heating unit for heating the contained liquid is provided, and separated by the separation unit. 7. The ammonia gas is configured to be recovered by a recovery system.
7. The mixed waste liquid treatment method according to any of 7.
用いられた第一の回収部と、吸収液に混合廃液がふくむ
酸と同一成分の酸が用いられた第二の回収部とから構成
したことを特徴とする請求項6ないし8記載のいずれか
の混合廃液処理装置。 【0001】9. The recovery system comprises a first recovery part in which water whose temperature is controlled is used as an absorption liquid, and a second recovery part in which an acid having the same component as the acid contained in the mixed waste liquid is used in the absorption liquid. 9. The mixed waste liquid treatment device according to claim 6, wherein the mixed waste liquid treatment device comprises: [0001]
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP06151834A JP3137837B2 (en) | 1994-07-04 | 1994-07-04 | Mixed waste liquid treatment method and apparatus therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP06151834A JP3137837B2 (en) | 1994-07-04 | 1994-07-04 | Mixed waste liquid treatment method and apparatus therefor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0810580A true JPH0810580A (en) | 1996-01-16 |
JP3137837B2 JP3137837B2 (en) | 2001-02-26 |
Family
ID=15527324
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP06151834A Expired - Lifetime JP3137837B2 (en) | 1994-07-04 | 1994-07-04 | Mixed waste liquid treatment method and apparatus therefor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3137837B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100467774B1 (en) * | 2000-12-22 | 2005-01-24 | 주식회사 포스코 | A method for inhibiting fixed ammonia production in ammoniacal liquor |
JP2007054767A (en) * | 2005-08-26 | 2007-03-08 | Miyama Kk | Recovery method of ammonia, and using method of ammonia |
-
1994
- 1994-07-04 JP JP06151834A patent/JP3137837B2/en not_active Expired - Lifetime
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100467774B1 (en) * | 2000-12-22 | 2005-01-24 | 주식회사 포스코 | A method for inhibiting fixed ammonia production in ammoniacal liquor |
JP2007054767A (en) * | 2005-08-26 | 2007-03-08 | Miyama Kk | Recovery method of ammonia, and using method of ammonia |
JP4501160B2 (en) * | 2005-08-26 | 2010-07-14 | ミヤマ株式会社 | How to use ammonia |
Also Published As
Publication number | Publication date |
---|---|
JP3137837B2 (en) | 2001-02-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100361799B1 (en) | Method and apparatus for regenerating photoresist developing waste liquid | |
US5910611A (en) | Aqueous alkanolamines using an electrodialysis cell with an ion exchange membrane | |
US20090152117A1 (en) | Electrodialysis apparatus, waste water treatment method and fluorine treatment system | |
JP4085987B2 (en) | Recycle processing method of photoresist development waste liquid | |
JP3383334B2 (en) | How to recycle sulfuric acid | |
US5091070A (en) | Method of continuously removing and obtaining ethylene diamine tetracetic acid (edta) from the process water of electroless copper plating | |
JP2007007655A (en) | Electrodialyzer | |
US5804057A (en) | Method of removing metal salts from solution by electrolysis an electrode closely associated with an ion exchange resin | |
JP2011131210A (en) | Device and method for treating nitrogen compound-containing acidic solutions | |
JP4096576B2 (en) | Chemical cleaning method | |
JPH0533169A (en) | Method for treating and recovering waste etchant containing fluorine and ammonia compound | |
JP3137837B2 (en) | Mixed waste liquid treatment method and apparatus therefor | |
JPH07112559B2 (en) | Method for treating alkaline fluoride waste liquid containing metal ions and oils | |
JP2003305475A (en) | Electrodialysis apparatus | |
KR20000006392A (en) | Method and apparatus for exhaust gas treatment | |
KR100398417B1 (en) | A method for treating electrogalvanizing wastewaters | |
JP2003001258A (en) | Electrolytic deionizing apparatus | |
JP2000321395A (en) | Disposing method for radioactive effluent | |
Thampy et al. | Concentration of sodium sulfate from pickle liquor of tannery effluent by electrodialysis | |
JP2000176457A (en) | Waste water treatment device in semiconductor production plant | |
JPH09294974A (en) | Water treatment apparatus | |
JP3293475B2 (en) | Method for concentrating nitric acid aqueous solution and its concentrating device | |
JP2003215810A (en) | Method for recovering developer from photoresist developer waste liquid | |
JP6137972B2 (en) | Method and apparatus for inhibiting corrosion of nuclear reactor structure | |
JP2877265B2 (en) | Wastewater treatment facility |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081208 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 8 Free format text: PAYMENT UNTIL: 20081208 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091208 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091208 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101208 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111208 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121208 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131208 Year of fee payment: 13 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |