JPH08104942A - High strength and high corrosion resistance material - Google Patents

High strength and high corrosion resistance material

Info

Publication number
JPH08104942A
JPH08104942A JP24258294A JP24258294A JPH08104942A JP H08104942 A JPH08104942 A JP H08104942A JP 24258294 A JP24258294 A JP 24258294A JP 24258294 A JP24258294 A JP 24258294A JP H08104942 A JPH08104942 A JP H08104942A
Authority
JP
Japan
Prior art keywords
rare earth
metal material
earth element
refractory metal
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24258294A
Other languages
Japanese (ja)
Inventor
Takahiro Okuhata
孝浩 奥畑
Yutaka Ishiwatari
裕 石渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP24258294A priority Critical patent/JPH08104942A/en
Publication of JPH08104942A publication Critical patent/JPH08104942A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To provide a material having higher strength at high temp. and higher corrosion resistance to a molten metal as compared with a conventional material obtd. by distributing ceramic particles in the grain boundaries of a high m.p. metallic material. CONSTITUTION: Oxide of a rare earth element is dispersed in the grain boundaries of a high m.p. metallic material and the amt. (wt.%) of P in the grain boundaries of the high m.p. metallic material is regulated to <=60% of that in the grain boundaries of the same pure high m.p. metallic material as the high m.p. metallic material to obtain the objective high strength and high corrosion resistance material. In other way, oxide of a rare earth element is dispersed in the grain boundaries of a high m.p. metallic material and multiple oxides of the rare earth element and the high m.p. metallic material and multiple oxides of the rare earth element and P as well as oxide of the rare earth element are allowed to exist in the grain boundaries of the high m.p. metallic material to obtain the objective high strength and high corrosion resistance material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高強度、高耐食性材料
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a material having high strength and high corrosion resistance.

【0002】[0002]

【従来の技術】一般に、例えばチタン(Ti),ジルコ
ニウム(Zr)などの活性金属等の金属溶解用の容器や
構造用材料には、高温において高強度でかつ溶融金属に
対して高耐食性の材料が要求される。
2. Description of the Related Art Generally, a container for melting a metal such as an active metal such as titanium (Ti) or zirconium (Zr) or a structural material has a high strength at a high temperature and a high corrosion resistance against a molten metal. Is required.

【0003】従来、このような材料としては、タングス
テン(W),モリブデン(Mo)などの高融点金属材料
が使用されていた。これらW,Moなどは、一般に粉末
冶金法により製造される。すなわち、原料粉末を成形、
焼結した後、必要により圧延,鍛造などの塑性加工が施
され、最終的に目的とする形状に加工が施されて製品と
なるのである。
Conventionally, refractory metal materials such as tungsten (W) and molybdenum (Mo) have been used as such materials. These W and Mo are generally manufactured by powder metallurgy. That is, the raw material powder is molded,
After sintering, if necessary, plastic working such as rolling and forging is performed, and finally the product is processed into a desired shape.

【0004】これら高融点金属材料よりなるものは、耐
熱性および耐熱衝撃性は優れてはいるものの、使用時に
おいてこの高融点金属材料の再結晶温度以上の高温下に
長時間保持されると結晶粒の粗大化が起こり、脆化する
という問題があった。
Although the materials made of these high melting point metal materials have excellent heat resistance and thermal shock resistance, they are crystallized when used for a long time at a temperature higher than the recrystallization temperature of the high melting point metal material. There was a problem that the grains became coarse and became brittle.

【0005】また、これら高融点金属材料は、一般にT
i,Zrなどの活性金属との濡れ性が良好であるため、
活性金属溶解用として使用した場合には長時間の使用に
より溶融金属と反応し、高融点金属材料が腐食してしま
うと共に、高融点金属材料そのものが溶融金属中に混入
し、溶融金属の純度を低下する原因となってしまうとい
う問題があった。
Further, these refractory metal materials generally have T
Since the wettability with active metals such as i and Zr is good,
When used for melting an active metal, it reacts with the molten metal over a long period of time and corrodes the high-melting-point metal material, and the high-melting-point metal material itself mixes into the molten metal to improve the purity of the molten metal. There was a problem that it would cause a decrease.

【0006】このため、例えば特開平2−73944号
公報あるいは特開平4−99146号公報に示されるよ
うに、高融点金属材料の結晶粒界にセラミック粒子を配
する技術が検討されている。
For this reason, as disclosed in, for example, Japanese Patent Application Laid-Open No. 2-73944 or Japanese Patent Application Laid-Open No. 4-99146, a technique for arranging ceramic particles at crystal grain boundaries of a refractory metal material has been studied.

【0007】上記高融点金属材料の結晶粒界にセラミッ
ク粒子を配することにより、高融点金属材料単体を使用
した場合に比較し、高強度、高耐食性の材料が得られて
いる。
By arranging the ceramic particles at the crystal grain boundaries of the high melting point metal material, a material having high strength and high corrosion resistance is obtained as compared with the case where a single high melting point metal material is used.

【0008】[0008]

【発明が解決しようとする課題】しかし、近年、さらに
高強度、高耐食性、特に溶融金属に対する耐食性に対し
て優れた材料の開発が望まれていた。本発明は、上記事
情に鑑み、さらに高温において高強度でかつ溶融金属に
対して高耐食性の材料を提供することを目的とする。
However, in recent years, it has been desired to develop a material having higher strength and higher corrosion resistance, particularly excellent corrosion resistance against molten metal. In view of the above circumstances, it is an object of the present invention to provide a material having high strength at high temperature and high corrosion resistance against molten metal.

【0009】[0009]

【課題を解決するための手段と作用】本発明者らは、上
記目的を達成するために、高融点金属材料の結晶粒界に
セラミック粒子を配する従来の材料に関して検討を重ね
た結果、高融点金属材料の結晶粒界中のりん(P)に着
目した。
In order to achieve the above object, the inventors of the present invention have conducted extensive studies on conventional materials in which ceramic particles are arranged at the crystal grain boundaries of a refractory metal material, and as a result, Attention was paid to phosphorus (P) in the crystal grain boundaries of the melting point metal material.

【0010】すなわち、一般に純粋といわれる高融点金
属材料中のP量は5ppm 以下であり、Pは微量不純物と
して含有されている。しかし、この高融点金属材料を粉
末冶金法により焼結,塑性加工などの工程を経て製造し
た場合に、この微量のPが高融点金属材料の結晶粒界中
に偏析してしまい、その結晶粒界には20原子%以上と
いう多量のPが存在することとなる。
That is, the amount of P in a refractory metal material which is generally said to be pure is 5 ppm or less, and P is contained as a trace impurity. However, when this refractory metal material is manufactured through a process such as sintering and plastic working by the powder metallurgy method, a trace amount of P segregates in the crystal grain boundaries of the refractory metal material, and the crystal grains A large amount of P of 20 atomic% or more exists in the field.

【0011】この結晶粒界に偏析したPが原因となり、
強度,塑性加工性や耐食性に悪影響を与えていたのであ
り、従来の高融点金属材料の結晶粒界にセラミック粒子
を配した材料においても、そのPの影響は防止できては
いなかったのである。
Due to P segregated at the grain boundaries,
The strength, plastic workability and corrosion resistance were adversely affected, and the effect of P could not be prevented even in the conventional high melting point metal material in which ceramic particles were arranged at the grain boundaries.

【0012】このため、本発明者らはこの結晶粒界のP
の減少についてさらに検討を重ねた結果、本発明に至っ
たのである。すなわち、まず本発明の第1の発明である
高強度、高耐食性材料は、高融点金属材料の結晶粒界に
希土類元素の酸化物が分散してなり、前記高融点金属材
料の結晶粒界のP量(原子%)が、前記高融点金属材料
と同一の純粋な高融点金属材料の結晶粒界のP量(原子
%)の70%以下であることを特徴とするものである。
Therefore, the present inventors have found that the P of this grain boundary is
As a result of further studies on the reduction of the above, the present invention has been achieved. That is, first, the high-strength, high-corrosion-resistant material according to the first aspect of the present invention is obtained by dispersing an oxide of a rare earth element in a crystal grain boundary of a refractory metal material, The P content (atomic%) is 70% or less of the P content (atomic%) of the crystal grain boundary of the same pure refractory metal material as the refractory metal material.

【0013】また、本発明の第2の発明である高強度、
高耐食性材料は、高融点金属材料の結晶粒界に希土類元
素の酸化物が分散してなり、前記高融点金属材料の結晶
粒界には前記希土類元素の酸化物と共に希土類元素と高
融点金属材料の複合酸化物および希土類元素とPの複合
酸化物を有してなることを特徴とするものである。
Further, a high strength, which is the second invention of the present invention,
The high-corrosion resistant material is formed by dispersing an oxide of a rare earth element in a crystal grain boundary of the refractory metal material, and the rare earth element and the refractory metal material are included in the crystal grain boundary of the refractory metal material together with the oxide of the rare earth element. And a complex oxide of P and a rare earth element.

【0014】ここで、本発明でいう高融点金属材料と
は、タングステン(W),モリブデン(Mo),レニウ
ム(Re),ハフニウム(Hf),タンタル(Ta),
ニオブ(Nb)あるいはジルコニウム(Zr)などをい
う。
Here, the refractory metal material in the present invention means tungsten (W), molybdenum (Mo), rhenium (Re), hafnium (Hf), tantalum (Ta),
It refers to niobium (Nb) or zirconium (Zr).

【0015】また、本発明でいう希土類元素の酸化物と
しては、スカンジウム(Sc),イットリウム(Y),
ランタノイド元素であるランタン(La),セリウム
(Ce),プラセオジウム(Pr),ネオジウム(N
d),プロメチウム(Pm),サマリウム(Sm),ユ
ウロピウム(Eu),ガドリニウム(Gd),テルビウ
ム(Tb),ジスプロシウム(Dy),ホルミウム(H
o),エルビウム(Er),ツリウム(Tm),イッテ
ルビウム(Yb),ルテチウム(Lu)の酸化物などを
いう。
The rare earth oxides referred to in the present invention include scandium (Sc), yttrium (Y),
Lanthanide elements such as lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (N)
d), promethium (Pm), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (H)
o), oxides of erbium (Er), thulium (Tm), ytterbium (Yb), and lutetium (Lu).

【0016】そして、この希土類元素の酸化物量として
は、50体積%以下、好ましくは5〜30体積%、さら
に好ましくは10〜30体積%以下である。これは、こ
の範囲内において、密度の向上と共に、Pの結晶粒界へ
の偏析を減少させる効果が顕著であり、焼結体の緻密化
さらには高強度の材料が得られるからである。
The amount of the rare earth element oxide is 50% by volume or less, preferably 5 to 30% by volume, and more preferably 10 to 30% by volume. This is because within this range, the effect of reducing the segregation of P to the crystal grain boundaries is remarkable together with the improvement of the density, and the sintered body can be densified and a high-strength material can be obtained.

【0017】本発明の第1の発明である高強度、高耐食
性材料においては、本発明の高融点金属材料の結晶粒界
のP量を前記高融点金属材料と同一の高融点金属材料を
用いて純粋な高融点金属材料を製造した場合の結晶粒界
のP量に比較し減少させたものである。
In the high-strength, high-corrosion resistant material according to the first aspect of the present invention, a high-melting-point metal material having the same amount of P at the crystal grain boundaries of the high-melting-point metal material of the present invention as the high-melting-point metal material is used. The amount of P at the crystal grain boundaries in the case of producing a pure pure refractory metal material is reduced.

【0018】具体的には、本発明の高融点金属材料の結
晶粒界のP量(原子%)が、前記高融点金属材料と同一
の純粋な高融点金属材料の結晶粒界のP量(原子%)の
70%以下であり、このように結晶粒界中のPを減少さ
せることにより、従来の高融点金属材料の結晶粒界にセ
ラミック粒子を配するものに比較し、さらに高温におい
て高強度でかつ溶融金属に対して高耐食性の材料を提供
することが可能となったのである。
Specifically, the P content (atomic%) of the crystal grain boundary of the refractory metal material of the present invention is the same as the P content of the crystal grain boundary of the pure refractory metal material (the same as the refractory metal material). Atomic%) of 70% or less, and by reducing P in the crystal grain boundary in this way, as compared with a conventional refractory metal material in which ceramic particles are arranged at the crystal grain boundary, it is It has become possible to provide a material that is strong and has high corrosion resistance against molten metal.

【0019】この本発明の高融点金属材料の結晶粒界の
P量(原子%)を、前記高融点金属材料と同一の純粋な
高融点金属材料の結晶粒界のP量(原子%)の70%以
下と規定したのは、そのP量があまり多いと、従来の材
料とあまりその効果において差異が得られないからであ
る。より好ましくは、その本発明のP量は高融点金属材
料と同一の純粋な高融点金属材料の結晶粒界のP量(原
子%)の60%以下、さらには50%以下が好ましい。
The P content (atomic%) of the crystal grain boundary of the refractory metal material of the present invention is the same as the P content (atomic%) of the crystal grain boundary of the same pure refractory metal material as the refractory metal material. The reason why the content is specified to be 70% or less is that if the P content is too large, the effect is not so different from the conventional material. More preferably, the P content of the present invention is 60% or less, and further preferably 50% or less of the P content (atomic%) of the crystal grain boundary of the same pure refractory metal material as the refractory metal material.

【0020】ここで、本発明でいう純粋な高融点金属材
料とは、JISで規定するWの純度の規定方法に準じ9
9.95重量%以上の純度を有し、かつそのP量が5pp
m 以下のものをいう。例えば、株式会社東芝製のW粉末
であるWC1−20(平均粒径約2μm)のW粉末を用
いて製造した焼結体を用いることができる。
Here, the pure refractory metal material referred to in the present invention is in accordance with the method for defining the purity of W specified in JIS 9
It has a purity of 9.95% by weight or more and its P content is 5 pp.
Means less than or equal to m. For example, a sintered body manufactured by using W powder of WC1-20 (average particle size of about 2 μm) which is W powder manufactured by Toshiba Corporation can be used.

【0021】また、本発明の第2の発明である高強度、
高耐食性材料においては、本発明の高融点金属材料の結
晶粒界に希土類元素の酸化物と共に希土類元素と高融点
金属材料の複合酸化物および希土類元素とPの複合酸化
物を有してなることを特徴とするものである。
Further, the high strength which is the second invention of the present invention,
In the high corrosion resistance material, the refractory metal material of the present invention comprises a rare earth element oxide and a complex oxide of the rare earth element and the refractory metal material and a complex oxide of the rare earth element and P at the grain boundaries of the refractory metal material of the present invention. It is characterized by.

【0022】ここで、希土類元素と高融点金属材料の複
合酸化物および希土類元素とPの複合酸化物とは、希土
類元素をAとした場合に、例えば希土類元素とWの複合
酸化物はA2 (WO43 で表され、希土類元素とPの
複合酸化物はAP514で表される。
Here, the composite oxide of a rare earth element and a refractory metal material and the composite oxide of a rare earth element and P are, for example, when the rare earth element is A, the composite oxide of a rare earth element and W is A 2 It is represented by (WO 4 ) 3 and the composite oxide of rare earth element and P is represented by AP 5 O 14 .

【0023】本発明は、高融点金属材料の結晶粒界にお
いて下記の反応を行っているのである。すなわち、高融
点金属材料に希土類元素の酸化物を添加し、そのその混
合時において、従来に比較しさらに均一に混合を行うこ
とにより、その焼結工程において高融点金属材料中のP
25 と希土類元素の酸化物を十分に反応させ、Pと希
土類元素の複合酸化物を形成させるのである。この複合
酸化物は高融点金属材料と反応し、別の複合酸化物も形
成する。焼結工程が進行するにつれて、希土類元素の酸
化物は単独で存在するようになり、上記2種類、具体的
には希土類元素と高融点金属材料の複合酸化物および希
土類元素とPの複合酸化物の2種類の複合酸化物が希土
類元素の酸化物と共に、高融点金属材料の結晶粒界に残
留するのである。
According to the present invention, the following reactions are carried out at the crystal grain boundaries of the refractory metal material. That is, an oxide of a rare earth element is added to the refractory metal material, and when the oxide is mixed, the mixing is performed more uniformly as compared with the conventional method, so that P in the refractory metal material is mixed in the sintering step.
2 O 5 and the oxide of the rare earth element are sufficiently reacted to form a complex oxide of P and the rare earth element. This complex oxide reacts with the refractory metal material to form another complex oxide. As the sintering process progresses, oxides of rare earth elements come to exist independently, and the above two types, specifically, the complex oxides of rare earth elements and refractory metal materials and the complex oxides of rare earth elements and P are included. The above two kinds of complex oxides, together with the oxide of the rare earth element, remain at the crystal grain boundaries of the refractory metal material.

【0024】また、希土類元素の酸化物はPなどの不純
物を吸収する効果を有するものと推測される。本発明の
高強度、高耐食性材料の製造方法の一例を示すと下記の
通りである。
It is assumed that the rare earth element oxide has an effect of absorbing impurities such as P. An example of the method for producing the high-strength, high-corrosion resistant material of the present invention is as follows.

【0025】まず、高融点金属材料の粉末と希土類元素
の酸化物の粉末をボールミルなどで混合する。この場
合、ボールミルに投入するボールの量を従来の4倍以
上、好ましくは5倍程度とする。そして、その混合時間
においても従来の5倍以上、好ましくは5〜7倍程度に
する。この従来の混合に比較し多量のボールを使用し、
より長時間混合することにより、高融点金属粉末の二次
粒子の解離および希土類元素の酸化物粒子の微細化が図
れ、従来に比較しさらに均一に混合を行うことが可能と
なり、本発明で意図する優れた効果を得ることが可能と
なる。この混合の際に、アセトンやエタノールなどと共
に混合を行うことにより、より優れた混合の効果が得ら
れる。
First, a powder of a refractory metal material and a powder of an oxide of a rare earth element are mixed with a ball mill or the like. In this case, the amount of balls thrown into the ball mill is set to 4 times or more, preferably about 5 times as much as the conventional amount. The mixing time is also 5 times or more, and preferably about 5 to 7 times that of the conventional one. Uses a large amount of balls compared to this conventional mixing,
By mixing for a longer time, dissociation of the secondary particles of the refractory metal powder and refinement of the oxide particles of the rare earth element can be achieved, and it becomes possible to carry out the mixing more uniformly as compared with the conventional case, and it is intended in the present invention. It is possible to obtain an excellent effect of At the time of this mixing, more excellent mixing effect can be obtained by mixing with acetone or ethanol.

【0026】次に、得られた混合粉中のアセトンやエタ
ノールなどを飛散させるために、非酸化性雰囲気中で加
熱する。次に、必要により、常法により再還元を行う。
例えば還元性雰囲気中で800℃、1時間の加熱を行え
ば良い。
Next, in order to scatter acetone, ethanol, etc. in the obtained mixed powder, heating is performed in a non-oxidizing atmosphere. Then, if necessary, re-reduction is carried out by a conventional method.
For example, heating may be performed at 800 ° C. for 1 hour in a reducing atmosphere.

【0027】次に、得られた混合粉末をふるいなどの手
段を用いて、その粒径を均一なものとする。次に、常法
により、任意の形状に成形を行い、焼結し、最終製品と
する。
Next, the obtained mixed powder is made uniform in particle diameter by using a means such as a sieve. Next, it is molded into an arbitrary shape by a conventional method and is sintered to obtain a final product.

【0028】これは、例えば、冷間静水圧プレス(CI
P)を用いて成形を行い、例えば高融点金属材料として
Wを使用した場合には1800℃以上、好ましくは18
00〜2300℃での焼結を行うのである。
This is, for example, a cold isostatic press (CI
P) is used for molding, and for example, when W is used as the high melting point metal material, it is 1800 ° C. or higher, preferably 18
Sintering is performed at 00 to 2300 ° C.

【0029】本発明の高強度、高耐食性材料は、例えば
高温において高強度でかつ溶融金属に対して高耐食性の
材料が要求される用途に使用されるものであり、より好
ましくは、Ti,Zrなどの活性金属溶解用の容器や構
造用材料に適している。
The high-strength, high-corrosion resistant material of the present invention is used for applications requiring high-strength and high-corrosion resistance against molten metal at high temperature, and more preferably Ti, Zr. Suitable for containers and structural materials for melting active metals such as.

【0030】[0030]

【実施例】平均粒径2μmのW粉末(純度99.95%
以上)および平均粒径1μmのランタン酸化物(La2
3 )を、La23 が20体積%となるように配合し
た。
Example: W powder having an average particle size of 2 μm (purity 99.95%
Above) and lanthanum oxide (La 2 having an average particle size of 1 μm)
O 3 ) was blended so that La 2 O 3 was 20% by volume.

【0031】そして、その配合粉をボールミルにより、
アセトンと共に混合した。その際には、ボールの量は1
0kgとし、混合時間は160時間で混合した。得られ
た混合粉末を水素雰囲気中で加熱し、混合の際に使用し
たアセトンを飛散させた。
Then, the compounded powder is ball milled.
Mixed with acetone. In that case, the amount of balls is 1
The mixing time was 0 kg, and the mixing time was 160 hours. The obtained mixed powder was heated in a hydrogen atmosphere to scatter the acetone used during the mixing.

【0032】次に、水素雰囲気中で800℃、1時間の
再還元を行った後、ふるいによりその粒度が均一な混合
粉とした。得られた混合粉を、冷間静水圧プレス(CI
P)により、2ton/cm2 で成形を行い、底面直径60c
m、高さ30cm、厚さ10cmの容器とした。
Next, after re-reducing at 800 ° C. for 1 hour in a hydrogen atmosphere, it was sieved to obtain a mixed powder having a uniform particle size. The resulting mixed powder was cold isostatically pressed (CI
P), molding at 2ton / cm 2 , bottom diameter 60c
The container was m, the height was 30 cm, and the thickness was 10 cm.

【0033】得られた成形体を水素雰囲気中で2000
℃、8時間の焼結を行い、最終製品としての容器を得
た。得られた製品の、密度、結晶粒界におけるW量,P
量,O量、溶融金属に対する耐食性および高温強度を測
定した。その結果を表1(実施例1)に示す。
The obtained molded body was subjected to 2000 in a hydrogen atmosphere.
Sintering was performed at 8 ° C. for 8 hours to obtain a container as a final product. Density, W content at grain boundaries, P of the obtained product
Content, O content, corrosion resistance to molten metal, and high temperature strength were measured. The results are shown in Table 1 (Example 1).

【0034】なお、ここで、結晶粒界におけるW量,P
量,O量は、オージェ電子分光分析により測定し、その
測定条件は加速電圧5kV,ビーム電流80mA,ビーム径
約1μmで行った。
Here, the amount of W at the grain boundary, P
The amount of oxygen and the amount of O were measured by Auger electron spectroscopy, and the measurement conditions were an acceleration voltage of 5 kV, a beam current of 80 mA, and a beam diameter of about 1 μm.

【0035】溶融金属に対する耐食性は、Laを得られ
容器中で溶解し、このLa中に容器のWがどの程度混入
したかを、そのLa中のWの含有量(重量%)により測
定した。
The corrosion resistance to molten metal was obtained by dissolving La in a container, and measuring how much W in the container was mixed in this La by measuring the content (% by weight) of W in the La.

【0036】高温強度は、4点曲げ試験により測定し
た。その条件は、直径6mmの支点を用い、下部の支点間
距離30mm、上部の支点間距離10mmであり、クロスヘ
ッドスピードは0.5mm/min とした。温度は700
℃,1000℃,1300℃で測定した。
The high temperature strength was measured by a 4-point bending test. The conditions were such that a fulcrum with a diameter of 6 mm was used, the distance between the fulcrums at the lower part was 30 mm, the distance between the fulcrum at the upper part was 10 mm, and the crosshead speed was 0.5 mm / min. Temperature is 700
The measurement was performed at ℃, 1000 ℃, 1300 ℃.

【0037】比較として、平均粒径2μmのW粉末(純
度99.95%以上)を、実施例1と同様にCIP,焼
結を行い、同様の最終製品としての容器を得た。得られ
た製品の、密度、結晶粒界におけるW量,P量,O量、
溶融金属に対する耐食性および高温強度を測定した。そ
の結果を併せて表1(比較例1)に示す。
For comparison, W powder having an average particle size of 2 μm (purity of 99.95% or more) was subjected to CIP and sintering in the same manner as in Example 1 to obtain a similar final product container. The density, W content, P content, O content at the grain boundaries of the obtained product,
Corrosion resistance to molten metal and high temperature strength were measured. The results are also shown in Table 1 (Comparative Example 1).

【0038】さらに比較として、ボールミルによる混合
において、ボールの量を2kgとし、混合時間を24時
間で混合すること以外は、実施例1と同様の工程により
製造し、同様の最終製品としての容器を得た。
As a further comparison, in the mixing by the ball mill, except that the amount of balls was 2 kg and the mixing time was 24 hours, the same process as in Example 1 was repeated to prepare a container as a final product. Obtained.

【0039】得られた製品の、密度、結晶粒界における
W量,P量,O量、溶融金属に対する耐食性および高温
強度を測定した。その結果を併せて表1(比較例2)に
示す。
The density, W content, P content, O content at the grain boundaries, corrosion resistance to molten metal and high temperature strength of the obtained product were measured. The results are also shown in Table 1 (Comparative Example 2).

【0040】[0040]

【表1】 [Table 1]

【0041】上記表1の結果より、本発明の材料は、純
Wさらには従来のWの結晶粒界にセラミック粒子を配し
たものに比較し、結晶粒界中のP量が減少しており、そ
の結果、溶融金属との耐食性さらには高温における強度
においても優れたものを得ている。
From the results shown in Table 1 above, the material of the present invention has a smaller amount of P in the crystal grain boundaries as compared with the pure W or the conventional W having the ceramic grains arranged in the crystal grain boundaries. As a result, excellent corrosion resistance against molten metal and strength at high temperature are obtained.

【0042】さらに述べるならば、Wの結晶粒界中のP
量の減少に伴い、O2 量が増加していることより、Pは
単体で結晶粒界に存在しているのではなく、LaP5
14いう複合酸化物で存在していることが理解できる。
To describe further, P in the grain boundary of W
Since the amount of O 2 increases with the decrease in the amount, P does not exist as a simple substance at the grain boundary, but LaP 5 O.
It can be understood that it exists in the complex oxide 14 mentioned above.

【0043】すなわち、W酸化物とP酸化物の生成自由
エネルギーはP酸化物の方が小さいために、Pは酸化物
(P25 )で存在している可能性が高く、そして、P
25 はLa23 と共にLaP514を生成するので
ある。なお、La23 はWと共に、La2 (WO4
3 を生成する。
That is, since the free energy of formation of W oxide and P oxide is smaller in P oxide, it is more likely that P exists in the oxide (P 2 O 5 ), and P
2 O 5 forms LaP 5 O 14 together with La 2 O 3 . Note that La 2 O 3 and La 2 (WO 4 ) together with W
Generates 3 .

【0044】[0044]

【発明の効果】以上説明したように、本発明の高強度、
高耐食性材料は、従来の高融点金属材料の結晶粒界にセ
ラミック粒子を配したものに比較し、さらに高温におい
て高強度でかつ溶融金属に対して高耐食性の材料を提供
することが可能となる。
As described above, the high strength of the present invention,
High-corrosion resistance materials can provide materials that have high strength at high temperatures and high corrosion resistance to molten metal, as compared with conventional high-melting-point metal materials in which ceramic particles are arranged at crystal grain boundaries. .

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 高融点金属材料の結晶粒界に希土類元素
の酸化物が分散してなり、前記高融点金属材料の結晶粒
界のりん量(原子%)が、前記高融点金属材料と同一の
純粋な高融点金属材料の結晶粒界のりん量(原子%)の
70%以下であることを特徴とする高強度、高耐食性材
料。
1. An oxide of a rare earth element is dispersed in a crystal grain boundary of the refractory metal material, and the phosphorus content (atomic%) of the crystal grain boundary of the refractory metal material is the same as that of the refractory metal material. 70% or less of the phosphorus content (atomic%) of the crystal grain boundaries of the pure refractory metal material of 1.
【請求項2】 高融点金属材料の結晶粒界に希土類元素
の酸化物が分散してなり、前記高融点金属材料の結晶粒
界には前記希土類元素の酸化物と共に希土類元素と高融
点金属材料の複合酸化物および希土類元素とりんの複合
酸化物を有してなることを特徴とする高強度、高耐食性
材料。
2. A rare earth element oxide is dispersed in a crystal grain boundary of the refractory metal material, and the rare earth element and the refractory metal material are present in the crystal grain boundary of the refractory metal material together with the oxide of the rare earth element. A high-strength, high-corrosion-resistant material, characterized by comprising the above complex oxide and the complex oxide of a rare earth element and phosphorus.
JP24258294A 1994-10-06 1994-10-06 High strength and high corrosion resistance material Pending JPH08104942A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24258294A JPH08104942A (en) 1994-10-06 1994-10-06 High strength and high corrosion resistance material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24258294A JPH08104942A (en) 1994-10-06 1994-10-06 High strength and high corrosion resistance material

Publications (1)

Publication Number Publication Date
JPH08104942A true JPH08104942A (en) 1996-04-23

Family

ID=17091211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24258294A Pending JPH08104942A (en) 1994-10-06 1994-10-06 High strength and high corrosion resistance material

Country Status (1)

Country Link
JP (1) JPH08104942A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112251622A (en) * 2020-09-17 2021-01-22 洛阳科威钨钼有限公司 Production method of stirrer for rare earth doped smelting metal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112251622A (en) * 2020-09-17 2021-01-22 洛阳科威钨钼有限公司 Production method of stirrer for rare earth doped smelting metal

Similar Documents

Publication Publication Date Title
US7806995B2 (en) ODS molybdenum-silicon-boron alloy
US7767138B2 (en) Process for the production of a molybdenum alloy
Li et al. Microstructure and properties of Ti (C, N)–TiB2–FeCoCrNiAl high-entropy alloys composite cermets
KR20010022884A (en) Titanium alloy based dispersion-strengthened composites
CN111676408B (en) Tungsten-energetic high-entropy alloy composite material and preparation method thereof
EP1295954B1 (en) Platinum material reinforced by oxide dispersion and process for producing the same
Grahle et al. Microstructural development in dispersion strengthened NiAl produced by mechanical alloying and secondary recrystallization
JP3271040B2 (en) Molybdenum alloy and method for producing the same
JP2002371301A (en) Tungsten sintered compact and manufacturing method therefor
US5590392A (en) Corrosion-resistant material for contact with high temperature molten metal and method for production thereof
WO2016100226A1 (en) Incorporation of nano-size particles into aluminum or other light metals by decoration of micron size particles
JPH059630A (en) Sintered titanium alloy and production thereof
JPH08104942A (en) High strength and high corrosion resistance material
US9919362B2 (en) Procedure for the mechanical alloying of metals
JPS6033335A (en) Heat resistant molybdenum material
JPH02229766A (en) Silicon nitride sintered body
MXPA04007104A (en) Stabilized grain size refractory metal powder metallurgy mill products.
Murayama et al. Dynamic recrystallization of Nb3Al produced from alloy powder
JPH03193623A (en) Production of conjugated boride powder in as mo2feb2-base
JP2535774B2 (en) Precipitation strengthened molybdenum single crystal and method for producing the same
JP2008196041A (en) Cemented carbide
JP2723170B2 (en) Superplastic silicon nitride sintered body
JPH09111363A (en) Production of sintered alloy containing ta and si
Sviridova et al. Characterization of nitinol powder produced by reduction of oxides by calcium hydride
WO1999015705A1 (en) Hard material titanium carbide based alloy, method for the production and use thereof

Legal Events

Date Code Title Description
A02 Decision of refusal

Effective date: 20040130

Free format text: JAPANESE INTERMEDIATE CODE: A02