JPH0393607A - Production of superconductor - Google Patents

Production of superconductor

Info

Publication number
JPH0393607A
JPH0393607A JP1227426A JP22742689A JPH0393607A JP H0393607 A JPH0393607 A JP H0393607A JP 1227426 A JP1227426 A JP 1227426A JP 22742689 A JP22742689 A JP 22742689A JP H0393607 A JPH0393607 A JP H0393607A
Authority
JP
Japan
Prior art keywords
superconducting
ceramics
alkali halide
base material
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1227426A
Other languages
Japanese (ja)
Other versions
JP2822329B2 (en
Inventor
Akira Enomoto
亮 榎本
Tetsushi Ono
哲史 大野
Masanori Tamaki
昌徳 玉木
Fumihiko Takei
武居 文彦
Hiroyuki Takeya
浩幸 竹屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP1227426A priority Critical patent/JP2822329B2/en
Publication of JPH0393607A publication Critical patent/JPH0393607A/en
Application granted granted Critical
Publication of JP2822329B2 publication Critical patent/JP2822329B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

PURPOSE:To obtain a superconductor having excellent superconducting characteristics by simple process and a mere device by bringing a mixed melt of superconducting composition and alkali halide into contact with a substrate and precipitating superconducting ceramics on the surface of the substrate to form a thin film. CONSTITUTION:A mixed melt of a superconducting composition soluble in a melt of an alkali halide comprising preferably Bi base or Tl base and the alkali halide. The alkali halide is one or more of KCl, LiCl and NaCl. Then, the mixed melt is brought into contact with a substrate and annealed to precipitate a superconducting ceramics such as BiSrCaCu2Ox and a thin film comprising the ceramics is formed. The molar ratio of the alkali halide is preferably 10-400 based on the superconducting composition. The annealing ratio is preferably 0.5-1 deg.C/second.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、基材の表面に超伝導特性に優れた超伝導セラ
ミックス薄膜を形成せしめる超伝導体の製造方法に関し
、特に本発明は、複雑なプロセスや特別な装置を必要と
しない超伝導体の製造方法に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a method for manufacturing a superconductor that forms a superconducting ceramic thin film with excellent superconducting properties on the surface of a base material. This invention relates to a method for manufacturing superconductors that does not require special processes or special equipment.

(従来の技術) 近年、液体窒素温度領域でも使用可能な超伝導セラミッ
クスが発見され、工業的にも大きなインパクトを与えて
いる.その代表的なものとして、Y−Ba−Cu−0系
酸化物超伝導セラミックスが良く知られている。また、
最近、希土類元素を含まない新しいタイプの超伝導セラ
ミックスとしてBi−Sr−Ca−Cu−0系、或いは
T Q−Ba−Ca−Cu−0系酸化物超伝導セラミッ
クスが報告され、これら酸化物超伝導セラミックスは大
気中の水分や炭酸ガスなどに対する安定性に優れ、且つ
酸化含有量が一定で超伝導特性が安定しているという特
徴がある。
(Conventional technology) In recent years, superconducting ceramics that can be used even in the liquid nitrogen temperature range have been discovered, and this has had a great impact on industry. As a typical example, Y-Ba-Cu-0 based oxide superconducting ceramics are well known. Also,
Recently, Bi-Sr-Ca-Cu-0 system or TQ-Ba-Ca-Cu-0 system oxide superconducting ceramics have been reported as new types of superconducting ceramics that do not contain rare earth elements. Conductive ceramics are characterized by excellent stability against atmospheric moisture and carbon dioxide gas, as well as stable superconducting properties with a constant oxidation content.

しかしながら、これら超伝導セラミックスを実用化する
に当っては、堅くて脆いセラミックスを超伝導組成を保
ったまま如何に緻密に焼結して所望の形に成形するかが
重要な技術課題となっていた。
However, in putting these superconducting ceramics into practical use, an important technical issue is how to precisely sinter the hard and brittle ceramics and mold them into the desired shape while maintaining their superconducting composition. Ta.

このような超伝導体の製造方法としては、例えば、(1
)特開昭63−248021号公報に記載の、超伝導酸
化物の構成元素からなるアルコキシドを加水分解し、ゾ
ル化物とし、これをファイバー、基板などに被着させる
ことにより表面にゾル・ゲルを形成し、これを加熱焼結
する方法、 (2)1989年8月8日発行の化学工業日報記載の、
Bi系超伝導組成物を、純銀製パイプに充填し、線引加
工後、圧延、焼結お−よびプレス加工を繰返し、Tcs
77.3K, Jc=2万A/cfltなる超伝導特性
をもち、結晶粒の配向性が良好な超伝導セラミックから
なるテープを得る方法、 (3)特開昭64−10530号公報に記載の、Y或い
はLa系の超伝導化合物の溶融液に基板を浸漬し、引き
上げた後、急冷してアニール処理し、超伝導薄膜を製造
する方法、及び (4)特開昭64−31310号公報に記載の、超伝導
酸化物の溶融液を線材に被覆した後、熱処理を行なって
超伝導酸化物溶融液被覆物を結晶化させる方法などが提
案されている。
As a method for manufacturing such a superconductor, for example, (1
) Described in JP-A No. 63-248021, an alkoxide consisting of constituent elements of a superconducting oxide is hydrolyzed to form a sol, and this is applied to a fiber, a substrate, etc. to form a sol/gel on the surface. (2) A method described in the Chemical Industry Daily published on August 8, 1989,
A Bi-based superconducting composition is filled into a pure silver pipe, and after wire drawing, rolling, sintering, and pressing are repeated to obtain Tcs.
77.3 K, Jc = 20,000 A/cflt, a method for obtaining a tape made of a superconducting ceramic with good crystal grain orientation, (3) the method described in JP-A-64-10530; , a method of manufacturing a superconducting thin film by immersing a substrate in a melt of a Y or La-based superconducting compound, pulling it up, rapidly cooling it and annealing it, and (4) JP-A-64-31310. A method has been proposed in which a wire is coated with a superconducting oxide melt and then subjected to heat treatment to crystallize the superconducting oxide melt coating.

(発明が解決しようとする課題) しかしながら、(1)の方法では、基板又は、母材が焼
結の際、超伝導セラミックスと反応する可能性が考えら
れ、前記基板又は母材は、超伝導セラミックスとの反応
性が低いものに限られていた。
(Problem to be Solved by the Invention) However, in the method (1), there is a possibility that the substrate or base material may react with superconducting ceramics during sintering, and the substrate or base material may be superconducting. It was limited to those with low reactivity with ceramics.

また、(2)の方法では、結晶粒の配向性を向上させる
ためプレス加工と焼結を繰り返す必要があり、煩雑であ
った.更に、(3)或いは(4)の方法では、超伝導酸
化物の融点が非常に高く、使用できる基材は、耐熱性が
特に高いものに限られるなどの問題があった. (課題を解決するための手段) そこで、本発明者等は、上述の如き欠点を解決すること
のできる超伝導体の製造方法を開発すベく鋭意研究した
結果、次の如き要旨構成の本発明を開発するに至った。
In addition, method (2) required repeated press working and sintering to improve the orientation of crystal grains, which was complicated. Furthermore, methods (3) and (4) have the problem that the melting point of the superconducting oxide is very high, and the base materials that can be used are limited to those that have particularly high heat resistance. (Means for Solving the Problems) Therefore, as a result of intensive research to develop a method for manufacturing superconductors that can solve the above-mentioned drawbacks, the present inventors published a book with the following summary structure. This led to the development of an invention.

本発明の要旨は、超伝導組成物とアルカリハライドの混
合溶融物に基材を接触させた後、徐冷することにより、
基材表面に超伝導セラミックスを析出させて超伝導セラ
ミックス薄膜を形成することを特徴とする超伝導体の製
造方法である。
The gist of the present invention is to bring a base material into contact with a mixed melt of a superconducting composition and an alkali halide, and then slowly cool it.
This is a method for producing a superconductor, characterized by depositing superconducting ceramics on the surface of a base material to form a superconducting ceramic thin film.

即ち、本発明においては、超伝導組威物とアルカリハラ
イドの混合溶融物に基材を接触させることにより、前記
基材の表面に、結晶配向性に優れた超伝導セラミックス
が析出し、超伝導体が得られるのである. 本発明において、前記超伝導組成物は、アルカリハライ
ドの゛溶融物に可溶の化合物であり、中でもBi系或い
はTl系超伝導組成物が好適である。
That is, in the present invention, by bringing a base material into contact with a mixed melt of a superconducting composite and an alkali halide, superconducting ceramics with excellent crystal orientation are precipitated on the surface of the base material, and superconducting ceramics are deposited on the surface of the base material. You will gain a body. In the present invention, the superconducting composition is a compound soluble in a melt of alkali halide, and Bi-based or Tl-based superconducting compositions are particularly preferred.

また、前記アルカリハライドは、KCQ%LiC Qお
よびNaC Qから選ばれる何れか少なくとも一種であ
り、前記基材は、融点が600℃以上が好適である. (作用) 本発明によれば、超伝導組威物とアルカリハライドの混
合溶融物に基板を接触させた後、徐冷することにより、
基材表面に超伝導セラミックスを析出することが必要で
ある。その理由は、超伝導組成物をアルカリハライドの
溶媒中に溶かした状態の混合溶融物を基材と接触させた
後、冷却して過飽和状態を作りだすことにより、組成の
ずれがなく、結晶配向性に優れた超伝導セラミックスを
析出させることができるからである。
Further, the alkali halide is at least one selected from KCQ%LiC Q and NaCQ, and the base material preferably has a melting point of 600°C or higher. (Function) According to the present invention, by bringing the substrate into contact with a melted mixture of a superconducting compound and an alkali halide, and then slowly cooling it,
It is necessary to deposit superconducting ceramics on the surface of the substrate. The reason for this is that a mixed melt of a superconducting composition dissolved in an alkali halide solvent is brought into contact with the base material and then cooled to create a supersaturated state, which eliminates compositional deviation and improves crystal orientation. This is because superconducting ceramics with excellent properties can be deposited.

本発明によれば、前記超伝導組成物としては、アルカリ
ハライド溶融物に可溶の化合物であり、600℃以上の
温度で結晶化するものであれば好適に使用することがで
き、例えばBi系或いはTfi系超伝導組成物であるこ
とが好ましい。
According to the present invention, the superconducting composition can be suitably used as long as it is a compound that is soluble in an alkali halide melt and crystallizes at a temperature of 600° C. or higher, such as a Bi-based superconducting composition. Alternatively, a Tfi-based superconducting composition is preferable.

前記Bi系或いはTl系超伝導組成物は770℃〜85
0℃の温度範囲で溶融することが好ましい。この理一由
は、770℃以下では、アルカリハライドが溶融せず、
850℃以上では、超伝導組成物を構成する元素の一部
が揮発してしまい、安定した組成の融液が得られにくい
からである. 前記冷却のための速度は、0.5℃/min〜1℃/m
inの範囲が望ましい。この理由は、この速度範囲を外
れた場合、過冷却状態にならないからである。
The Bi-based or Tl-based superconducting composition has a temperature of 770°C to 85°C.
It is preferable to melt in the temperature range of 0°C. The reason for this is that alkali halides do not melt at temperatures below 770°C.
This is because at temperatures above 850°C, some of the elements constituting the superconducting composition will volatilize, making it difficult to obtain a melt with a stable composition. The cooling rate is 0.5°C/min to 1°C/m
A range of in is desirable. The reason for this is that if the speed is out of this range, a supercooled state will not occur.

前記Bi系超伝導組成物としては、少なくとも、ビスマ
ス、ビスマスとアルミニウム、ビスマスと鉛、ビスマス
とカリウム、ビスマスとイットリウムからなる群から選
ばれる元素、アルカリ土類金属、銅及び酸素から構成さ
れてなるものであり、例えばBiSrCaCu,0.,
 Bi,Sr,Ca.XYxCu,O,、Bi, −x
Pb,Sr, Ca, Cu, O,、Bi, −xA
 Q ,SrCaCu,O,、BISraziCan/
3Km/3Cu, O,、Bt,Sr,Cu,O, +
yなどのセラミックスを生成するものが好適である.前
記Tl系超伝導組威物としては、少なくともタリウム、
タイルムと鉛からなる群から選ばれた元素、アルカリ土
類金属、銅及び酸素から構成されてなるものであり、例
えば、T Q, 13a, Ca, Cu a O x
 s T Q−,m Pb *,sS r * C a
 * Cu r O sなどのセラミックスを生成する
ものが好適である。
The Bi-based superconducting composition is composed of at least an element selected from the group consisting of bismuth, bismuth and aluminum, bismuth and lead, bismuth and potassium, bismuth and yttrium, an alkaline earth metal, copper, and oxygen. For example, BiSrCaCu,0. ,
Bi, Sr, Ca. XYxCu,O,, Bi, -x
Pb, Sr, Ca, Cu, O,, Bi, -xA
Q,SrCaCu,O,,BISraziCan/
3Km/3Cu, O,, Bt, Sr, Cu, O, +
A material that produces ceramics such as y is suitable. The Tl-based superconducting compound includes at least thallium,
It is composed of an element selected from the group consisting of tylum and lead, an alkaline earth metal, copper and oxygen, for example, T Q, 13a, Ca, Cu a Ox
s T Q-, m Pb *, s S r * Ca
*Those that produce ceramics such as CurOs are suitable.

前記Bi系超伝導セラミックスやT4系超伝導セラミッ
クスは、高温超伝導材料として極めて有用な素材である
が、一般には長時間の熱処理を必要としていた。しかし
、本発明の製造方法では、基材表面に超伝導セラミック
スの薄膜を容易に成長させることができ、しかも、超伝
導セラミックスの結晶配向性が比較的高く、臨界電流密
度が大きな薄膜を形成できる。
The Bi-based superconducting ceramics and T4-based superconducting ceramics are extremely useful materials as high-temperature superconducting materials, but generally require long-term heat treatment. However, with the manufacturing method of the present invention, it is possible to easily grow a thin film of superconducting ceramics on the surface of a substrate, and moreover, it is possible to form a thin film with relatively high crystal orientation of superconducting ceramics and a high critical current density. .

本発明によれば、前記アルカリハライドとしては、目的
とする超伝導組成物を溶解できるものを使用することが
好ましく、例えば、KCQ.Li(,QおよびNaC 
Qから選ばれる何れか少なくとも一種を使用することが
有利である。
According to the present invention, it is preferable to use an alkali halide that can dissolve the target superconducting composition, such as KCQ. Li(,Q and NaC
It is advantageous to use at least one selected from Q.

前記アルカリハライドは、超伝導組成物に対して、モル
比でlθ〜400の範囲であることが望ましい。この理
由は、モル比で10より低い場合は、溶融液が得られに
くく、また、モル比で400を越える場合には、アルカ
リハライドが、不純物として超伝導セラミックス中に多
量に残留し、超伝導特性を低下させる可能性があるから
である。
The alkali halide preferably has a molar ratio of lθ to 400 to the superconducting composition. The reason for this is that when the molar ratio is lower than 10, it is difficult to obtain a molten liquid, and when the molar ratio exceeds 400, a large amount of alkali halide remains as an impurity in the superconducting ceramic, resulting in superconducting This is because characteristics may be deteriorated.

前記アルカリハライドは、超伝導セラミックスからなる
薄膜を析出させた後、除去することが望ましい。
It is desirable that the alkali halide be removed after depositing a thin film of superconducting ceramics.

前記アルカリハライドの除去は、アルカリハライドを特
定の溶媒を用いて溶解除去するか、或いは表面に残留し
たアルカリハライドを研磨して除去する方法が望ましい
The alkali halide is preferably removed by dissolving the alkali halide using a specific solvent or by polishing the alkali halide remaining on the surface.

前記特定の溶媒は、アルカリハライドを溶解させるもの
であって、水或いは温水などが好適である。
The specific solvent is one that dissolves the alkali halide, and water, warm water, or the like is suitable.

本発明によれば、前記基材としては、融点が600℃以
上のものであることが望ましい。
According to the present invention, the base material preferably has a melting point of 600° C. or higher.

また、前記基材としては単結晶体或いは多結晶体の何れ
も使用することができ、特に単結晶体を基材として用い
る場合は、超伝導セラミックのエビタキシャル膜を容易
に成長させることができる。
Further, as the base material, either a single crystal or a polycrystal can be used, and especially when a single crystal is used as the base material, an epitaxial film of superconducting ceramic can be easily grown. .

前記基材としては、例えば、貴金属、貴金属含有合金、
あるいはA Q ,O,、cZro,、SiC,石英、
ムライト、MgO, SrTiO.などの単結晶体、或
いは多結晶体が好適であり、その形状は、基板状、テー
プ状もしくは繊維状の形態であることが望ましい.前記
AQ,O,、SiC,石英、ムライトなどを基材として
使用する場合にはその表面にTie,、MgO、cZr
o,, SrTiO,、貴金属或いは貴金属含有合金な
どをコーティングすることが望ましい。
Examples of the base material include noble metals, noble metal-containing alloys,
Or A Q , O, , cZro, , SiC, quartz,
Mullite, MgO, SrTiO. A single crystal or polycrystal such as is suitable, and the shape thereof is preferably a substrate-like, tape-like, or fibrous form. When using the above-mentioned AQ, O, SiC, quartz, mullite, etc. as a base material, the surface is coated with Tie, MgO, cZr.
It is desirable to coat with a noble metal or an alloy containing a noble metal.

また、本発明では、特に、MgO単結晶基板、IQ,O
,および銀製テーブを基材として好適に使用できる。
In addition, in the present invention, in particular, MgO single crystal substrate, IQ, O
, and silver tape can be suitably used as the base material.

更に、本発明においては、得られた超伝導セラミックス
が、低Tc相である場合、熱処理を施すことにより、こ
れをTc相とすることが好ましい。
Furthermore, in the present invention, when the obtained superconducting ceramic is in a low Tc phase, it is preferable to heat treat it to convert it into a Tc phase.

また前記熱処理の温度は、830℃〜860℃であるこ
とが望ましい。
Further, the temperature of the heat treatment is preferably 830°C to 860°C.

次に、本発明の実施例を詳細に説明する.(実施例) 実施例l (1)Bi,O.、PbO, SrCO,、CaCO,
、CuOを元素組成(モル比)、Bi:Pb:Ca:C
uを1.6:0,4:1.6:2,0:2.8の割合で
混合し、Bi系超伝導セラミックに換算して、1モルの
粉末にK(lを300モル混合し、これをアルミナるつ
ぼに入れて850℃で加熱し溶融液とした。
Next, embodiments of the present invention will be described in detail. (Example) Example 1 (1) Bi, O. , PbO, SrCO, , CaCO,
, CuO elemental composition (molar ratio), Bi:Pb:Ca:C
By mixing u in the ratio of 1.6:0, 4:1.6:2, 0:2.8, and mixing 300 moles of K (l) into 1 mole of powder in terms of Bi-based superconducting ceramic, This was placed in an alumina crucible and heated at 850°C to form a molten liquid.

(2)前記(1)で得られた溶融液にアルミナ基板を浸
潰した. (3)ついで、浸漬したまま700℃まで、1℃八wi
nで冷却し、その後は炉冷した。
(2) An alumina substrate was immersed in the melt obtained in (1) above. (3) Then, while immersed, heat the water to 700℃ for 1℃ 8wi.
It was then cooled in the furnace.

冷却過程において、Kiに溶解していたBi−Pb−C
a−Cuは、過飽和の状態に達し、アルミナ基板上に析
出し、超伝導薄膜が得られた。
During the cooling process, Bi-Pb-C dissolved in Ki
The a-Cu reached a state of supersaturation and was deposited on the alumina substrate, resulting in a superconducting thin film.

(4)さらに、前記長超伝導薄膜を水で洗浄し、残留し
ているKCQを溶解除去した。
(4) Furthermore, the long superconducting thin film was washed with water to dissolve and remove the remaining KCQ.

(5)前記(4)で得られた超伝導薄膜を845℃で2
00時間加熱処理した。
(5) The superconducting thin film obtained in (4) above was heated to 845°C for 2
Heat treatment was performed for 00 hours.

実施例2 (1)Bi,0,、PbO, SrCO,、Ca CO
 s、CuOを元素組成(モル比)、Bi:Pb:Ca
:Cuを1,6:0,4:1.6:2,0:2.8の割
合で混合し、800℃で12時間加熱した。得られた仮
焼体を粉砕し、Bi系超伝導セラミックに換算して、1
モルの粉末にNaC Qを200モル混合し、これをア
ルミナるつぼに入れて850℃で加熱し溶融液とした. (2)前記(1)で得られた溶融液に単結晶MgO(1
00)基板を浸漬した. (3)ついで、浸漬したまま700℃まで、0.56C
/winで冷却し、その後は炉冷した。
Example 2 (1) Bi,0,, PbO, SrCO,, Ca CO
s, CuO elemental composition (molar ratio), Bi:Pb:Ca
:Cu was mixed at a ratio of 1,6:0, 4:1.6:2, 0:2.8, and heated at 800°C for 12 hours. The obtained calcined body is crushed and converted into Bi-based superconducting ceramic.
200 moles of NaC Q was mixed with 1 mole of powder, and this was placed in an alumina crucible and heated at 850°C to form a molten liquid. (2) Single-crystal MgO (1
00) The substrate was immersed. (3) Next, the temperature was raised to 700°C while immersed at 0.56°C.
/win, and then furnace cooling.

冷却過程において、NaC Qに溶解していたBi−P
b−Sr−Ca−Cuは、過飽和の状態に達し、MgO
基板上に析出し、超伝導薄膜が得られた。
During the cooling process, Bi-P dissolved in NaC Q
b-Sr-Ca-Cu reaches a state of supersaturation and MgO
A superconducting thin film was obtained by depositing on the substrate.

(4)前記(3)で得られた超伝導薄膜の表面を研磨し
て、表面に残留していたNtaC Qを除去した。
(4) The surface of the superconducting thin film obtained in (3) above was polished to remove NtaC Q remaining on the surface.

(5)前記(4)で得られた超伝導薄膜を845℃で2
00時間加熱処理した。
(5) The superconducting thin film obtained in (4) above was heated to 845°C for 2
Heat treatment was performed for 00 hours.

実施例3 (1)Bi,O,、PbO, SrCO,、CaCO,
、CuOを元素組成(モル比)、Bi:Pb:Ca:C
uを1,6:0,4:1,6:2.0:2,8の割合で
混合し、800℃で12時間加熱した。得られた仮焼体
を粉砕し、Bi系超伝導セラミックに換算して,1モル
の粉末にKCQを200モル混合し、これをアルミナる
つぼに入れて850℃で加熱し溶融液とした。
Example 3 (1) Bi, O, , PbO, SrCO, , CaCO,
, CuO elemental composition (molar ratio), Bi:Pb:Ca:C
The mixture was mixed at a ratio of 1,6:0,4:1,6:2.0:2,8, and heated at 800°C for 12 hours. The obtained calcined body was pulverized, 200 mol of KCQ was mixed with 1 mol of powder in terms of Bi-based superconducting ceramic, and this was placed in an alumina crucible and heated at 850° C. to form a molten liquid.

(2)前記(1)で得られた溶融液に銀テープを浸漬し
た。
(2) A silver tape was immersed in the melt obtained in (1) above.

(3)ついで、浸漬したまま700℃まで、1℃/mi
nで冷却し、その後は炉冷した。
(3) Then, while immersed, raise the temperature to 700°C at 1°C/mi.
It was then cooled in the furnace.

冷却過程において、NaC Qに溶解していたBi−P
b−Sr−Ca−Cuは、過飽和の状態に達し、銀テー
プ表面上に析出して、超伝導テープが得られた。
During the cooling process, Bi-P dissolved in NaC Q
b-Sr-Ca-Cu reached a state of supersaturation and precipitated on the surface of the silver tape, resulting in a superconducting tape.

(4)前記(3)で得られた超伝導テープを水に浸漬し
、3時間放置することによりNaC Qを溶解除去した
(4) The superconducting tape obtained in (3) above was immersed in water and left to stand for 3 hours to dissolve and remove NaC Q.

(5)前記(4)で得られた超伝導テープを845℃で
200時間加熱処理した。
(5) The superconducting tape obtained in (4) above was heat-treated at 845° C. for 200 hours.

実施例4 (1)T A ,0,、BaCO,、CaCO,. C
uOを元素組成(モル比)T Q :Ba:Ca:Cu
lI2:2:2:3の割合で混合し、Tl系超伝導セラ
ミ.ツクに換算して1モルの粉末にKCfiを300モ
ル混合し、これをアルミナるつぼに入れて850℃で加
熱し、溶融液とした. (2)前記(1)で得られた溶融液にアルミナファイバ
ーを浸漬した. (3)ツいで、浸漬したまま、700℃まで、l℃八w
inで冷却し、その後は炉冷した. 冷却過程において、KCQに溶解していたT Q −B
a−Ca−Cuは、過飽和の状態に達し、アルミナファ
イバー表面に析出し、超伝導線材が得られた。
Example 4 (1) T A ,0,, BaCO,, CaCO, . C
uO as elemental composition (molar ratio) T Q :Ba:Ca:Cu
Tl-based superconducting ceramic was mixed at a ratio of lI2:2:2:3. 300 mol of KCfi was mixed with 1 mol of powder in terms of 1 mol of KCfi, and this was placed in an alumina crucible and heated at 850°C to form a molten liquid. (2) Alumina fibers were immersed in the melt obtained in (1) above. (3) While soaked, heat up to 700℃, l℃8w.
It was then cooled in a furnace. During the cooling process, T Q -B dissolved in KCQ
a-Ca-Cu reached a supersaturated state and precipitated on the surface of the alumina fiber, yielding a superconducting wire.

(4)超伝導線材を水中に浸漬し、3時間放置すること
によりKCQを溶解除去した。
(4) The superconducting wire was immersed in water and left to stand for 3 hours to dissolve and remove KCQ.

(5)前記(4)で得られた超伝導線材を845℃で1
80時間加熱処理した。
(5) The superconducting wire obtained in (4) above was heated to 845°C for 1
Heat treatment was performed for 80 hours.

前記実施例1〜4で得られた超伝導テープ、線材、及び
薄膜が形成された基板を一定長さに切断して、超伝導特
性測定試料片の温度をコントロールしながらゼロ磁界中
の電気抵抗の変化を測定した。
The superconducting tapes, wires, and substrates with thin films obtained in Examples 1 to 4 were cut to a certain length, and the electrical resistance in zero magnetic field was measured while controlling the temperature of the sample pieces for measuring superconducting properties. The change in was measured.

また、液体窒素中で電流密度を測定した。In addition, current density was measured in liquid nitrogen.

これらの結果を第1表に示した。These results are shown in Table 1.

第  1  表 実施例     l   2   3   4臨界温度
(K)   103   105   101   1
02(発明の効果) 以上述べたように、本発明によれば超伝導特性に優れた
超伝導薄膜や、超伝導セラミックス線材、或いは超伝導
セラミックステーブ、を簡単なブロセスで、特別な装置
を用いることなく、容易に製造することができ、得られ
たこれら超伝導体は、エレクトロニクス分野、エネルギ
ー分野、医療分野など各種の分野への実用性が高い材料
であり、工業的に有益である。
Table 1 Example l 2 3 4 Critical temperature (K) 103 105 101 1
02 (Effects of the Invention) As described above, according to the present invention, a superconducting thin film with excellent superconducting properties, a superconducting ceramic wire, or a superconducting ceramic stave can be produced in a simple process using a special device. These superconductors obtained are industrially useful materials that are highly practical in various fields such as electronics, energy, and medical fields.

Claims (6)

【特許請求の範囲】[Claims] 1.超伝導組成物とアルカリハライドの混合溶融物に基
材を接触させた後、徐冷することにより、基材表面に超
伝導セラミックスを析出させて超伝導セラミックスから
なる薄膜を形成することを特徴とする超伝導体の製造方
法。
1. The method is characterized in that the base material is brought into contact with a molten mixture of a superconducting composition and an alkali halide, and then slowly cooled to deposit superconducting ceramics on the surface of the base material to form a thin film made of superconducting ceramics. A method for manufacturing superconductors.
2.前記超伝導組成物は、アルカリハライドの溶融物に
可溶の化合物である請求項1記載の超伝導体の製造方法
2. 2. The method for producing a superconductor according to claim 1, wherein the superconducting composition is a compound soluble in a melt of alkali halide.
3.前記超伝導組成物は、Bi系或いはTl系超伝導組
成物である請求項1記載の超伝導体の製造方法。
3. 2. The method for producing a superconductor according to claim 1, wherein the superconducting composition is a Bi-based or Tl-based superconducting composition.
4.前記アルカリハライドは、KCl、LiCl及びN
aClから選ばれる少なくとも一種である請求項1記載
の超伝導体の製造方法。
4. The alkali halides include KCl, LiCl and N
The method for producing a superconductor according to claim 1, wherein the superconductor is at least one selected from aCl.
5.前記基材は、融点が600℃以上である請求項1記
載の超伝導体の製造方法。
5. The method for producing a superconductor according to claim 1, wherein the base material has a melting point of 600°C or higher.
6.前記基材は、基板状、テープ状もしくは繊維状であ
る請求項1記載の超伝導体の製造方法。
6. 2. The method for producing a superconductor according to claim 1, wherein the base material is in the form of a substrate, tape, or fiber.
JP1227426A 1989-09-04 1989-09-04 Superconductor manufacturing method Expired - Lifetime JP2822329B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1227426A JP2822329B2 (en) 1989-09-04 1989-09-04 Superconductor manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1227426A JP2822329B2 (en) 1989-09-04 1989-09-04 Superconductor manufacturing method

Publications (2)

Publication Number Publication Date
JPH0393607A true JPH0393607A (en) 1991-04-18
JP2822329B2 JP2822329B2 (en) 1998-11-11

Family

ID=16860665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1227426A Expired - Lifetime JP2822329B2 (en) 1989-09-04 1989-09-04 Superconductor manufacturing method

Country Status (1)

Country Link
JP (1) JP2822329B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08198700A (en) * 1995-01-19 1996-08-06 Nec Corp Production of thin film of thallium-containing superconductor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08198700A (en) * 1995-01-19 1996-08-06 Nec Corp Production of thin film of thallium-containing superconductor

Also Published As

Publication number Publication date
JP2822329B2 (en) 1998-11-11

Similar Documents

Publication Publication Date Title
JP2674979B2 (en) Superconductor manufacturing method
US5527765A (en) Superconducting YBa2 Cu3 O7-x produced at low temperatures
US4968663A (en) Ductile, single phase-continuous super-conducting oxide conductors
JPH0393607A (en) Production of superconductor
JPH10511926A (en) Low temperature preparation of melt textured YBCO superconductors (T below 950 ° C)
JP2822328B2 (en) Superconductor manufacturing method
JP2501281B2 (en) Method for producing superconductor with high critical current density
JP3889139B2 (en) Oxide superconductor containing silver and method for producing the same
JP2557882B2 (en) Method for growing superconducting oxide single crystal
Raina et al. Thin film growth of the 2122-phase of BCSCO superconductor with high degree of crystalline perfection
JP3053238B2 (en) Method for producing Bi-based oxide superconductor
Wong-Ng et al. Superconducting Phase Formation in Bi (Pb)-Sr-Ca-Cu-O Glasses: A Review
JP4153651B2 (en) Seed crystal of oxide superconducting material and manufacturing method of oxide superconducting material using the same
JP3607940B2 (en) Manufacturing method of oxide superconductor
JPH0782078A (en) Rare-earth metal oxide superconducting single crystal film and its production
JP3668510B2 (en) Method for producing Bi-based oxide superconductor
JPH08198700A (en) Production of thin film of thallium-containing superconductor
JPH0238359A (en) Production of superconductor
KR920003025B1 (en) Method of producing superconducting ceramic wire
JPH03112810A (en) Production of oxide superconducting film
Rao et al. Growth of CaLnBaCu3O7-delta (Ln= La, Pr and Nd) single crystals by the flux technique
JPH02252621A (en) Superconducting fibrous crystal and production thereof
JPH0818910B2 (en) Method for producing oxide superconducting single crystal
JPH02229787A (en) Production of oxide superconductor
JPH04295080A (en) Production of bi-containing oxide superconductor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070904

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080904

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080904

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090904

Year of fee payment: 11

EXPY Cancellation because of completion of term