JPH08104521A - Production of bismuth based oxide superconductor - Google Patents

Production of bismuth based oxide superconductor

Info

Publication number
JPH08104521A
JPH08104521A JP6238055A JP23805594A JPH08104521A JP H08104521 A JPH08104521 A JP H08104521A JP 6238055 A JP6238055 A JP 6238055A JP 23805594 A JP23805594 A JP 23805594A JP H08104521 A JPH08104521 A JP H08104521A
Authority
JP
Japan
Prior art keywords
superconductor
heat treatment
film
superconducting precursor
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6238055A
Other languages
Japanese (ja)
Other versions
JP3668510B2 (en
Inventor
Takayo Hasegawa
隆代 長谷川
Yu Kitamura
祐 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SWCC Corp
Original Assignee
Showa Electric Wire and Cable Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Electric Wire and Cable Co filed Critical Showa Electric Wire and Cable Co
Priority to JP23805594A priority Critical patent/JP3668510B2/en
Publication of JPH08104521A publication Critical patent/JPH08104521A/en
Application granted granted Critical
Publication of JP3668510B2 publication Critical patent/JP3668510B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE: To produce a superconductor at more low treating temp., to eliminate a post-annealing and to easily realize long-size and large-area in a production of Bi based oxide superconductor by heating a precursor in a specified oxygen partial pressure atmosphere and less than softening point of a substrate and more than partial melting temp. of a superconducting precursor, then cooling it gradually to a vicinity of solidification point. CONSTITUTION: The composition of the superconducting precursor is Bi:Sr:Ca:C =2:2:1:2 preferably. A base material is a metal such as Ag, Au, Pt or these alloy and a ceramic, etc., such as SrTiO3 , MgO, YSZ and excellent in oxidation resistance and free from reaction with a superconductor preferably. A metallic org. acid salt containing Bi, Sr, Ca or Cu or organometallic compd. is dissolved in an org. solvent in a prescribed metal mol. ratio, the dissolved solution is applied on the base material, and heat-treated to obtain a film of the superconducting precursor heat treatment is executed at a temp. higher by 5-30 deg.C than partial melting temp. by using a mixed gas of 0.1-5mol.% oxygen partial pressure.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は超電導体の製造方法に係
り、特に熱処理条件を改善することにより、長尺の膜体
を容易に形成することのできるBi系酸化物超電導体の
製造方法の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a superconductor, and more particularly to a method for producing a Bi-based oxide superconductor capable of easily forming a long film body by improving heat treatment conditions. Regarding improvement.

【0002】[0002]

【従来の技術】Bi系(Bi−Sr−Ca−Cu−O
系)の超電導体は、その臨界温度(Tc)が高く、Y−
Ba−Cu−O系(Y系)の超電導体に比較して安定性
および加工性に優れるため、酸化物超電導体の実用材料
として期待されている。このBi系の超電導体には、そ
の組成により3種のTcを有する相が存在するが、特に
80K級の(2212)相(Bi:Sr:Ca:Cuの
モル比=2:2:1:2、以下同様。)と110K級の
(2223)相は、液体窒素温度以上で使用し得る材料
として実用化へ向けての検討が進められている。
2. Description of the Related Art Bi-based (Bi-Sr-Ca-Cu-O
System) has a high critical temperature (Tc), Y-
It is expected to be a practical material for oxide superconductors because it is superior in stability and workability to Ba—Cu—O (Y) superconductors. In this Bi-based superconductor, there are phases having three kinds of Tc depending on the composition, and in particular, an 80K-class (2212) phase (Bi: Sr: Ca: Cu molar ratio = 2: 2: 1: 2, the same shall apply hereinafter) and 1102K (2223) phase are being studied for practical use as materials that can be used at liquid nitrogen temperatures or higher.

【0003】上記のBi系超電導体の応用分野として
は、まず線材や素子が挙げられるが、この他に磁気シー
ルドや共振器等の大面積で異形状の成型体への応用が検
討されている。この、特に後者へ応用するための方法と
しては、(イ)酸化物超電導粉末にバインダーを混合し
て所定の粘度に調整したスラリーを基体上に塗布し、乾
燥後、焼成する方法が一般に行われており、この他
(ロ)金属有機酸塩を溶解した溶液を基体上に塗布した
後、熱分解する方法も検討されている。
As an application field of the above Bi-based superconductors, there are firstly wire rods and elements. In addition to these, application to a large-area molded article having a large area such as a magnetic shield or a resonator is under study. . As a method for applying this to the latter, in particular, (a) a method in which a binder is mixed with an oxide superconducting powder to adjust the viscosity to a predetermined value, and the slurry is applied on a substrate, dried, and then baked is generally performed. In addition to this, a method of applying a solution in which a (b) metal organic acid salt is dissolved onto a substrate and then thermally decomposing it is also under study.

【0004】上記の(2212)相は、基材上に超電導
前駆体の膜を形成し、これを部分溶融点(870〜88
0℃)以上に加熱した後、(2212)相の凝固点以下
まで徐冷することにより、配向性に優れた、即ち電気的
特性に優れた膜体を得ることができることが知られてい
る。また(2212)相は、その結晶中に含まれる酸素
の数によりTcが変化することが知られている。通常大
気中で焼成した場合には、Tcは約75〜80Kとな
り、液体窒素温度では殆ど超電導特性を示さない。この
ため、不活性なガス中で熱処理を施して脱酸素処理を行
いTcを約95℃程度まで上昇させることが行われる。
The above (2212) phase forms a film of a superconducting precursor on a substrate, which is partially melted (870 to 88).
It is known that a film body excellent in orientation, that is, excellent in electrical characteristics can be obtained by heating to (0 ° C.) or higher and then gradually cooling to the freezing point of the (2212) phase or lower. Further, it is known that the Tc of the (2212) phase changes depending on the number of oxygen contained in the crystal. Normally, when fired in the atmosphere, Tc is about 75 to 80 K, and the liquid nitrogen temperature shows almost no superconducting property. Therefore, heat treatment is performed in an inert gas to perform deoxidation treatment to increase Tc to about 95 ° C.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記の
(2212)相の超電導膜の形成方法においては、熱処
理の最高温度が890〜900℃とかなり高く、基材と
して銀を用いたときの銀の融点(960℃)に近い。ま
た、その後(2212)相の凝固点(850〜860
℃)近傍まで2〜5℃/h程度の冷却速度で徐冷する必
要があり、冷却に長時間を要する。
However, in the above method for forming the (2212) phase superconducting film, the maximum temperature of the heat treatment is as high as 890 to 900 ° C., and the silver content when silver is used as the base material is high. Close to melting point (960 ° C). In addition, the freezing point (850-860) of the (2212) phase after that.
(° C), it is necessary to slowly cool to around 2 to 5 ° C / h, and it takes a long time to cool.

【0006】その結果、熱処理中に基材が軟化し、長尺
の膜体を製造する場合に、基材の変形や破断を生ずる。
このため、(2212)相の熱処理温度を低下させる必
要がある。また、上述したように、(2212)相の結
晶中に含まれる酸素数を低減させるために、不活性なガ
ス中で脱酸素処理、即ちポストアニールを施す必要があ
るが、この熱処理が長尺化や大面積化する上での難点と
なっている。
As a result, the base material is softened during the heat treatment, and when a long film body is manufactured, the base material is deformed or fractured.
Therefore, it is necessary to lower the heat treatment temperature of the (2212) phase. Further, as described above, in order to reduce the number of oxygen contained in the (2212) phase crystal, it is necessary to perform deoxidation treatment, that is, post-annealing in an inert gas, but this heat treatment requires a long time. This is a difficulty in increasing the size and increasing the area.

【0007】本発明は以上の問題を解決するためになさ
れたもので、熱処理条件を改善することにより、部分溶
融点以上の加熱後、凝固点近傍までの徐冷により超電導
体を製造する方法において、熱処理温度を低下させ、か
つポストアニールを不要とするBi系酸化物超電導体の
製造方法を提供することをその目的とする。
The present invention has been made to solve the above problems, and in a method of producing a superconductor by improving the heat treatment conditions, after heating above the partial melting point and then gradually cooling to near the freezing point, It is an object of the present invention to provide a method for manufacturing a Bi-based oxide superconductor that reduces the heat treatment temperature and does not require post annealing.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明に係るBi系酸化物超電導体の製造方法は、
基材上に、Bi、Sr、CaまたはCuを所定の比率で
含む超電導前駆体の膜を形成した複合膜に熱処理を施し
て超電導体を製造する方法において、酸素分圧が5モル
%以下の雰囲気中で、かつ基板の軟化温度以下で超電導
前駆体の部分溶融点以上に加熱した後、凝固点近傍まで
徐冷する熱処理を施すようにしたものである。
In order to achieve the above object, the method for producing a Bi-based oxide superconductor according to the present invention comprises:
In a method for producing a superconductor by heat-treating a composite film in which a film of a superconducting precursor containing Bi, Sr, Ca or Cu in a predetermined ratio is formed on a base material, the oxygen partial pressure is 5 mol% or less. After heating in the atmosphere above the partial melting point of the superconducting precursor below the softening temperature of the substrate, a heat treatment is performed to gradually cool it to near the freezing point.

【0009】本発明における超電導前駆体の組成は、B
i:Sr:Ca:Cu=(1.9〜2.1):(1.7
〜2.3):(0.7〜1.3):(1.7〜2.3)
の範囲とすることが好ましい。これらの範囲外の組成の
場合には非超電導相が生成し易くなり、その特性が低下
する。基材としては、Ag、Au、Ptまたはこれらの
合金等の金属やSrTiO3、MgO,YSZ等のセラ
ミックス等で熱処理温度範囲内において耐酸化性に優
れ、かつ超電導体との反応を生じないもの、あるいは超
電導体との反応を生じても超電導性を低下させないもの
が好ましい。
The composition of the superconducting precursor in the present invention is B
i: Sr: Ca: Cu = (1.9 to 2.1) :( 1.7
-2.3): (0.7-1.3): (1.7-2.3)
It is preferable to set it as the range. When the composition is out of these ranges, a non-superconducting phase is likely to be generated and the characteristics thereof are deteriorated. As the base material, a metal such as Ag, Au, Pt, or an alloy thereof, or a ceramic such as SrTiO3, MgO, YSZ, or the like, which has excellent oxidation resistance in the heat treatment temperature range and does not react with a superconductor, Alternatively, it is preferable that the superconductivity is not lowered even if a reaction with the superconductor occurs.

【0010】ペーストの基材上への塗布方法は、一般に
塗料のコーティングに用いられている方法を使用するこ
とができ、例えばドクターブレード、ディップコーティ
ング、アプリケーターコーティング等をあげることがで
きる。本発明における超電導前駆体の膜は、Bi、S
r、CaまたはCuを含む金属有機酸塩あるいは有機金
属化合物を所定の金属モル比で有機溶媒中に溶解した溶
液を基材上に塗布した後、熱処理を施すことにより、ま
たBi、Sr、CaまたはCuを含む酸化物粉末を、有
機溶媒中に溶解した溶液を基材上に塗布した後、熱処理
を施すことにより形成することができる。
As a method for applying the paste onto the base material, a method generally used for coating a paint can be used, and examples thereof include doctor blade, dip coating and applicator coating. The film of the superconducting precursor in the present invention is made of Bi, S
A solution of a metal organic acid salt or an organometallic compound containing r, Ca or Cu dissolved in an organic solvent at a predetermined metal molar ratio is applied on a substrate and then heat-treated to produce Bi, Sr, Ca. Alternatively, the oxide powder containing Cu can be formed by applying a solution of an oxide powder dissolved in an organic solvent on a substrate and then performing heat treatment.

【0011】前者の溶液としては、例えばオクチル酸、
ネオデカン酸、ナフテン酸等の金属有機酸塩あるいは金
属アルコキシド、金属アセチルアセトナート等の有機金
属化合物で溶媒に可溶であるものを、炭化水素系、エー
テル系、アルコール系等の有機溶剤や有機溶剤と水等を
混合した溶媒中に完全に溶解させたものを用いることが
できる。
Examples of the former solution include octylic acid,
A metal organic acid salt such as neodecanoic acid or naphthenic acid, or an organic metal compound such as a metal alkoxide or metal acetylacetonate, which is soluble in a solvent, is used as a hydrocarbon-based, ether-based, alcohol-based organic solvent or organic solvent. It is possible to use the one completely dissolved in a solvent obtained by mixing the solvent and water.

【0012】また、後者の溶液としては、例えば、固相
法、共沈法あるいはゾルーゲル法等により作製した超電
導組成を有する粉末または超電導粉末を有機溶媒中に溶
解した溶液を用いることができる。勿論これ等の混合溶
液を使用できることは言うまでもない。本発明における
熱処理は、酸素分圧が5モル%以下の雰囲気中で行われ
るが、この雰囲気ガスは酸素ガスと窒素やアルゴン等の
不活性なガスとを混合したものを用い、特に酸素分圧が
0.1〜5モル%の混合ガスを用いることが好ましい。
酸素分圧が5モル%を越えると部分溶融点の低下の効果
が小さく、また0.1モル%部分溶融後、凝固までの反
応形態が変化し、(2212)相の生成が困難となる。
As the latter solution, for example, a powder having a superconducting composition prepared by a solid phase method, a coprecipitation method, a sol-gel method or the like or a solution obtained by dissolving a superconducting powder in an organic solvent can be used. Of course, it goes without saying that these mixed solutions can be used. The heat treatment in the present invention is carried out in an atmosphere having an oxygen partial pressure of 5 mol% or less. As the atmosphere gas, a mixture of oxygen gas and an inert gas such as nitrogen or argon is used. It is preferable to use a mixed gas of 0.1 to 5 mol%.
If the oxygen partial pressure exceeds 5 mol%, the effect of lowering the partial melting point is small, and after 0.1 mol% partial melting, the reaction form until solidification changes, and it becomes difficult to form the (2212) phase.

【0013】熱処理の最高温度は、酸素分圧によって変
化するため、部分溶融点より5〜30℃程度高い温度に
設定することが好ましい。本発明のBi系酸化物超電導
体の製造方法は、Bi系の(2212)相からなる膜体
の製造に適し、この場合の最良の方法は、銀又は銀合金
からなる基材上に、Bi、Sr、CaまたはCuを約B
i:Sr:Ca:Cu=2:2:1:2の組成で含む超
電導前駆体の膜を形成した複合膜に熱処理を施して超電
導体を製造する際に、酸素分圧が0.1〜5モル%の雰
囲気中で、かつ基板の軟化温度以下で超電導前駆体の部
分溶融点以上に加熱した後、凝固点近傍まで徐冷する熱
処理を施すものである。
Since the maximum temperature of the heat treatment changes depending on the oxygen partial pressure, it is preferable to set the temperature higher by about 5 to 30 ° C. than the partial melting point. The method for producing a Bi-based oxide superconductor of the present invention is suitable for producing a film body composed of a Bi-based (2212) phase, and the best method in this case is that a Bi-based superconductor is formed on a base material made of silver or a silver alloy. , Sr, Ca or Cu about B
When a superconducting film is produced by heat-treating a composite film formed with a film of a superconducting precursor containing i: Sr: Ca: Cu = 2: 2: 1: 2, the oxygen partial pressure is 0.1 to 0.1%. In a 5 mol% atmosphere and below the softening temperature of the substrate, the superconducting precursor is heated to a partial melting point or higher, and then gradually cooled to near the freezing point.

【0014】[0014]

【作用】本発明においては、熱処理の雰囲気を5モル%
以下の酸素分圧とすることにより、部分溶融点を低下さ
せることが可能となり、これにより低い熱処理温度で超
電導体が生成する。また脱酸素処理も不要となる。
In the present invention, the heat treatment atmosphere is set to 5 mol%.
By setting the oxygen partial pressure below, it becomes possible to lower the partial melting point, whereby a superconductor is generated at a low heat treatment temperature. Also, deoxidation treatment is not necessary.

【0015】[0015]

【実施例】以下本発明の実施例および比較例について説
明する。 実施例 Bi、Sr、CaおよびCuの各オクチル酸塩を、その
金属分がBi:Sr:Ca:Cu=2:2:1:2のモ
ル比を有するようにキシレン中に50wt%の濃度で溶
解し、この溶液中に酸化物粉末を添加してペーストを作
製した。
EXAMPLES Examples and comparative examples of the present invention will be described below. Example Bi, Sr, Ca and Cu octylates were added to xylene at a concentration of 50 wt% in xylene so that the metal content thereof had a molar ratio of Bi: Sr: Ca: Cu = 2: 2: 1: 2. It melt | dissolved and the oxide powder was added to this solution and the paste was produced.

【0016】上記の酸化物粉末は、Bi:Sr:Ca:
Cu=2:2:1:2のモル比を有する共沈粉を、85
0℃で20時間焼成して作製した。このペーストをAg
基板上にアプリケーターコート法により厚さ25μmに
塗布し、500℃で熱分解させた後、酸素分圧1モル%
の雰囲気中で、部分溶融点以上の温度に加熱し、次いで
所定の冷却速度で凝固点以下まで徐冷して膜体を形成し
た。この部分溶融点は840℃であった。
The above oxide powder is Bi: Sr: Ca:
The coprecipitated powder having a molar ratio of Cu = 2: 2: 1: 2 was 85
It was made by firing at 0 ° C. for 20 hours. This paste is Ag
It is applied to a substrate with a thickness of 25 μm by an applicator coating method and thermally decomposed at 500 ° C., then the oxygen partial pressure is 1 mol%
In the above atmosphere, the film was formed by heating to a temperature above the partial melting point and then slowly cooling to a temperature below the freezing point at a predetermined cooling rate. The partial melting point was 840 ° C.

【0017】このようにして得られた超電導膜につい
て、その臨界温度(Tc)及び臨界電流値(Ic:77
K、0T)を測定した。その結果、(イ)熱処理の最高
温度870℃、冷却速度2℃/hの条件で、Tc=93
K、Ic=12A、(ロ)熱処理の最高温度870℃、
冷却速度4℃/hの条件で、Tc=93K、Ic=10
A、(ハ)熱処理の最高温度860℃、冷却速度2℃/
hの条件で、Tc=93K、Ic=18A、(ニ)熱処
理の最高温度850℃、冷却速度2℃/hの条件で、T
c=93K、Ic=8Aの結果が得られた。
Regarding the superconducting film thus obtained, its critical temperature (Tc) and critical current value (Ic: 77).
K, 0T) was measured. As a result, (a) Tc = 93 under the conditions of the maximum temperature of heat treatment 870 ° C. and the cooling rate 2 ° C./h.
K, Ic = 12 A, (b) Maximum temperature of heat treatment 870 ° C.,
Tc = 93K, Ic = 10 at a cooling rate of 4 ° C./h
A, (c) Maximum temperature of heat treatment 860 ℃, cooling rate 2 ℃ /
Under conditions of h, Tc = 93K, Ic = 18A, (d) Maximum temperature of heat treatment 850 ° C., cooling rate 2 ° C./h, T
The results of c = 93K and Ic = 8A were obtained.

【0018】比較例1 実施例と同様にしてAg基板上に膜体を形成し、500
℃で熱分解させた後、大気中で、部分溶融点以上の温度
に加熱し、次いで所定の冷却速度で凝固点以下まで徐冷
して膜体を形成した。この部分溶融点は880℃であっ
た。このようにして得られた超電導膜について、その臨
界温度(Tc)及び臨界電流値(Ic)を測定した。
Comparative Example 1 A film body was formed on an Ag substrate in the same manner as in the example, and then 500
After thermally decomposing at 0 ° C., it was heated to a temperature of a partial melting point or higher in the atmosphere, and then gradually cooled to a temperature below the freezing point at a predetermined cooling rate to form a film. The partial melting point was 880 ° C. The critical temperature (Tc) and the critical current value (Ic) of the superconducting film thus obtained were measured.

【0019】その結果、熱処理の最高温度890℃、冷
却速度3℃/hの条件で、Tc=79K、Ic=1Aの
結果が得られた。 比較例2 実施例と同様にしてAg基板上に膜体を形成し、500
℃で熱分解させた後、8モル%の酸素分圧の雰囲気中で
部分溶融点以上の温度に加熱し、次いで所定の冷却速度
で凝固点以下まで徐冷して膜体を形成した。この部分溶
融点は860℃であった。
As a result, the results of Tc = 79K and Ic = 1A were obtained under the conditions of the maximum heat treatment temperature of 890 ° C. and the cooling rate of 3 ° C./h. Comparative Example 2 A film body was formed on an Ag substrate in the same manner as in Example, and 500
After thermally decomposing at 0 ° C., it was heated to a temperature above the partial melting point in an atmosphere with an oxygen partial pressure of 8 mol%, and then gradually cooled to below the freezing point at a predetermined cooling rate to form a film. The partial melting point was 860 ° C.

【0020】このようにして得られた超電導膜につい
て、その臨界温度(Tc)及び臨界電流値(Ic)を測
定した。その結果、熱処理の最高温度890℃、冷却速
度3℃/hの条件で、Tc=83K、Ic=5Aの結果
が得られた。 比較例3 実施例と同様にしてAg基板上に膜体を形成し、500
℃で熱分解させた後、窒素ガス雰囲気中で部分溶融点以
上の温度に加熱し、次いで所定の冷却速度で凝固点以下
まで徐冷して膜体を形成した。この部分溶融点は800
℃であった。
The critical temperature (Tc) and the critical current value (Ic) of the superconducting film thus obtained were measured. As a result, the results of Tc = 83K and Ic = 5A were obtained under the conditions of the maximum heat treatment temperature of 890 ° C. and the cooling rate of 3 ° C./h. Comparative Example 3 A film was formed on an Ag substrate in the same manner as in Example, and
After thermally decomposing at 0 ° C., it was heated to a temperature above the partial melting point in a nitrogen gas atmosphere, and then gradually cooled to a temperature below the freezing point at a predetermined cooling rate to form a film. This partial melting point is 800
° C.

【0021】このようにして得られた超電導膜につい
て、その臨界温度(Tc)及び臨界電流値(Ic)を測
定した。その結果、熱処理の最高温度850℃、冷却速
度3℃/hの条件ではTcを示さなかった。
The critical temperature (Tc) and the critical current value (Ic) of the superconducting film thus obtained were measured. As a result, Tc was not shown under the conditions of the maximum heat treatment temperature of 850 ° C. and the cooling rate of 3 ° C./h.

【0022】[0022]

【発明の効果】以上述べたように本発明によれば、部分
溶融点以上の加熱後、凝固点近傍までの徐冷により超電
導体を製造する方法において、熱処理の雰囲気を5モル
%以下の酸素分圧とすることにより、部分溶融点を低下
させることが可能となるため、これにより低い熱処理温
度で超電導体を製造することができ、かつポストアニー
ルも不要となり、膜体の長尺化や大面積化を容易に実現
することができる。
As described above, according to the present invention, in a method for producing a superconductor by heating after the partial melting point or more and then gradually cooling to near the freezing point, the atmosphere of the heat treatment is set to an oxygen content of 5 mol% or less. Since the partial melting point can be lowered by setting the pressure, the superconductor can be manufactured at a low heat treatment temperature, and post-annealing is not required. Can be easily realized.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】基材上に、Bi、Sr、CaまたはCuを
所定の比率で含む超電導前駆体の膜を形成した複合膜に
熱処理を施して超電導体を製造する方法において、前記
熱処理を、酸素分圧が5モル%以下の雰囲気中で、かつ
前記基板の軟化温度以下で前記超電導前駆体の部分溶融
点以上に加熱した後、凝固点近傍まで徐冷することによ
り行うことを特徴とするBi系酸化物超電導体の製造方
法。
1. A method for producing a superconductor by subjecting a composite film, in which a film of a superconducting precursor containing Bi, Sr, Ca or Cu in a predetermined ratio is formed on a substrate, to a superconductor, wherein the heat treatment comprises: The method is characterized in that heating is performed at a partial melting point of the superconducting precursor or above at a softening temperature of the substrate or below in an atmosphere having an oxygen partial pressure of 5 mol% or below, and then gradually cooled to near the freezing point. Method for producing oxide-based superconductor.
【請求項2】超電導前駆体の膜は、Bi、Sr、Caま
たはCuを含む金属有機酸塩あるいは有機金属化合物を
所定の金属モル比で有機溶媒中に溶解した溶液を基材上
に塗布した後、熱処理を施すことにより形成されること
を特徴とする請求項1記載のBi系酸化物超電導体の製
造方法。
2. A film of a superconducting precursor is obtained by coating a solution of a metal organic acid salt containing Bi, Sr, Ca or Cu or an organic metal compound dissolved in an organic solvent at a predetermined metal molar ratio on a substrate. The method for producing a Bi-based oxide superconductor according to claim 1, which is formed by performing heat treatment thereafter.
【請求項3】超電導前駆体の膜は、Bi、Sr、Caま
たはCuを含む酸化物粉末を、有機溶媒中に溶解した溶
液を基材上に塗布した後、熱処理を施すことにより形成
されることを特徴とする請求項1記載のBi系酸化物超
電導体の製造方法。
3. A film of a superconducting precursor is formed by applying a solution of an oxide powder containing Bi, Sr, Ca or Cu dissolved in an organic solvent onto a substrate and then subjecting it to heat treatment. The method for producing a Bi-based oxide superconductor according to claim 1, wherein.
【請求項4】銀又は銀合金からなる基材上に、Bi、S
r、CaまたはCuを約Bi:Sr:Ca:Cu=2:
2:1:2の組成で含む超電導前駆体の膜を形成した複
合膜に熱処理を施して超電導体を製造する方法におい
て、前記熱処理を、酸素分圧が0.1〜5モル%の雰囲
気中で、かつ前記基板の軟化温度以下で前記超電導前駆
体の部分溶融点以上に加熱した後、凝固点近傍まで徐冷
することにより行うことを特徴とするBi系酸化物超電
導体の製造方法。
4. Bi, S on a base material made of silver or a silver alloy.
r, Ca or Cu is approximately Bi: Sr: Ca: Cu = 2:
In a method for producing a superconductor by subjecting a composite film having a superconducting precursor film containing a composition of 2: 1: 2 to a heat treatment, the heat treatment is performed in an atmosphere having an oxygen partial pressure of 0.1 to 5 mol%. The method for producing a Bi-based oxide superconductor is characterized in that after heating above the partial melting point of the superconducting precursor below the softening temperature of the substrate and then gradually cooling to near the freezing point.
JP23805594A 1994-09-30 1994-09-30 Method for producing Bi-based oxide superconductor Expired - Fee Related JP3668510B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23805594A JP3668510B2 (en) 1994-09-30 1994-09-30 Method for producing Bi-based oxide superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23805594A JP3668510B2 (en) 1994-09-30 1994-09-30 Method for producing Bi-based oxide superconductor

Publications (2)

Publication Number Publication Date
JPH08104521A true JPH08104521A (en) 1996-04-23
JP3668510B2 JP3668510B2 (en) 2005-07-06

Family

ID=17024500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23805594A Expired - Fee Related JP3668510B2 (en) 1994-09-30 1994-09-30 Method for producing Bi-based oxide superconductor

Country Status (1)

Country Link
JP (1) JP3668510B2 (en)

Also Published As

Publication number Publication date
JP3668510B2 (en) 2005-07-06

Similar Documents

Publication Publication Date Title
US7625843B2 (en) Method for manufacturing a metal organic deposition precursor solution using super-conduction oxide and film superconductor
US5021399A (en) Spray pyrolysis process for preparing superconductive films
Lay Formation of yttrium barium cuprate powder at low temperatures
JP4203606B2 (en) Oxide superconducting thick film composition and thick film tape-shaped oxide superconductor
JPH08104521A (en) Production of bismuth based oxide superconductor
JP3053238B2 (en) Method for producing Bi-based oxide superconductor
JPH06115940A (en) Production of bi-based oxide superconductor
JPS63279528A (en) Manufacture of superconductor device
JPH06223652A (en) Manufacture of bi oxide superconducting film
JPH04295080A (en) Production of bi-containing oxide superconductor
JPH03109204A (en) Production of superconducting thin film
EP0310245A2 (en) Formation of film superconductors by metallo-organic deposition
JPH02263709A (en) Production of oxide superconductor
JPH0238359A (en) Production of superconductor
JPH03112810A (en) Production of oxide superconducting film
JP3354961B2 (en) Bi-based superconductor and method of manufacturing superconducting thick film
JP2822328B2 (en) Superconductor manufacturing method
JPH06219742A (en) Production of bi oxide superconductor membrane
JPH04295082A (en) Bi-containing oxide superconductor and its production
JP3394297B2 (en) Method for producing superconductive composition
JPH0211776A (en) Production of superconductive metal oxide film by pyrolysis
JPH05262597A (en) Production of superconducting film of bi-based oxide
JP4153651B2 (en) Seed crystal of oxide superconducting material and manufacturing method of oxide superconducting material using the same
JPH0393607A (en) Production of superconductor
JPH02102123A (en) Production of superconductor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050411

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees