JPH0810406B2 - Self-driving car - Google Patents

Self-driving car

Info

Publication number
JPH0810406B2
JPH0810406B2 JP63045466A JP4546688A JPH0810406B2 JP H0810406 B2 JPH0810406 B2 JP H0810406B2 JP 63045466 A JP63045466 A JP 63045466A JP 4546688 A JP4546688 A JP 4546688A JP H0810406 B2 JPH0810406 B2 JP H0810406B2
Authority
JP
Japan
Prior art keywords
vehicle body
wheels
distance
vehicle
measuring means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63045466A
Other languages
Japanese (ja)
Other versions
JPH01219907A (en
Inventor
▲しげる▼ 野崎
剛平 飯島
隆也 三隅
哲也 杉正
清 五百井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Kawasaki Motors Ltd
Original Assignee
Kansai Electric Power Co Inc
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Kawasaki Jukogyo KK filed Critical Kansai Electric Power Co Inc
Priority to JP63045466A priority Critical patent/JPH0810406B2/en
Publication of JPH01219907A publication Critical patent/JPH01219907A/en
Publication of JPH0810406B2 publication Critical patent/JPH0810406B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Platform Screen Doors And Railroad Systems (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、車体に設けられている車輪を操舵手段によ
つて操舵して、壁に沿つて予め定める軌跡を辿るように
走行する自動走行車に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an automatic vehicle that steers wheels provided on a vehicle body by a steering means and travels along a wall so as to follow a predetermined trajectory. .

従来の技術 典型的な先行技術では、車体が走行する軌跡に沿つて
誘導無線アンテナを設けておき、このアンテナからの信
号を車体において受信して操舵を行なつている。
2. Description of the Related Art In a typical prior art, an inductive wireless antenna is provided along a trajectory of a vehicle body, and a vehicle receives a signal from this antenna to perform steering.

このような先行技術では、軌跡に沿つて誘導無線アン
テナを付設しなければならず、設備費がかさむととも
に、そのような誘導無線アンテナを付設することが困難
である場所では実施することができない。
In such a prior art, it is necessary to attach an inductive wireless antenna along the locus, which increases equipment costs and cannot be implemented in a place where it is difficult to attach such an inductive wireless antenna.

他の先行技術では、車体の走行すべき目標軌跡とし
て、レーザ光などの光経路を設け、この光経路に沿つて
車体が走行するように、操舵を行なう。
In another prior art, an optical path such as a laser beam is provided as a target trajectory for the vehicle body to travel, and steering is performed so that the vehicle body travels along the optical path.

発明が解決しようとする課題 このような先行技術では、車体が走行すべき軌跡に沿
つて光経路を形成しなければならず、設備費がかさむと
ともに、光は直進するので、屈曲した軌跡を形成するこ
とが困難である。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention In such a prior art, a light path must be formed along a path along which a vehicle body should travel, which increases equipment costs and causes light to go straight, thus forming a curved path. Difficult to do.

さらに他の先行技術として、特開昭60-117168がある
けれども、送受信器を車体上で回転駆動するものであ
り、したがつて可動部分を有し、耐久性などの点で劣
る。
As another prior art, there is JP-A-60-117168, but the transmitter / receiver is rotationally driven on the vehicle body, and therefore has moving parts and is inferior in durability.

本発明の目的は、構成が簡単であり、希望する軌跡を
辿つて車体を走行させることができる自動走行車を提供
することである。
An object of the present invention is to provide an automatic vehicle having a simple structure and capable of traveling a vehicle body by following a desired trajectory.

課題を解決するための手段 本発明は、車体1の前方側の左右に角変位して操舵可
能な車輪W1,W2が設けられるとともに、後方側の左右に
角変位して操舵可能な車輪W3,W4が設けられる移動走行
車において、 車体1の前後の左右にそれぞれ固着され、車体1から
外側方の壁までの距離を測定する超音波距離測定手段S1
〜S4と、 超音波距離測定手段S1〜S4の出力に応答し、前方側の
左右の検出距離を1,l2とし、後方側の左右の検出距離
をl3,l4とし、前後の超音波距離測定手段S1,S2;S3,S4間
の車体1の軸線4に沿う距離をLとするとき、 を求め、車体1の軌跡に対応する予め定める距離をy1と
し、Gr,Gθを予め定める定数とするとき、前輪W1,W2の
操舵角Sf、 Sf=Gy(y1−y)−Gθ・sinθ および後輪W3,W4の操舵角Sr、 Sr=Gy(y1−y)+Gθ・sinθ を演算する手段7,9,14,15,16と、 演算手段7,9,14,15,16の出力に応答し、前方側の左右
の車輪W1,W2を操舵するとともに、後方の左右の車輪W3,
W4を操舵する手段8とを含むことを特徴とする自動走行
車である。
Means for Solving the Problems The present invention is provided with wheels W1 and W2 that can be steered by laterally displacing to the front side of a vehicle body 1, and wheels W3 and W3 that can be steered by displacing to the left and right sides at the rear. In a mobile vehicle equipped with W4, ultrasonic distance measuring means S1 fixed to the front, rear, left and right of the vehicle body 1 and measuring the distance from the vehicle body 1 to the outer wall
~ S4 and the output of ultrasonic distance measuring means S1 ~ S4, the front left and right detection distance is set to 1, l2, the rear left and right detection distance is set to l3, l4, front and back ultrasonic distance measurement When the distance between the means S1, S2; S3, S4 along the axis 4 of the vehicle body 1 is L, When y1 is a predetermined distance corresponding to the trajectory of the vehicle body 1 and Gr and Gθ are constants, a steering angle Sf of the front wheels W1 and W2, Sf = Gy (y1−y) −Gθ · sinθ and Means 7,9,14,15,16 for calculating steering angles Sr, Sr = Gy (y1−y) + Gθ ・ sinθ of rear wheels W3, W4 and outputs of calculation means 7,9,14,15,16 In response, the front left and right wheels W1, W2 are steered, while the rear left and right wheels W3, W2,
An automatic vehicle including means 8 for steering W4.

また本発明は、車体1の前方側の左右に角変位して操
舵可能な車輪W1,W2が設けられるとともに、後方側の左
右に角変位して操舵可能な車輪W3,W4が設けられる移動
走行車において、 車体1の前後の右に固着され、車体1から外側方の壁
までの距離を測定する超音波距離測定手段S2,S4と、 超音波距離測定手段S2,S4の出力に応答し、前方側の
右の検出距離をl2とし、後方側の右の検出距離をl4と
し、前後の超音波距離測定手段S2,S4間の車体1の軸線
4に沿う距離をLとし、車体1の軸線4に垂直な方向の
予め定める距離をWとするとき、 を求め、車体1の軌跡に対応する予め定める距離をyr1
とし、Gy,Gθを予め定める定数とするとき、前輪W1,W2
の操舵角Sf、 Sf=Gy(−yr1+yr)−Gθ・sinθ および後輪W3,W4の操舵角Sr、 Sr=Gy(−yr1+yr)+Gθ・sinθ を演算する演算手段7,9,14,15,16と、 演算手段7,9,14,15,16の出力に応答し、前方側の左右
の車輪W1,W2を操舵するとともに、後輪の左右の車輪W3,
W4を操舵する手段8とを含むことを特徴とする自動走行
車である。
The present invention is also directed to traveling traveling in which wheels W1 and W2 that are angularly displaced to the left and right on the front side of the vehicle body 1 are provided, and wheels W3 and W4 that are angularly displaced to the left and right are provided to be steered. In the vehicle, in response to the outputs of the ultrasonic distance measuring means S2, S4 and the ultrasonic distance measuring means S2, S4 that are fixed to the front and rear right of the vehicle body 1 and measure the distance from the vehicle body 1 to the outer wall, The front right detection distance is l2, the rear right detection distance is l4, the distance between the front and rear ultrasonic distance measuring means S2, S4 along the axis 4 of the vehicle body 1 is L, and the axis line of the vehicle body 1 is When a predetermined distance in the direction perpendicular to 4 is W, And determine a predetermined distance corresponding to the trajectory of the car body 1 as yr1
And Gy and Gθ are predetermined constants, the front wheels W1, W2
Steering means Sf, Sf = Gy (−yr1 + yr) −Gθ · sinθ, and steering angles Sr, Sr = Gy (−yr1 + yr) + Gθ · sinθ of the rear wheels W3, W4, calculating means 7,9,14,15, 16 and in response to the outputs of the computing means 7, 9, 14, 15, 16 and steer the front left and right wheels W1, W2, and the rear left and right wheels W3,
An automatic vehicle including means 8 for steering W4.

また本発明は、車体1の前方側の左右に角変位して操
舵可能な車輪W1,W2が設けられるとともに、後方側の左
右に角変位して操舵可能な車輪W3,W4が設けられる移動
走行車において、 車体1の前後の左に固着され、車体1から外側方の壁
までの距離を測定する超音波距離測定手段S1,S3と、 超音波距離測定手段S1,S3の出力に応答し、前方側の
右の検出距離を1とし、後方側の右の検出距離をl3と
し、前後の超音波距離測定手段S1,S3間の車体1の軸線
4に沿う距離をLとし、車体1の軸線4に垂直な方向の
予め定める距離をWとするとき、 を求め、車体1の軌跡に対応する予め定める距離をy
1とし、Gy,Gθを予め定める定数とするとき、前輪W1,W
2の操舵角Sf、 Sf=Gy(y1−yl)−Gθ・sinθ および後輪W3,W4の操舵角Sr、 Sr=Gy(y1−yl)+Gθ・sinθ を演算する演算手段7,9,14,15,16と、 演算手段7,9,14,15,16の出力に応答し、前方側の左右
の車輪W1,W2を操舵するとともに、後方の左右の車輪W3,
W4を操舵する手段8とを含むことを特徴とする自動走行
車である。
The present invention is also directed to traveling traveling in which wheels W1 and W2 that are angularly displaced to the left and right on the front side of the vehicle body 1 are provided, and wheels W3 and W4 that are angularly displaced to the left and right are provided to be steered. In the vehicle, in response to the outputs of the ultrasonic distance measuring means S1 and S3 that are fixed to the front and rear left of the vehicle body 1 and measure the distance from the vehicle body 1 to the outer wall, and the ultrasonic distance measuring means S1 and S3, The front right detection distance is 1, the right rear detection distance is l3, the distance between the front and rear ultrasonic distance measuring means S1, S3 along the axis 4 of the vehicle body 1 is L, and the axis line of the vehicle body 1 is When a predetermined distance in the direction perpendicular to 4 is W, And a predetermined distance corresponding to the locus of the vehicle body 1 is determined by y
1 and Gy, Gθ are predetermined constants, the front wheels W1, W
Calculation means 7,9,14 for calculating the steering angle Sf of 2 and the steering angle Sr of the rear wheels W3 and W4 and Sf = Gy (y1-yl) -Gθ · sinθ , 15, 16 and in response to the outputs of the computing means 7, 9, 14, 15, 16 and steer the front left and right wheels W1, W2, and the rear left and right wheels W3,
An automatic vehicle including means 8 for steering W4.

作用 本発明に従えば、超音波距離測定手段が車体の前・後
の左右に合計4つそれぞれ固着されており、構成が極め
て簡単である。しかもこの距離測定手段は、車体から外
側方の壁までの距離を測定するものであり、したがつて
壁から予め定めた距離を隔てるなどして、操舵を行なう
ことができ、たとえば複雑に屈曲した軌跡を辿つて自動
走行することができる。
Action According to the present invention, a total of four ultrasonic distance measuring means are fixed to the front and rear sides of the vehicle body, respectively, and the configuration is extremely simple. Moreover, this distance measuring means measures the distance from the vehicle body to the outer side wall, so that it is possible to perform steering by separating a predetermined distance from the wall, and for example, to make a complicated bend. It is possible to drive automatically by following the trajectory.

実施例 第1図は、本発明の一実施例の車体1の簡略化した平
面図である。車体1には進行方向2の前方側の左右に車
輪W1,W2が設けられ、後方側の左右には車輪W3,W4がそれ
ぞれ設けられる。これらの車輪W1〜W4のうち、前輪W1,W
2は角変位して操舵することができる。前輪W1,W2または
後輪W3,W4は、駆動手段3によつて駆動され、これによ
つて自走することができる。車体1の前・後の左右に
は、超音波距離測定手段S1〜S4がそれぞれ固定される。
車体1の参照符Gは、車輪W1〜W4の路面との接触位置を
頂点とする仮想長方形の図心を通る鉛直線上にあり、ま
た距離測定手段S1〜S4を頂点とする仮想長方形の図心を
通る鉛直線上にある。車体1の軸線4は、参照符Gを通
り、左側の距離測定手段S1,S3を通る仮想直線、および
距離測定手段S2,S4を通る仮想直線にそれぞれ平行であ
る。
Embodiment FIG. 1 is a simplified plan view of a vehicle body 1 according to an embodiment of the present invention. The vehicle body 1 is provided with wheels W1 and W2 on the front left and right sides in the traveling direction 2, and wheels W3 and W4 are provided on the rear left and right sides, respectively. Of these wheels W1-W4, the front wheels W1, W
2 can be steered by angular displacement. The front wheels W1, W2 or the rear wheels W3, W4 are driven by the driving means 3 and can travel by themselves. Ultrasonic distance measuring means S1 to S4 are fixed to the left and right of the front and rear of the vehicle body 1, respectively.
The reference mark G of the vehicle body 1 is on a vertical line passing through the centroid of the virtual rectangle whose vertexes are the contact positions of the wheels W1 to W4, and the centroid of the virtual rectangle whose vertexes are the distance measuring means S1 to S4. It is on a vertical line passing through. The axis line 4 of the vehicle body 1 is parallel to the virtual straight line passing through the reference sign G and passing through the left distance measuring means S1 and S3 and the virtual straight line passing through the distance measuring means S2 and S4.

車体1の前左部に取付けられている距離測定手段S1
は、車体1の外側方に軸線5を中心として前後に角度α
/2だけ広がりをもつて超音波を発射し、壁6からの反射
波を検出し、これによつて距離測定手段S1と壁6との最
短距離を測定する。
Distance measuring means S1 attached to the front left part of the vehicle body 1
Is an angle α on the outside of the vehicle body 1 in the front-rear direction about the axis 5.
Ultrasonic waves are emitted with a spread of / 2, and the reflected wave from the wall 6 is detected, whereby the shortest distance between the distance measuring means S1 and the wall 6 is measured.

第2図を参照して、距離測定手段S1は第2図(1)で
示される超音波信号を外側方に発射させる。反射波は距
離測定手段S1によつて第2図(2)で示されるように時
間T1だけ遅れて受信される。この時間T1に対応した距離
測定手段S1と壁6との間の最短距離を、上述のように検
出測定する。残余の距離測定手段S2〜S4もまた、前述の
距離測定手段S1と同様な構成を有し、車体1の外側方に
向けて超音波を発生して距離を測定する。
Referring to FIG. 2, the distance measuring means S1 emits the ultrasonic signal shown in FIG. 2 (1) to the outside. The reflected wave is received by the distance measuring means S1 with a delay of time T1 as shown in FIG. 2 (2). The shortest distance between the distance measuring means S1 and the wall 6 corresponding to this time T1 is detected and measured as described above. The remaining distance measuring means S2 to S4 also have the same configuration as the above-mentioned distance measuring means S1 and generate ultrasonic waves toward the outer side of the vehicle body 1 to measure the distance.

第3図は、第1図に示された実施例の電気的構成を示
すブロツク図である。距離測定手段S1〜S4の出力は演算
回路7に入力され、この演算結果に基づき前輪W1,W2は
操舵手段8によつて操舵され、これによつて設定回路9
において設定された軌跡を辿つて車体1が走行する。
FIG. 3 is a block diagram showing the electrical construction of the embodiment shown in FIG. The outputs of the distance measuring means S1 to S4 are input to the arithmetic circuit 7, and the front wheels W1, W2 are steered by the steering means 8 based on the arithmetic result, whereby the setting circuit 9 is set.
The vehicle body 1 travels along the trajectory set in.

第4図は車体1が壁6,6a間を走行する状態を示す水平
断面図であり、第5図はその縦断面図である。車体1の
車輪W1〜W4は、壁6,6a間の路面10上を走行する。左右の
壁6,6a間の中心線は参照符11で示されており、この中心
線11と、車体1の参照符Gとの間の距離yは距離測定手
段S1〜S4によつて検出される壁6,6aまでの距離を1〜
l4とするとき、第1式で示される。
FIG. 4 is a horizontal sectional view showing a state where the vehicle body 1 travels between the walls 6 and 6a, and FIG. 5 is a vertical sectional view thereof. The wheels W1 to W4 of the vehicle body 1 travel on the road surface 10 between the walls 6 and 6a. The center line between the left and right walls 6, 6a is indicated by reference numeral 11, and the distance y between this center line 11 and the reference numeral G of the vehicle body 1 is detected by the distance measuring means S1 to S4. The distance to the wall 6,6a
When it is set to l4, it is shown by the first equation.

車体1の参照符Gを通る軸線4と壁6,6aの中心線11と
のなす角度θは第2式で示されるとおりである。
The angle θ formed by the axis 4 passing through the reference sign G of the vehicle body 1 and the center line 11 of the walls 6, 6a is as shown in the second equation.

ここでLは、距離測定手段S1,S3間の車体1の軸線4
に沿う距離であり、この距離Lは距離測定手段S2,S4間
の車体1の軸線4に沿う距離に等しい。なお第1図では
距離測定手段S1,S2間の車体位置の軸線4に垂直方向の
距離はWで示され、この距離Wは距離測定手段S3,S4間
の車体位置の軸線4に垂直方向の距離に等しい。
Here, L is the axis 4 of the vehicle body 1 between the distance measuring means S1 and S3.
The distance L is equal to the distance along the axis 4 of the vehicle body 1 between the distance measuring means S2, S4. In FIG. 1, the distance in the direction perpendicular to the vehicle body position axis 4 between the distance measuring means S1 and S2 is indicated by W, and this distance W is perpendicular to the vehicle body position axis 4 between the distance measuring means S3 and S4. Equal to the distance.

第6図は右側の壁6aだけが存在するときにおける車体
1の走行状態を示す水平断面図であり、第7図はその縦
断面図である。車体1の参照符Gと右側の壁6aとの間の
距離yrは第3式で示されるとおりである。
FIG. 6 is a horizontal sectional view showing a traveling state of the vehicle body 1 when only the right side wall 6a is present, and FIG. 7 is a vertical sectional view thereof. The distance yr between the reference mark G of the vehicle body 1 and the wall 6a on the right side is as shown by the third equation.

車体1の軸線4と壁6aとのなす角度θは第4式で示さ
れるとおりである。
The angle θ formed by the axis 4 of the vehicle body 1 and the wall 6a is as shown in the fourth equation.

第8図は車体1の左側の壁6だけが存在するときにお
ける車体1の走行状態を示す水平断面図であり、第9図
はその縦断面図である。車体1の参照符Gと壁6との間
の距離ylは第5式で示されるとおりであり、その車体1
の軸線4と壁6とのなす角度θは第6式に示されるとお
りである。
FIG. 8 is a horizontal sectional view showing a traveling state of the vehicle body 1 when only the left side wall 6 of the vehicle body 1 is present, and FIG. 9 is a longitudinal sectional view thereof. The distance yl between the reference mark G of the vehicle body 1 and the wall 6 is as shown in the fifth equation.
The angle θ between the axis 4 and the wall 6 is as shown in the sixth equation.

演算回路7(第3図参照)は、距離測定手段S1〜S4か
らの出力に応答して、左右に壁6,6aが存在するときに
は、第1式および第2式の演算を行ない、また車体1の
右側のみに壁6aが存在するときには前述の第3式および
第4式の演算を行ない、車体1の左側に壁6のみが存在
するときには第5式および第6式の演算を行なう。この
ようにして距離y,yr,ylを演算するとともにsinθを演算
して求める。
The arithmetic circuit 7 (see FIG. 3) performs the arithmetic operations of the first and second equations when the walls 6 and 6a are present on the left and right in response to the outputs from the distance measuring means S1 to S4, and When the wall 6a exists only on the right side of 1, the above-described calculations of the third and fourth expressions are performed, and when only the wall 6 exists on the left side of the vehicle body 1, the calculations of the fifth and sixth expressions are performed. In this way, the distances y, yr and yl are calculated and sin θ is calculated.

車体1の予め定める目標軌跡に対応する距離yref,yr
1,y1は設定回路9から導出され、演算回路7からの
検出された距離y,yr,ylとは引算回路13において引算さ
れ、ゲインGyを有する増幅回路14に与えられる。演算回
路7からのsinθを表わす信号はゲインGθを有する増
幅回路15に与えられる。増幅回路14,15の出力は引算回
路16に与えられる。これによつて操舵角sを表わす信号
を操舵手段8に与える。操舵手段8は車輪W1,W2を角変
位して操舵を行なう。ここでいう操舵角sは、第1図に
示されるようにたとえば車輪W1の車軸に垂直な平面が車
体1の軸線4と成す角度をいう。
Distance yref, yr corresponding to the predetermined target trajectory of vehicle body 1
1, y1 is derived from the setting circuit 9, subtracted from the detected distances y, yr, yl from the arithmetic circuit 7 in a subtraction circuit 13, and given to an amplifier circuit 14 having a gain Gy. A signal representing sin θ from the arithmetic circuit 7 is given to the amplifier circuit 15 having a gain Gθ. The outputs of the amplifier circuits 14 and 15 are given to the subtraction circuit 16. As a result, a signal representing the steering angle s is given to the steering means 8. The steering means 8 carries out steering by angularly displacing the wheels W1 and W2. The steering angle s referred to here is, for example, the angle formed by a plane perpendicular to the axle of the wheel W1 with the axis 4 of the vehicle body 1 as shown in FIG.

こうして前述の第4図および第5図に示されるように
車体1が左右の壁6,6a間で走行する場合、第1式および
第2式に基づき、操舵角sが第7式のように求められ
る。ここで第4図および第5図のように、車体1の軌跡
に対応する距離y1は壁6,6a間の中心線11からの距離を表
わす。
Thus, when the vehicle body 1 travels between the left and right walls 6 and 6a as shown in FIG. 4 and FIG. 5 described above, the steering angle s is expressed by the equation 7 based on the equations 1 and 2. Desired. Here, as shown in FIGS. 4 and 5, the distance y1 corresponding to the locus of the vehicle body 1 represents the distance from the center line 11 between the walls 6 and 6a.

s=Gr(y1−y)−Gθ・sinθ …(7) また前述のように第6図および第7図に示されるよう
に車体1の右側にのみ壁6aがある場合、第8式の演算が
行なわれて操舵角sが求められる。
s = Gr (y1−y) −Gθ · sinθ (7) As described above, when the wall 6a is present only on the right side of the vehicle body 1 as shown in FIGS. 6 and 7, the calculation of the equation 8 is performed. And the steering angle s is obtained.

s=Gy(−yr1+yr)−Gθ・sinθ …(8) ここで車体1の軌跡を表わす距離yr1は壁6aからの距離
である。
s = Gy (−yr1 + yr) −Gθ · sinθ (8) Here, the distance yr1 representing the locus of the vehicle body 1 is the distance from the wall 6a.

さらにまた第8図および第9図に示されるように車体
1の左側にのみ壁6がある場合、その壁6からの距離y
1を設定することによつて第9式で示される操舵角s
が得られる。
Furthermore, when there is a wall 6 only on the left side of the vehicle body 1 as shown in FIGS. 8 and 9, the distance y from the wall 6 is y.
By setting 1, the steering angle s expressed by the equation 9
Is obtained.

s=Gr(y1−yl)−Gθ・sinθ …(9) 本発明の他の実施例として前輪W1,W2を操舵すること
ができるように構成するだけでなく、さらに、後輪W3,W
4もまた操舵手段8によつて操舵するように構成するこ
とも可能である。この場合、第13図に示されるように予
め定める目標とする軌跡20に沿つて車体1を走行させる
ために前輪W1,W2は操舵角Sfだけ角変位し、後輪W3,W4は
操舵角Srだけ角変位させ、車体1の軸線4に平行な直線
に関して左側の角変位を正とし、右側の角変位を負とし
て、操舵角Sf,Srを演算して求める。第13図(1)は、
車体1の軸線4と目標とする軌跡20とのなす角度θがほ
ぼ零であるときの状態を示す。第13図(2)は、車体1
の参照符Gが目標とする軌跡20上にごく近接している状
態を示す。第13図(3)および第13図(4)は、車体1
が目標とする軌跡20から離れているときの操舵状態を示
す。車輪W1〜W4が前輪W1,W2と後輪W3,W4との2つの各対
毎に個別に操舵されるように構成することによつて、前
輪W1,W2だけで操舵を行なう場合よりも、良好な制御性
が得られる。
s = Gr (y1−yl) −Gθ · sinθ (9) As another embodiment of the present invention, not only the front wheels W1 and W2 can be steered but also rear wheels W3 and W3
The 4 can also be configured to be steered by the steering means 8. In this case, as shown in FIG. 13, the front wheels W1, W2 are angularly displaced by the steering angle Sf and the rear wheels W3, W4 are steered by the steering angle Sr in order to drive the vehicle body 1 along the predetermined target locus 20. Then, the steering angles Sf and Sr are calculated by setting the left side angular displacement as positive and the right side angular displacement as negative with respect to the straight line parallel to the axis 4 of the vehicle body 1. Figure 13 (1) shows
The state where the angle θ formed by the axis 4 of the vehicle body 1 and the target locus 20 is substantially zero is shown. FIG. 13 (2) shows a vehicle body 1
The reference mark G in FIG. 13 (3) and 13 (4) show the vehicle body 1.
Shows the steering state when is away from the target locus 20. By configuring the wheels W1 to W4 to be individually steered for each two pairs of the front wheels W1 and W2 and the rear wheels W3 and W4, compared to the case where steering is performed only by the front wheels W1 and W2. Good controllability is obtained.

前述の第4図、第5図および第10図に示されるように
左右の壁6,6a間を走行するとき、前輪W1,W2の操舵角Sf
は第10式で示されるように、また後輪W3,W4の操舵角Sr
は第11式で示されるように演算される。
When traveling between the left and right walls 6, 6a as shown in FIGS. 4, 5, and 10 above, the steering angle Sf of the front wheels W1, W2 is
Is the steering angle Sr of the rear wheels W3 and W4, as shown in equation 10.
Is calculated as shown in Equation 11.

Sf=Gy(y1−y)−Gθ・sinθ …(10) Sr=Gy(y1−y)+Gθ・sinθ …(11) また第6図、第7図および第11図で示されるように車
体1の右側にのみ壁6aがあるとき、前輪W1,W2の操舵角S
fは第12式で示されるように、また後輪W3,W4の操舵角Sr
は第13式で示されるように演算される。
Sf = Gy (y1−y) −Gθ · sinθ (10) Sr = Gy (y1−y) + Gθ · sinθ (11) Further, as shown in FIG. 6, FIG. 7 and FIG. When there is a wall 6a only on the right side of, the steering angle S of the front wheels W1, W2
f is the steering angle Sr of the rear wheels W3 and W4, as shown in Equation 12.
Is calculated as shown in Equation 13.

Sf=Gy(−yr1+yr)−Gθ・sinθ …(12) Sr=Gy(−yr1+yr)+Gθ・sinθ …(13) さらにまた第8図、第9図および第12図で示されるよ
うに車体1の左側にのみ壁6が存在するとき、前輪W1,W
2の操舵角Sfは第14式で示されるように、また後輪W3,W4
の操舵角Srは第15式で示されるように操舵される。
Sf = Gy (−yr1 + yr) −Gθ · sinθ (12) Sr = Gy (−yr1 + yr) + Gθ · sinθ (13) Further, as shown in FIG. 8, FIG. 9 and FIG. When the wall 6 exists only on the left side, the front wheels W1, W
The steering angle Sf of 2 is as shown in Formula 14, and the rear wheels W3, W4
The steering angle Sr of is steered as shown in Expression 15.

Sf=Gy(y1−yl)−Gθ・sinθ …(14) Sr=Gy(y1−yl)+Gθ・sinθ …(15) こうして車体1を希望する軌跡に沿つて走行させるこ
とができるようになる。
Sf = Gy (y1-yl) -G [theta] .sin [theta] (14) Sr = Gy (y1-yl) + G [theta] sin [theta] (15) Thus, the vehicle body 1 can be made to travel along the desired trajectory.

本発明は、たとえば水路内でその水路を清掃するロボ
ツトなどに関連して実施されるだけでなく、その他広範
囲に実施することができる。
The invention can be implemented not only in the context of, for example, a robot for cleaning a channel in a channel, but also in a wide range of other applications.

発明の効果 以上のように本発明によれば、簡単な構成で屈曲した
予め定める軌跡に車体を走行させることが容易に可能に
なる。
EFFECTS OF THE INVENTION As described above, according to the present invention, it is possible to easily drive the vehicle body along a predetermined trajectory that is bent with a simple configuration.

特に本発明によれば、たとえば全没した水路内を走行
する作業台車などの自動走行車において、超音波距離測
定手段S1〜S4を、車体1の前後の左右、前後の右、また
は前後の左に固着して距離1〜l4を検出し、移動走行
制御を高い信頼性で作成することができる。さらに本発
明では、前後の左右の車輪のいずれもが操舵可能とされ
ることによつて、車体の向きを変えることなく、位置の
移動が可能であり、すなわち横方向への移動が可能とな
り、このことはたとえば水中での流れのある場所でのロ
ボツト作業などに、特に本発明は好適に実施することが
できるものである。またこのように車体の向きを変えな
いことによつて、水中で走行する場合、水の流れがあつ
ても、車体が受ける水の流れによる力は一定の方向とな
り、好都合であり、また上述のように横移動が可能であ
るので、4つの車輪が、床面がたとえば凹んだ円弧状に
なつていても、その床から浮いてしまわず、安定した走
行が可能であるという効果もまた、達成することができ
るのである。
In particular, according to the present invention, the ultrasonic distance measuring means S1 to S4 are provided to the front and rear left and right of the vehicle body 1, the front and rear right, or the front and rear left in an automatic traveling vehicle such as a work carriage traveling in a completely submerged waterway. It is possible to create a highly reliable mobile travel control by fixing the distance to 1 to 14 by detecting the distance. Further, in the present invention, since both the front and rear wheels can be steered, the position can be moved without changing the direction of the vehicle body, that is, the lateral movement is possible. This makes it possible to carry out the present invention preferably, for example, for robot work in a place where there is a flow of water. Further, by not changing the orientation of the vehicle body in this way, when traveling underwater, even if there is a flow of water, the force due to the flow of water received by the vehicle body is in a constant direction, which is convenient and Therefore, even if the four wheels have a concave arc shape on the floor, the four wheels do not float up from the floor and the stable running is also achieved. You can do it.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例の車体1の簡略化した平面
図、第2図は距離測定手段S1の動作を説明するための波
形図、第3図は第1図で示された実施例の電気的構成を
示すブロツク図、第4図は車体1が壁6,6a間を走行する
状態を示す水平断面図、第5図はその縦断面図、第6図
は右側の壁6aだけが存在するときにおける車体1の走行
状態を示す水平断面図、第7図はその縦断面図、第8図
は車体1の左側の壁6だけが存在するときにおける車体
1の走行状態を示す水平断面図、第9図はその縦断面
図、第10図は前述の第4図および第5図のように車体1
の両側に壁6,6aが存在するときの走行状態を示す水平断
面図、第11図は第6図および第7図のように車体1の右
側にのみ壁6aが存在するときの走行状態を示す水平断面
図、第12図は第8図および第9図に示されるように車体
1の左側にのみ壁6が存在するときの走行状態を示す水
平断面図、第13図は走行方向の前輪W1,W2だけでなく、
後輪W3,W4をも操舵して走行を行なう本発明の他の実施
例の簡略化した平面図である。 1……車体、2……走行方向、3……駆動手段、4……
軸線、6,6a……壁、7……演算回路、8……操舵手段、
9……設定回路、14,15……増幅回路、W1〜W4……車
輪、S1〜S4……距離測定手段
FIG. 1 is a simplified plan view of a vehicle body 1 according to an embodiment of the present invention, FIG. 2 is a waveform diagram for explaining the operation of the distance measuring means S1, and FIG. 3 is an embodiment shown in FIG. A block diagram showing an electrical configuration of the example, FIG. 4 is a horizontal sectional view showing a state where the vehicle body 1 travels between the walls 6 and 6a, FIG. 5 is a longitudinal sectional view thereof, and FIG. 6 shows only the right wall 6a. 7 is a horizontal sectional view showing a traveling state of the vehicle body 1 in the presence of a vehicle, FIG. 7 is a vertical sectional view thereof, and FIG. 8 is a horizontal sectional view showing a traveling state of the vehicle body 1 when only the left wall 6 of the vehicle body 1 is present. A sectional view, FIG. 9 is a longitudinal sectional view thereof, and FIG. 10 is a vehicle body 1 as shown in FIG. 4 and FIG.
Fig. 11 is a horizontal sectional view showing a traveling state when the walls 6 and 6a are present on both sides of the vehicle. Fig. 11 shows a traveling state when the wall 6a is present only on the right side of the vehicle body 1 as shown in Figs. 6 and 7. FIG. 12 is a horizontal sectional view showing the traveling state when the wall 6 exists only on the left side of the vehicle body 1 as shown in FIGS. 8 and 9, and FIG. 13 is a front wheel in the traveling direction. Not only W1 and W2
FIG. 11 is a simplified plan view of another embodiment of the present invention in which the rear wheels W3 and W4 are also steered for traveling. 1 ... vehicle body, 2 ... running direction, 3 ... driving means, 4 ...
Axis, 6,6a ... Wall, 7 ... Arithmetic circuit, 8 ... Steering means,
9 ... Setting circuit, 14,15 ... Amplifying circuit, W1-W4 ... Wheels, S1-S4 ... Distance measuring means

───────────────────────────────────────────────────── フロントページの続き (72)発明者 三隅 隆也 兵庫県明石市川崎町1番1号 川崎重工業 株式会社明石工場内 (72)発明者 杉正 哲也 兵庫県明石市川崎町1番1号 川崎重工業 株式会社明石工場内 (72)発明者 五百井 清 兵庫県明石市川崎町1番1号 川崎重工業 株式会社明石工場内 (56)参考文献 特開 昭59−140520(JP,A) 特開 昭62−105206(JP,A) 特開 昭62−221707(JP,A) 実開 昭58−101205(JP,U) 実開 昭59−122607(JP,U) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takaya Misumi 1-1 Kawasaki-cho, Akashi-shi, Hyogo Kawasaki Heavy Industries Ltd. Akashi factory (72) Inventor Tetsuya Sugimasa 1-1 Kawasaki-cho, Akashi-shi, Hyogo Kawasaki Heavy Industry Co., Ltd. Akashi Factory (72) Inventor Kiyoi 500 No. 1-1 Kawasaki-cho, Akashi City, Hyogo Prefecture Kawasaki Heavy Industries Co., Ltd. Akashi Factory (56) Reference JP 59-140520 (JP, A) JP 62 -105206 (JP, A) JP 62-221707 (JP, A) Actually opened 58-101205 (JP, U) Actually opened 59-122607 (JP, U)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】車体1の前方側の左右に角変位して操舵可
能な車輪W1,W2が設けられるとともに、後方側の左右に
角変位して操舵可能な車輪W3,W4が設けられる移動走行
車において、 車体1の前後の左右にそれぞれ固着され、車体1から外
側方の壁までの距離を測定する超音波距離測定手段S1〜
S4と、 超音波距離測定手段S1〜S4の出力に応答し、前方側の左
右の検出距離を1,l2とし、後方側の左右の検出距離を
l3,l4とし、前後の超音波距離測定手段S1,S2;S3,S4間の
車体1の軸線4に沿う距離をLとするとき、 を求め、車体1の軌跡に対応する予め定める距離をy1と
し、Gr,Gθを予め定める定数とするとき、前輪W1,W2の
操舵角Sf、 Sf=Gy(y1−y)−Gθ・sinθ および後輪W3,W4の操舵角Sr、 Sr=Gy(y1−y)+Gθ・sinθ を演算する手段7,9,14,15,16と、 演算手段7,9,14,15,16の出力に応答し、前方側の左右の
車輪W1,W2を操舵するとともに、後方の左右の車輪W3,W4
を操舵する手段8とを含むことを特徴とする自動走行
車。
1. A traveling vehicle in which front and rear wheels W1 and W2 of the vehicle body 1 that are angularly displaced to the left and right are provided, and wheels W3 and W4 that are laterally displaced to the rear of the vehicle and are steerable are provided. In a car, ultrasonic distance measuring means S1 to S11 are attached to the front, rear, left and right of the vehicle body 1 to measure the distance from the vehicle body 1 to the outer wall.
In response to the output of S4 and the ultrasonic distance measuring means S1 to S4, the front left and right detection distances are set to 1, l2, and the rear left and right detection distances are set.
l3 and l4, and L is the distance between the front and rear ultrasonic distance measuring means S1, S2; S3 and S4 along the axis 4 of the vehicle body 1. When y1 is a predetermined distance corresponding to the trajectory of the vehicle body 1 and Gr and Gθ are constants, a steering angle Sf of the front wheels W1 and W2, Sf = Gy (y1−y) −Gθ · sinθ and Means 7,9,14,15,16 for calculating steering angles Sr, Sr = Gy (y1−y) + Gθ ・ sinθ of rear wheels W3, W4 and outputs of calculation means 7,9,14,15,16 In response, the front left and right wheels W1, W2 are steered, and the rear left and right wheels W3, W4
And a means (8) for steering the vehicle.
【請求項2】車体1の前方側の左右に角変位して操舵可
能な車輪W1,W2が設けられるとともに、後方側の左右に
角変位して操舵可能な車輪W3,W4が設けられる移動走行
車において、 車体1の前後の右に固着され、車体1から外側方の壁ま
での距離を測定する超音波距離測定手段S2,S4と、 超音波距離測定手段S2,S4の出力に応答し、前方側の右
の検出距離をl2とし、後方側の右の検出距離をl4とし、
前後の超音波距離測定手段S2,S4間の車体1の軸線4に
沿う距離をLとし、車体1の軸線4に垂直な方向の予め
定める距離をWとするとき、 を求め、車体1の軌跡に対応する予め定める距離をyr1
とし、Gy,Gθを予め定める定数とするとき、前輪W1,W2
の操舵角Sf、 Sf=Gy(−yr1+yr)−Gθ・sinθ および後輪W3,W4の操舵角Sr、 Sr=Gy(−yr1+yr)+Gθ・sinθ を演算する演算手段7,9,14,15,16と、 演算手段7,9,14,15,16の出力に応答し、前方側の左右の
車輪W1,W2を操舵するとともに、後輪の左右の車輪W3,W4
を操舵する手段8とを含むことを特徴とする自動走行
車。
2. A traveling vehicle in which wheels W1 and W2 are provided on the front side of the vehicle body 1 and are steerable by angular displacement to the left and right, and wheels W3 and W4 are provided on the rear side that are steerable by angular displacement to the left and right. In the vehicle, in response to the outputs of the ultrasonic distance measuring means S2, S4 and the ultrasonic distance measuring means S2, S4 that are fixed to the front and rear right of the vehicle body 1 and measure the distance from the vehicle body 1 to the outer wall, The front right detection distance is l2, the rear right detection distance is l4,
When the distance along the axis 4 of the vehicle body 1 between the front and rear ultrasonic distance measuring means S2, S4 is L, and the predetermined distance in the direction perpendicular to the axis 4 of the vehicle body 1 is W, And determine a predetermined distance corresponding to the trajectory of the car body 1 as yr1
And Gy and Gθ are predetermined constants, the front wheels W1, W2
Steering means Sf, Sf = Gy (−yr1 + yr) −Gθ · sinθ, and steering angles Sr, Sr = Gy (−yr1 + yr) + Gθ · sinθ of the rear wheels W3, W4, calculating means 7,9,14,15, 16 and in response to the outputs of the computing means 7, 9, 14, 15, 16 and steer the left and right front wheels W1, W2, and the left and right rear wheels W3, W4.
And a means (8) for steering the vehicle.
【請求項3】車体1の前方側の左右に角変位して操舵可
能な車輪W1,W2が設けられるとともに、後方側の左右に
角変位して操舵可能な車輪W3,W4が設けられる移動走行
車において、 車体1の前後の左に固着され、車体1から外側方の壁ま
での距離を測定する超音波距離測定手段S1,S3と、 超音波距離測定手段S1,S3の出力に応答し、前方側の右
の検出距離を1とし、後方側の右の検出距離をl3と
し、前後の超音波距離測定手段S1,S3間の車体1の軸線
4に沿う距離をLとし、車体1の軸線4に垂直な方向の
予め定める距離をWとするとき、 を求め、車体1の軌跡に対応する予め定める距離をy
1とし、Gy,Gθを予め定める定数とするとき、前輪W1,W
2の操舵角Sf、 Sf=Gy(y1−yl)−Gθ・sinθ および後輪W3,W4の操舵角Sr、 Sr=Gy(y1−yl)+Gθ・sinθ を演算する演算手段7,9,14,15,16と、 演算手段7,9,14,15,16の出力に応答し、前方側の左右の
車輪W1,W2を操舵するとともに、後輪の左右の車輪W3,W4
を操舵する手段8とを含むことを特徴とする自動走行
車。
3. A traveling vehicle in which wheels W1 and W2 are provided on the front side of the vehicle body 1 and are steerable by angular displacement to the left and right, and wheels W3 and W4 are provided on the rear side that are steerable by angular displacement to the left and right. In the vehicle, in response to the outputs of the ultrasonic distance measuring means S1 and S3 that are fixed to the front and rear left of the vehicle body 1 and measure the distance from the vehicle body 1 to the outer wall, and the ultrasonic distance measuring means S1 and S3, The front right detection distance is 1, the right rear detection distance is l3, the distance between the front and rear ultrasonic distance measuring means S1, S3 along the axis 4 of the vehicle body 1 is L, and the axis line of the vehicle body 1 is When a predetermined distance in the direction perpendicular to 4 is W, And a predetermined distance corresponding to the locus of the vehicle body 1 is determined by y
1 and Gy, Gθ are predetermined constants, the front wheels W1, W
Calculation means 7,9,14 for calculating the steering angle Sf of 2 and the steering angle Sr of the rear wheels W3 and W4 and Sf = Gy (y1-yl) -Gθ · sinθ , 15, 16 and the output of the computing means 7, 9, 14, 15, 16 in response to the steering of the left and right front wheels W1, W2 and the rear left and right wheels W3, W4.
And a means (8) for steering the vehicle.
JP63045466A 1988-02-26 1988-02-26 Self-driving car Expired - Fee Related JPH0810406B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63045466A JPH0810406B2 (en) 1988-02-26 1988-02-26 Self-driving car

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63045466A JPH0810406B2 (en) 1988-02-26 1988-02-26 Self-driving car

Publications (2)

Publication Number Publication Date
JPH01219907A JPH01219907A (en) 1989-09-01
JPH0810406B2 true JPH0810406B2 (en) 1996-01-31

Family

ID=12720152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63045466A Expired - Fee Related JPH0810406B2 (en) 1988-02-26 1988-02-26 Self-driving car

Country Status (1)

Country Link
JP (1) JPH0810406B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04145507A (en) * 1990-10-05 1992-05-19 Shikoku Sogo Kenkyusho:Kk Travel controller for self-traveling work wagon
JP3536418B2 (en) * 1995-04-14 2004-06-07 ミノルタ株式会社 Autonomous vehicles
JP3223244B2 (en) * 1997-04-15 2001-10-29 本田技研工業株式会社 Automatic vehicle steering system
KR100772912B1 (en) * 2006-05-16 2007-11-05 삼성전자주식회사 Robot using absolute azimuth and method for mapping by the robot
JP6721889B2 (en) * 2016-06-07 2020-07-15 国立研究開発法人農業・食品産業技術総合研究機構 Agricultural vehicle and vehicle control method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58101205U (en) * 1981-12-26 1983-07-09 三菱重工業株式会社 Unmanned vehicle guidance system
JPS59140520A (en) * 1983-01-31 1984-08-11 Sumitomo Electric Ind Ltd Running control system
JPS59122607U (en) * 1983-02-07 1984-08-18 三菱電機株式会社 unmanned automated guided vehicle
JPS62105206A (en) * 1985-10-31 1987-05-15 Yokogawa Electric Corp Guiding device for unmanned guided vehicle
JPS62221707A (en) * 1986-03-24 1987-09-29 Toshiba Corp Gyro-guide type unmanned carrier

Also Published As

Publication number Publication date
JPH01219907A (en) 1989-09-01

Similar Documents

Publication Publication Date Title
JP2665738B2 (en) Guidance Method of Unmanned Mobile Machine by Point Tracking Method
JP2017088112A (en) Steering control device for vehicle
JP3710451B2 (en) Method and apparatus for measuring position of moving object
JP2009008648A (en) Three-dimensional distance measuring device and caster-type robot
JPH0810406B2 (en) Self-driving car
JP4686934B2 (en) Vehicle parking device
JPH075922A (en) Steering control method for unmanned work vehicle
JP7259634B2 (en) travel control device
JPS61278912A (en) Method for guiding unmanned moving machine by spot following system
JP2771366B2 (en) Traveling vehicle safety devices
JP2000132228A (en) Method for guiding movable body
JP2566604B2 (en) Measuring method of vehicle body position and traveling direction and automatic traveling control method
Komoriya et al. A method of autonomous locomotion for mobile robots
JPS60142208A (en) Front road surface state detecting device
JPH10222225A (en) Unmanned travel body and its travel method
JP3154355B2 (en) Moving object relative distance measuring device and position measuring device
JP6921168B2 (en) How to run in a platoon based on wheel pulse signals
JP7459733B2 (en) Self-location estimation device
JPH0359444B2 (en)
JP7060231B2 (en) Mobile control device
JPH08159756A (en) Obstacle detector
JPH073339B2 (en) Detecting device for direction and position of unmanned vehicle
JP2007122272A (en) Moving device
JPH0816982A (en) Vehicle guiding device
JP2008023700A (en) Force sensor installation structure of leg-type robot

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees