JP4686934B2 - Vehicle parking device - Google Patents

Vehicle parking device Download PDF

Info

Publication number
JP4686934B2
JP4686934B2 JP2001246018A JP2001246018A JP4686934B2 JP 4686934 B2 JP4686934 B2 JP 4686934B2 JP 2001246018 A JP2001246018 A JP 2001246018A JP 2001246018 A JP2001246018 A JP 2001246018A JP 4686934 B2 JP4686934 B2 JP 4686934B2
Authority
JP
Japan
Prior art keywords
vehicle
distance
trajectory
data
parking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001246018A
Other languages
Japanese (ja)
Other versions
JP2003058998A (en
Inventor
宏 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2001246018A priority Critical patent/JP4686934B2/en
Publication of JP2003058998A publication Critical patent/JP2003058998A/en
Application granted granted Critical
Publication of JP4686934B2 publication Critical patent/JP4686934B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、車両の車庫入れ駐車や縦列駐車を行う車両駐車装置に関する。
【0002】
【従来の技術】
従来の車両駐車装置としては、特開平7−44799号公報がある。この駐車装置では、車両の周囲の物体までの距離を計測するセンサとして、オートフォーカスセンサを使用し、車両を駐車させるための空間(以下、これを駐車空間と記す)を検出するというものである。この従来例では、車両の周囲の物体までの距離により、センサの感度とサンプリングタイムを最適に調整することによって、駐車空間を検出している。
【0003】
【発明が解決しようとする課題】
しかしながら、上記従来例では、検出対象である車両周囲の物体までの距離や方向によっては、対象物のエッジ強度が小さい、光の反射強度が小さいことがあるため、正確に測距ができず、車両の駐車を正確に行うことができないという問題点があった。
【0004】
本発明の目的は、車両周囲の駐車空間を正確に検出することができる車両駐車装置を提供することにある。
【0005】
【課題を解決するための手段】
上記課題を解決するため、本発明に係る車両駐車装置は、車両の位置を検出し、前記車両と前記車両の周囲の物体との距離・前記物体の方位のうちの少なくとも距離を計測し、前記車両の位置と、前記車両と前記物体との距離・前記方位のうちの少なくとも距離とを記憶し、蓄積された前記物体のデータ点列から駐車目標位置を設定し、前記車両の位置と前記駐車目標位置との差から、前記駐車目標位置へ前記車両を移動させる軌道を算出し、前記蓄積されたデータから測距データの信頼性を算出し、前記信頼性の算出データから、前記車両と前記物体との距離、前記方位のうちの少なくとも距離を再計測する軌道を算出することを特徴とする。
【0006】
また、本発明に係る車両駐車装置は、車両の位置を検出する車両位置検出手段と、前記車両と前記車両の周囲の物体との距離・前記物体の方位のうちの少なくとも距離を計測する単一または複数個の測距センサを有する測距手段と、前記物体が検出された時点での前記車両の位置と、前記車両と前記物体との距離・前記方位のうちの少なくとも距離とを記憶するデータ蓄積手段と、前記データ蓄積手段に蓄積された前記物体のデータ点列から駐車目標位置を設定する駐車目標位置設定手段と、前記車両の位置と前記駐車目標位置との差から、前記駐車目標位置へ前記車両を移動させる軌道を算出する軌道算出手段と、前記データ蓄積手段に蓄積されたデータから、測距データのばらつき度合いを算出する測距データばらつき度合い算出手段と、前記車両の位置と前記ばらつき度合いとから、前記車両と前記物体との距離・前記方位のうちの少なくとも距離を再計測するための軌道を算出する再計測軌道算出手段とを具備することを特徴とする。
【0007】
また、本発明に係る車両駐車装置は、上記の車両駐車装置において、前記測距データのばらつき度合いが大きい領域を再計測することを特徴とする。 具体的に、再計測軌道算出手段は、測距データの空間密度が小さいと判断された領域を抽出し、測距手段により車両と物体との距離・前記方位のうちの少なくとも距離を再計測するために、軌道算出手段により算出された軌道よりも、抽出された領域に車両が接近する軌道を再度算出することを特徴とする。 また、本発明に係る車両駐車装置は、再計測軌道算出手段により算出された軌道を表示する軌道指示手段をさらに備え、測距手段は、軌道指示手段に軌道が表示された後に走行する車両と物体との距離・方位のうちの少なくとも距離を再計測し、データ蓄積手段に送出することを特徴とする。 さらに、本発明に係る車両駐車装置は、前記測距手段が備える測距センサは、超音波センサであることを特徴とする。
【0008】
また、本発明に係る車両駐車装置は、車両の位置を検出する車両位置検出手段と、前記車両と前記車両の周囲の物体との距離・前記物体の方位のうちの少なくとも距離を計測する単一または複数個の測距センサを有する測距手段と、前記物体が検出された時点での前記車両の位置と、前記車両と前記物体との距離・前記方位のうちの少なくとも距離とを記憶するデータ蓄積手段と、前記データ蓄積手段に蓄積された前記物体のデータ点列から駐車目標位置を設定する駐車目標位置設定手段と、前記車両の位置と前記駐車目標位置との差から、前記駐車目標位置へ前記車両を移動させる軌道を算出する軌道算出手段と、前記データ蓄積手段に蓄積されたデータから、測距データの空間密度を算出する測距データ空間密度算出手段と、前記車両の位置と前記空間密度とから、前記車両と前記物体との距離・前記方位のうちの少なくとも距離を再計測するための軌道を算出する再計測軌道算出手段とを具備することを特徴とする。
【0009】
また、本発明に係る車両駐車装置は、前記測距データの空間密度が小さい領域を再計測することを特徴とする。
【0010】
また、本発明に係る車両駐車装置は、前記車両位置検出手段は、前記車両の移動距離と進行方向とを検出することを特徴とする。
【0011】
また、本発明に係る車両駐車装置前記測距センサは、前記車両と前記物体との距離および方位を計測することを特徴とする。
【0012】
また、本発明に係る車両駐車装置は、前記再計測時に前記測距センサの測距方向を変更する測距方向変更手段を有することを特徴とする。
【0013】
また、本発明に係る車両駐車装置は、前記測距手段が、異なる計測原理に基づく複数の測距センサを有し、再計測時にセンサの種別を変更して計測することを特徴とする。
【0014】
また、本発明に係る車両駐車装置は、前記軌道算出手段と前記再計測軌道算出手段とでそれぞれ算出された軌道を指示する軌道指示手段を有することを特徴とする。
【0015】
【発明の効果】
本発明に係る車両駐車装置によれば、測距データの信頼性に基いて、車両と物体との距離や方位を再計測する軌道を算出するので、確度の高い測距データを得ることができるため、車両周囲の駐車空間を正確に検出することができ、的確な駐車を行うことができる。
【0016】
本発明に係る車両駐車装置によれば、測距データのばらつき度合いに基いて、車両と物体との距離や方位を再計測する軌道を算出するので、確度の高い測距データを得ることができ、的確な駐車を行うことができる。
【0017】
本発明に係る車両駐車装置によれば、測距データのばらつき度合いが大きくなった場合であっても、ばらつき度合いが大きい領域を再計測できる軌道を運転者に指示することによって、ばらつき度合いが大きい領域が再計測できるため、データ数を増加させ、確度の高い測距データを得ることができ、的確な駐車を行うことができる。
【0018】
本発明に係る車両駐車装置によれば、測距データの空間密度に基いて、車両と物体との距離や方位を再計測する軌道を算出するので、確度の高い測距データを得ることができ、的確な駐車を行うことができる。
【0019】
本発明に係る車両駐車装置によれば、測距データの空間密度が小さい(測距データのデータ数が少ない)場合であっても、空間密度が小さい領域を再計測できる軌道を運転者に指示することによって、空間密度が小さい領域が再計測できるため、データ数を増加させ、確度の高い測距データを得ることができ、的確な駐車を行うことができる。
【0020】
本発明に係る車両駐車装置によれば、車両位置検出手段が車両の移動距離と進行方向とを検出するので、確度の高い車両の位置を検出することができる。
【0021】
本発明に係る車両駐車装置によれば、測距センサが車両と物体との距離および方位を計測するので、確度の高い計測を行うことができる。
【0022】
本発明に係る車両駐車装置によれば、再計測時に測距センサの測距方向を変更するので、車両周囲の物体とセンサの測距軸とのなす角が異なった条件で再計測できるため、超音波センサのようなセンサを用いた場合など、被測距物体とセンサの測顕軸がとのなす角が測距確度に依存するような場合であっても、測距データの確度を向上できる。
【0023】
本発明に係る車両駐車装置によれば、再計測時に測定原理が異なるセンサにより再計測するため、初回測距時に測距確度が低い場合であっても、測距データの確度を向上できる。
【0024】
本発明に係る車両駐車装置によれば、軌道算出手段と再計測軌道算出手段でそれぞれ算出された軌道を運転者に指示することができる。
【0025】
【発明の実施の形態】
以下、図面を用いて本発明の実施の形態について詳細に説明する。なお、以下で説明する図面で、同一機能を有するものは同一符号を付け、その繰り返しの説明は省略する。
【0026】
実施の形態1
図1は、本発明の形態1の車両駐車装置の構成を示す図である。
【0027】
1は車両位置検出手段で、例えば車輪速センサ、舵角センサなどを用い、デッドレコニング等の手法を使って、車両の走行距離と、進行方向を検出する。他にもGPS(Global Positioning System)により車両の位置を検出する方法も使用することができる。
【0028】
2は測距手段で、例えば超音波センサ、レーダ装置、ステレオ画像処理装置などによる測距センサを車両の周囲に複数個設け、車両周囲の物体までの距離を検出する。ステレオ画像処理装置など、物体の方位が検出できる測距センサを用いた場合には、距離に加え、方位を出力する。
【0029】
3はデータ蓄積手段で、例えば測距手段2により検出された物体までの距離や方位と、物体が検出された時点での車両位置検出手段1により検出された車両の位置の2つのデータを1組として、物体が検出された数だけ記憶する。
【0030】
4は軌道算出手段で、駐車可能領域に車両を移動させるために必要な運転操作と、その操作により描かれる車両の軌道を算出する。算出方法は、例えば特開平6−28598号公報や特開平10−230862号公報に記載されているような、駐車可能領域と車両位置から、車両の移動量と回転半径とを組み合わせ、駐車可能領域へ移動するために必要な運転操作を算出する方法を用いればよい。なお、軌道算出手段4には、データ蓄積手段3に蓄積された物体のデータ点列に基いて駐車目標位置を設定する駐車目標位置設定手段を有する。
【0031】
5は軌道指示装置で、軌道算出手段4および後述の再計測軌道算出手段で算出された軌道および運転操作を運転者に指示する。CRTや液晶ディスプレイに運転操作内容を表示したり、音声により必要な運転操作を指示する方法等を用いて指示することができる。
【0032】
6は測距データ信頼性算出手段で、例えば次のような手法により測距手段2による測距データの信頼性を算出する。データ蓄積手段3に蓄積された物体のデータ点列から最小2乗法等を用いて、隣接する車両や壁などの線状に存在する物体の線分を算出する。算出された線分と各データ点との最短距離を求める。その総和から測距手段2による測距データの信頼性を求める。さらに、最小2乗法等で求めた各線分の信頼性をそれぞれ同様の手法により算出する。
【0033】
7は再計測軌道算出手段で、再計測軌道の算出は軌道算出手段4と同様の手法により実現できる。この場合、駐車可能領域へ車両を誘導するために必要な軌道を算出するのではなく、測距データ信頼性算出手段6で求められた信頼性の低い領域を測距手段2の測距センサが再計測できるような軌道を算出する。例えば、駐車可能領域に置き換えて、信頼性の低い領域をある所定の量だけオフセットした値に設定し、軌道算出手段4と同様の手法により再計測軌道を算出する。この場合、信頼性の低い領域により接近した軌道となる。
【0034】
すなわち、本実施の形態1の車両駐車装置では、車両の位置を検出し、車両とその周囲の物体との距離・物体の方位のうちの少なくとも距離を計測し、車両の位置と、車両と物体との距離・方位のうちの少なくとも距離とを記憶し、蓄積された物体のデータ点列から駐車目標位置を設定し、車両の位置と駐車目標位置との差から、駐車目標位置へ車両を移動させる軌道を算出し、蓄積されたデータから測距データの信頼性を算出し、信頼性の算出データから、車両と物体との距離、方位のうちの少なくとも距離を再計測する軌道を算出することを特徴とする。
【0035】
つまり、本実施の形態1の車両駐車装置は、車両の位置を検出する車両位置検出手段1と、車両とその周囲の物体との距離・物体の方位のうちの少なくとも距離を計測する単一または複数個の測距センサを有する測距手段2と、物体が検出された時点での車両の位置と、車両と物体との距離・方位のうちの少なくとも距離とを記憶するデータ蓄積手段3と、データ蓄積手段3に蓄積された物体のデータ点列から駐車目標位置を設定する駐車目標位置設定手段(図示省略。軌道算出手段8内にある)と、車両の位置と駐車目標位置との差から、駐車目標位置へ車両を移動させる軌道を算出する軌道算出手段8と、データ蓄積手段3に蓄積されたデータから、測距データのばらつき度合いを算出する測距データ信頼性算出手段6と、車両の位置とばらつき度合いとから、車両と物体との距離・方位のうちの少なくとも距離を再計測する軌道を算出する再計測軌道算出手段7とを具備するものである。
【0036】
次に、図2〜6を用いて、本実施の形態1の車両制御装置の作用と効果について説明する。
【0037】
図2は、駐車場での車両21の駐車軌道22と、他の駐車車両23の配置、測距手段2(図1)の測距センサの物体検知範囲24を示す図である。
【0038】
測距手段2の測距センサとして、例えば固定ビームを発する上述の超音波センサを用い、車両21の側方の物体との距離が検出できるように、測距センサを車両21の側方左右に、測距センサの物体検知範囲24が側方を向くように配置する。本例では、測距センサを車両21の後部左右に計2個配置しているが、前部左右に配置することもできる。
【0039】
このように測距手段2の測距センサを配置し、車両21の移動に伴い、物体が検出された時点での車両位置検出手段1により検出された車両21の位置と、測距手段2により検出された物体までの距離(または距離および方位)の2つのデータを1組とするデータを蓄積していくことによって、固定ビームの測距センサを用いても、車両周囲に存在する物体との距離が計測できる。
【0040】
図3は、図2に示した駐車場における車両21(図2)の走行軌跡31により測距手段2(図1)の測距センサにより検知され、データ蓄積手段3に蓄積された測距データ32の例を示す図である。
【0041】
測距手段2の測距センサとして超音波センサを使用して駐車車両23までの距離を測距する場合には、図3に示すように、その測距データ32は多重反射などでノイズが混入し、実環境との誤差が大きくなってしまう。
【0042】
図4は、測距データ信頼性算出手段6の算出データの例を示す図である。
【0043】
図4に示すように、測距データ信頼性算出手段6により、信頼性が高いと判断された線分は細い線で、信頼性が低いと判断された線分は太い線で表現されている。本例では、駐車車両23のボディ先頭部の測距データの信頼性が低いと判断されている。一般的に乗用車のボディ先頭部は、ボディ側面に比べ凹凸が多く、測距データにばらつき度合いが生じる場合が多い。
【0044】
図5は、測距データ信頼性算出手段6で求めた信頼性の低い領域を、超音波センサが再計測するように再計測軌道算出手段7により算出された再計測軌道の算出データの例を示す図である。
【0045】
図5で、51は走行軌跡、52は指示軌道である。
【0046】
図6は、指示軌道52により再び走行し、測距手段2の測距センサにより検知された測距データ62の例を示す図である。
【0047】
本例では、ばらつき度合いが大きい領域に初回測定時よりも接近した軌道を算出するという手法を用いている。超音波センサのような測距センサでは、車両21の周囲の物体(対象物)までの距離が近いほど、超音波センサの固定ビームの広がりが小さくなり、空間的な分解能が向上する。したがって、本例にあるような凹凸が多い対象物であっても、多重反射の影響等が小さい状態で測距できるようになるため、図6に示すようなばらつき度合いの小さい測距データ62が得られる。
【0048】
本実施の形態1で示したように、初回測距時には測距データのばらつき度合いが大きく、駐車時の運転操作補助を行うのが困難な場合であっても、再計測時にセンサの測距特性を考慮した再計測軌道を指示することによって、ばらつき度合いの小さい周囲障害物の距離が把握できるため、車両21の周囲の駐車空間を正確に検出することができ、的確な駐車補助が可能となる。
【0049】
図7は、超音波センサを用いた場合の障害物までの距離に対する超音波の反射強度の変化を示す図、図8は図7の測定条件を示す図である。図8で、81は超音波センサである。
【0050】
本例では、図8の測定条件で計測している。図7から明らかなように、障害物までの距離が短いほど、広がりが小さい測定データが得られている。これは、障害物までの距離が短いほど、測定データのばらつき度合いが小さいことを示しており、障害物により接近して再計測することで、ばらつき度合いの小さい障害物までの距離が計測できる。
【0051】
すなわち、運転者が図3の走行軌跡31のように車両21を走行させると、車両位置検出手段1により車両21の位置が検出され、測距手段2の測距センサにより、車両21とその周囲の駐車車両23などの物体との距離や方位が計測され、測距データ32が得られる。
【0052】
駐車車両23などの物体が検出された時点での車両21の位置と、車両21とその周囲の物体との距離や方位がデータ蓄積手段3により記憶される。
【0053】
データ蓄積手段3に蓄積された物体のデータ点列から軌道算出手段4にある駐車目標位置設定手段により駐車目標位置が設定される。
【0054】
データ蓄積手段3に記憶された車両21の位置と駐車目標位置との差から、軌道算出手段8により駐車目標位置へ車両21を移動させる軌道が算出される。
【0055】
データ蓄積手段3に蓄積されたデータから、測距データ信頼性算出手段6により、図4のように測距データのばらつき度合いが算出される。
【0056】
車両21の位置とこのばらつき度合いから、再計測軌道算出手段7により、車両21と物体との距離や方位を再計測する軌道が算出され、図5の指示軌道52が表示器等の軌道指示手段5に示される。
【0057】
運転者はそれを見て指示軌道52に示されるように車両21を運転する。
【0058】
すると、再び、車両位置検出手段1により車両21の位置が検出され、測距手段2の測距センサにより、車両21とその周囲の駐車車両23などの物体との距離や方位が計測され、測距データ32より正確な測距データ62が得られる。
【0059】
同様にして、駐車車両23などの物体が検出された時点での車両21の位置と、車両21とその周囲の物体との距離や方位がデータ蓄積手段3により記憶される。
【0060】
データ蓄積手段3に蓄積された物体のデータ点列から軌道算出手段4にある駐車目標位置設定手段により駐車目標位置が設定される。
【0061】
データ蓄積手段3に記憶された車両21の位置と駐車目標位置との差から、軌道算出手段8により駐車目標位置へ車両21を移動させる前より正確な軌道が算出される。
【0062】
運転者はその指示軌道を元に車両を移動させると、正確に駐車を行うことができる。
【0063】
図9は、図7と同じ超音波センサ81を用いた場合の障害物までの距離に対する超音波の反射強度の変化を示す図、図10は図9の測定条件を示す図である。
【0064】
図9と図7とを比較すると、図7の計測データの方が明らかにばらつき度合いの小さい測定データになっている。これは、図10に示すように測距対象と超音波センサ81とが正対していない場合には、反射が弱くなり、さらに、超音波ビームに広がりがあり、ビーム両端ではセンサと障害物までの距離に差が大きくなるため、ばらつき度合いが大きくなるからである。
【0065】
本実施の形態1では、計測対象により近づいた軌道で再計測することによってより精度の高い測距データを得ているが、上述したように、超音波センサのように、媒体中の計測対象からの反射を利用してする方式のセンサでは、測距対象とセンサとが正対している方が強い反射が得られるため、ばらつき度合いが小さくなることが多いため、計測対象とセンサとが正対できるような軌道を正計測軌道とすることにより、ばらつき度合いの小さな周囲障害物の把握が可能になる。
【0066】
なお、センサを車両のリアバンパーに取り付け、そのセンサを再計測時に使用することも可能である。この場合、再計測軌道と同時により駐車しやすい位置に車両を誘導することができる。
【0067】
さらに、測距データ信頼性算出手段6による信頼性の算出として、測距データのばらつき度合いを算出する手法を用いたが、データ数に基づいて信頼性を算出する手法に置き換えることもできる。この場合、例えば、車両の移動速度が大きく、データとデータとの間隔が広くなってしまった検出データとなった場合であっても、その領域を再計測する軌道を指示することにより、より密度の高い測距データが得られるため、的確な駐車補助が可能となる。
【0068】
なお、上記では、信頼性としてばらつき度合いを用いたが、ばらつき度合いの代わりに空間密度を用いることも可能である。
【0069】
すなわち、このような車両制御装置は、車両の位置を検出する車両位置検出手段1と、車両とその周囲の物体との距離・物体の方位のうちの少なくとも距離を計測する単一または複数個の測距センサを有する測距手段2と、物体が検出された時点での車両の位置と、車両と物体との距離・方位のうちの少なくとも距離とを記憶するデータ蓄積手段3と、データ蓄積手段3に蓄積された物体のデータ点列から駐車目標位置を設定する駐車目標位置設定手段(図示省略。軌道算出手段8内にある)と、車両の位置と駐車目標位置との差から、駐車目標位置へ車両を移動させる軌道を算出する軌道算出手段8と、データ蓄積手段3に蓄積されたデータから、測距データの空間密度を算出する測距データ信頼性算出手段6と、車両の位置と空間密度とから、車両と物体との距離・方位のうちの少なくとも距離を再計測する軌道を算出する再計測軌道算出手段7とを具備するものである。
【0070】
実施の形態2
図11は、本発明の形態2の車両駐車装置の構成を示す図である。
【0071】
本発明の実施の形態2について、実施の形態1と異なる項目についてのみ説明する。
【0072】
本実施の形態2では、複数の測距手段2を持ち、さらに、センサ切り換え手段8が追加される。センサ切り換え手段8は、再計測軌道算出手段により算出された再計測軌道と、車両位置検出手段1により検出された車両21の位置とにより、再計測軌道を車両が移動しているか否かを判断し、再計測軌道を移動中には、初回計測時と異なるセンサに切り換える。例えば測距軸をずらして配置したセンサに切り換える。この場合、初回測定時においては、計測対象と測距軸とのなす角により反射強度が小さく、測距データにばらつき度合いが生じるような環境であっても、再計測時には、初回測定時とは異なった測距軸で測距できるため、ばらつき度合いの小さな周囲障害物の把握が可能になる。
【0073】
さらに、本実施の形態2では、上記の測距軸の異なったセンサに切り換える代わりに、例えば超音波センサとステレオカメラ、光レーダと電波レーダなどのように測距原理や媒体が異なる組み合わせでセンサを切り換えてもよい。
【0074】
以上本発明を実施の形態に基づいて具体的に説明したが、本発明は上記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲において種々変更可能であることは勿論である。例えば、上記実施の形態1、2では、運転者が運転操作を行う駐車補助装置に適用したが、この他、操舵アクチュエータやブレーキアクチュエータなどを持ち、駐車可能領域まで自動運転可能な自動車両駐車装置にも適用可能である。
【図面の簡単な説明】
【図1】本発明の形態1の車両駐車装置の構成を示す図である。
【図2】駐車場での車両の駐車軌道と、他の駐車車両の配置、測距センサの物体検知範囲を示す図である。
【図3】図2に示した駐車場における車両の走行軌跡により測距センサにより検知され、データ蓄積手段に蓄積された測距データの例を示す図である。
【図4】測距データ信頼性算出手段の算出データの例を示す図である。
【図5】再計測軌道の算出データの例を示す図である。
【図6】指示軌道により再び走行し、測距センサにより検知された測距データの例を示す図である。
【図7】超音波センサを用いた場合の障害物までの距離に対する超音波の反射強度の変化を示す図である。
【図8】図7の測定条件を示す図である。
【図9】図7と同じ超音波センサを用いた場合の障害物までの距離に対する超音波の反射強度の変化を示す図である。
【図10】図9の測定条件を示す図である。
【図11】本発明の形態2の車両駐車装置の構成を示す図である。
【符号の説明】
1…車両位置検出手段、2…測距手段、3…データ蓄積手段、4…軌道算出手段、5…軌道指示装置、6…測距データ信頼性算出手段、7…再計測軌道算出手段、8…センサ切り換え手段、21…車両、22…駐車軌道、23…駐車車両、24…測距センサの物体検知範囲、31…走行軌跡、32…測距データ、51…走行軌跡、52…指示軌道、62…測距データ、81…超音波センサ。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vehicle parking apparatus that performs garage parking and parallel parking of vehicles.
[0002]
[Prior art]
As a conventional vehicle parking device, there is JP-A-7-44799. In this parking device, an autofocus sensor is used as a sensor for measuring a distance to an object around the vehicle, and a space for parking the vehicle (hereinafter referred to as a parking space) is detected. . In this conventional example, the parking space is detected by optimally adjusting the sensitivity of the sensor and the sampling time according to the distance to an object around the vehicle.
[0003]
[Problems to be solved by the invention]
However, in the above conventional example, depending on the distance and direction to the object around the vehicle that is the detection target, the edge strength of the target object may be small and the light reflection intensity may be small, so accurate ranging cannot be performed, There was a problem that the vehicle could not be parked accurately.
[0004]
The objective of this invention is providing the vehicle parking apparatus which can detect the parking space around a vehicle correctly.
[0005]
[Means for Solving the Problems]
In order to solve the above problems, a vehicle parking apparatus according to the present invention detects a position of a vehicle, measures at least a distance between the vehicle and an object around the vehicle, and an orientation of the object, The vehicle position and at least the distance between the vehicle and the object and the direction are stored, a parking target position is set from the accumulated data point sequence of the object, and the vehicle position and the parking A trajectory for moving the vehicle to the parking target position is calculated from a difference from a target position, reliability of ranging data is calculated from the accumulated data, and the vehicle and the vehicle are calculated from the reliability calculation data. A trajectory for re-measuring at least the distance between the distance to the object and the azimuth is calculated.
[0006]
Further, the vehicle parking apparatus according to the present invention includes a vehicle position detection unit that detects the position of the vehicle, and a single unit that measures at least a distance between the distance between the vehicle and an object around the vehicle and the direction of the object. Or data for storing distance measuring means having a plurality of distance measuring sensors, the position of the vehicle at the time when the object is detected, and at least the distance between the vehicle and the object and the direction. From the difference between the storage means, the parking target position setting means for setting the parking target position from the data point sequence of the object stored in the data storage means, and the difference between the vehicle position and the parking target position, the parking target position A trajectory calculating means for calculating a trajectory for moving the vehicle to the distance, and a distance measurement data variation degree calculating means for calculating a degree of variation in the distance measurement data from the data stored in the data storage means; And a position of the vehicle and the degree of variation, and; and a re-measurement trajectory calculation means for calculating a trajectory for re-measuring at least the distance of the distance and the azimuth of the vehicle and the object To do.
[0007]
The vehicle parking apparatus according to the present invention is characterized in that, in the vehicle parking apparatus, an area where the variation degree of the distance measurement data is large is remeasured. Specifically, the re-measurement trajectory calculation means extracts an area where the spatial density of the distance measurement data is determined to be small, and re-measures at least the distance between the vehicle and the object and the azimuth by the distance measurement means. Therefore, the trajectory in which the vehicle approaches the extracted area is calculated again than the trajectory calculated by the trajectory calculating means. The vehicle parking apparatus according to the present invention further includes a trajectory instruction means for displaying the trajectory calculated by the remeasurement trajectory calculation means, and the ranging means includes a vehicle that travels after the trajectory is displayed on the trajectory instruction means, It is characterized in that at least the distance / azimuth with respect to the object is re-measured and sent to the data storage means. Furthermore, the vehicle parking apparatus according to the present invention is characterized in that the distance measuring sensor provided in the distance measuring means is an ultrasonic sensor.
[0008]
Further, the vehicle parking apparatus according to the present invention includes a vehicle position detection unit that detects the position of the vehicle, and a single unit that measures at least a distance between the distance between the vehicle and an object around the vehicle and the direction of the object. Or data for storing distance measuring means having a plurality of distance measuring sensors, the position of the vehicle at the time when the object is detected, and at least the distance between the vehicle and the object and the direction. From the difference between the storage means, the parking target position setting means for setting the parking target position from the data point sequence of the object stored in the data storage means, and the difference between the vehicle position and the parking target position, the parking target position A trajectory calculating means for calculating a trajectory for moving the vehicle, a distance measurement data spatial density calculating means for calculating a spatial density of distance measurement data from data stored in the data storage means, And a location and the spatial density, characterized by comprising a re-measuring trajectory calculation means for calculating a trajectory for re-measuring at least the distance of the distance and the azimuth of the vehicle and the object.
[0009]
In addition, the vehicle parking apparatus according to the present invention is characterized in that an area where the spatial density of the distance measurement data is small is remeasured.
[0010]
Further, the vehicle parking apparatus according to the present invention is characterized in that the vehicle position detecting means detects a moving distance and a traveling direction of the vehicle.
[0011]
Further, the distance measuring sensor of a vehicle parking system according to the present invention is characterized by measuring the distance and orientation between the vehicle and the object.
[0012]
Moreover, the vehicle parking apparatus which concerns on this invention has a ranging direction change means which changes the ranging direction of the said ranging sensor at the time of the said re-measurement.
[0013]
Further, the vehicle parking apparatus according to the present invention is characterized in that the distance measuring means has a plurality of distance measuring sensors based on different measurement principles, and measures by changing the type of the sensor at the time of re-measurement.
[0014]
In addition, the vehicle parking apparatus according to the present invention includes a trajectory instructing unit that instructs the trajectory calculated by the trajectory calculating unit and the remeasurement trajectory calculating unit.
[0015]
【The invention's effect】
According to the vehicle parking apparatus of the present invention, since the trajectory for re-measuring the distance and direction between the vehicle and the object is calculated based on the reliability of the distance measurement data, distance measurement data with high accuracy can be obtained. Therefore, the parking space around the vehicle can be detected accurately, and accurate parking can be performed.
[0016]
According to the vehicle parking apparatus according to the present invention, since the trajectory for re-measuring the distance and direction between the vehicle and the object is calculated based on the degree of variation in the distance measurement data, distance measurement data with high accuracy can be obtained. , You can park accurately.
[0017]
According to the vehicle parking apparatus according to the present invention, even when the variation degree of the distance measurement data is large, the degree of variation is large by instructing the driver on a trajectory that can re-measure an area where the variation degree is large. Since the area can be measured again, the number of data can be increased, distance measurement data with high accuracy can be obtained, and accurate parking can be performed.
[0018]
According to the vehicle parking apparatus according to the present invention, since the trajectory for re-measuring the distance and direction between the vehicle and the object is calculated based on the spatial density of the distance measurement data, distance measurement data with high accuracy can be obtained. , You can park accurately.
[0019]
According to the vehicle parking apparatus of the present invention, even when the spatial density of the distance measurement data is small (the number of data of the distance measurement data is small), the driver is instructed on a track that can re-measure an area with a small spatial density. By doing so, an area with a low spatial density can be remeasured, so that the number of data can be increased, highly accurate ranging data can be obtained, and accurate parking can be performed.
[0020]
According to the vehicle parking apparatus according to the present invention, since the vehicle position detecting means detects the moving distance and the traveling direction of the vehicle, the position of the vehicle with high accuracy can be detected.
[0021]
According to the vehicle parking apparatus according to the present invention, since the distance measuring sensor measures the distance and direction between the vehicle and the object, it is possible to perform measurement with high accuracy.
[0022]
According to the vehicle parking apparatus according to the present invention, since the distance measuring direction of the distance measuring sensor is changed at the time of remeasurement, the angle between the object around the vehicle and the distance measuring axis of the sensor can be remeasured under different conditions. Improved accuracy of distance measurement data even when the angle between the object to be measured and the measurement axis of the sensor depends on the distance measurement accuracy, such as when using a sensor such as an ultrasonic sensor it can.
[0023]
According to the vehicle parking apparatus according to the present invention, since the remeasurement is performed by the sensor having a different measurement principle at the time of remeasurement, the accuracy of the distance measurement data can be improved even when the distance measurement accuracy is low at the first distance measurement.
[0024]
According to the vehicle parking apparatus of the present invention, it is possible to instruct the driver of the trajectory calculated by the trajectory calculating means and the remeasurement trajectory calculating means.
[0025]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings described below, components having the same function are denoted by the same reference numerals, and repeated description thereof is omitted.
[0026]
Embodiment 1
FIG. 1 is a diagram showing a configuration of a vehicle parking apparatus according to Embodiment 1 of the present invention.
[0027]
Reference numeral 1 denotes a vehicle position detection means that detects a travel distance and a traveling direction of the vehicle by using a method such as dead reckoning, for example, using a wheel speed sensor, a rudder angle sensor, and the like. In addition, a method of detecting the position of the vehicle by GPS (Global Positioning System) can be used.
[0028]
A distance measuring means 2 is provided with a plurality of distance measuring sensors such as an ultrasonic sensor, a radar device, and a stereo image processing device around the vehicle, and detects a distance to an object around the vehicle. In the case of using a distance measuring sensor capable of detecting the azimuth of an object such as a stereo image processing apparatus, the azimuth is output in addition to the distance.
[0029]
Reference numeral 3 denotes a data storage means, for example, two pieces of data of the distance and direction to the object detected by the distance measuring means 2 and the vehicle position detected by the vehicle position detecting means 1 at the time when the object is detected. The number of detected objects is stored as a set.
[0030]
Reference numeral 4 denotes a trajectory calculating means for calculating a driving operation necessary for moving the vehicle to the parking area and a trajectory of the vehicle drawn by the operation. The calculation method is, for example, as described in JP-A-6-28598 and JP-A-10-230862, by combining the amount of movement of the vehicle and the radius of rotation from the parking area and the vehicle position. What is necessary is just to use the method of calculating the driving | operation operation required in order to move to. The trajectory calculation unit 4 includes a parking target position setting unit that sets a parking target position based on the data point sequence of the object stored in the data storage unit 3.
[0031]
Reference numeral 5 denotes a trajectory indicating device that instructs the driver on the trajectory and driving operation calculated by the trajectory calculating means 4 and a remeasurement trajectory calculating means described later. It is possible to instruct by using a method of displaying a driving operation content on a CRT or a liquid crystal display or instructing a necessary driving operation by voice.
[0032]
The distance measurement data reliability calculation means 6 calculates the reliability of distance measurement data obtained by the distance measurement means 2 by the following method, for example. A line segment of an object existing in a line shape such as an adjacent vehicle or a wall is calculated from the data point sequence of the object accumulated in the data accumulation means 3 using a least square method or the like. The shortest distance between the calculated line segment and each data point is obtained. The reliability of the distance measurement data obtained by the distance measurement means 2 is obtained from the sum. Further, the reliability of each line segment obtained by the least square method or the like is calculated by the same method.
[0033]
Reference numeral 7 denotes remeasurement trajectory calculation means, and the remeasurement trajectory calculation can be realized by the same method as the trajectory calculation means 4. In this case, instead of calculating the trajectory necessary for guiding the vehicle to the parking area, the distance measurement sensor of the distance measurement means 2 detects the low reliability area obtained by the distance measurement data reliability calculation means 6. Calculate a trajectory that can be re-measured. For example, the re-measurement trajectory is calculated by the same method as that of the trajectory calculation means 4 by replacing the area where parking is possible and setting the low-reliability area by a predetermined amount. In this case, the trajectory is closer to a region with low reliability.
[0034]
That is, in the vehicle parking apparatus according to the first embodiment, the position of the vehicle is detected, and at least the distance between the vehicle and the surrounding object and the direction of the object are measured, and the vehicle position, the vehicle and the object are measured. And at least the distance of the distance and azimuth is stored, the parking target position is set from the accumulated data point sequence of the object, and the vehicle is moved to the parking target position from the difference between the vehicle position and the parking target position Calculate the trajectory to be measured, calculate the reliability of the distance measurement data from the accumulated data, and calculate the trajectory for re-measuring at least the distance between the vehicle and the object and the direction from the reliability calculation data It is characterized by.
[0035]
That is, the vehicle parking apparatus according to the first embodiment is configured to measure at least the distance between the vehicle position detection unit 1 that detects the position of the vehicle and the distance between the vehicle and the surrounding object and the direction of the object. Distance measuring means 2 having a plurality of distance sensors, data storage means 3 for storing the position of the vehicle at the time when the object is detected, and at least the distance / azimuth between the vehicle and the object; Based on the difference between the parking target position setting means (not shown in the trajectory calculation means 8) for setting the parking target position from the data point sequence of the object stored in the data storage means 3, and the position of the vehicle and the parking target position. A trajectory calculation means 8 for calculating a trajectory for moving the vehicle to the parking target position, a distance measurement data reliability calculation means 6 for calculating a degree of variation in distance measurement data from the data stored in the data storage means 3, and a vehicle And the position of And a variability degree, those comprising a remeasurement trajectory calculating means 7 for calculating the trajectory of re-measuring at least the distance of the distance and direction between the vehicle and the object.
[0036]
Next, operations and effects of the vehicle control device according to the first embodiment will be described with reference to FIGS.
[0037]
FIG. 2 is a diagram showing the parking path 22 of the vehicle 21 in the parking lot, the arrangement of other parked vehicles 23, and the object detection range 24 of the distance measuring sensor of the distance measuring means 2 (FIG. 1).
[0038]
As the distance measuring sensor of the distance measuring means 2, for example, the above-described ultrasonic sensor that emits a fixed beam is used, and the distance measuring sensor is located on the left and right sides of the vehicle 21 so that the distance to the object on the side of the vehicle 21 can be detected. The object detection range 24 of the distance measuring sensor is arranged so as to face sideways. In this example, a total of two distance measuring sensors are arranged on the left and right of the rear part of the vehicle 21, but can be arranged on the left and right of the front part.
[0039]
Thus, the distance measuring sensor 2 of the distance measuring means 2 is arranged, and the position of the vehicle 21 detected by the vehicle position detecting means 1 when the object is detected as the vehicle 21 moves, and the distance measuring means 2 By accumulating data that makes two sets of distance (or distance and azimuth) to the detected object as one set, even if a fixed beam ranging sensor is used, Distance can be measured.
[0040]
FIG. 3 shows the distance measurement data detected by the distance measuring sensor of the distance measuring means 2 (FIG. 1) based on the travel locus 31 of the vehicle 21 (FIG. 2) in the parking lot shown in FIG. It is a figure which shows the example of 32.
[0041]
When the distance to the parked vehicle 23 is measured using an ultrasonic sensor as the distance measuring sensor of the distance measuring means 2, the distance measurement data 32 is mixed with noise due to multiple reflections as shown in FIG. However, the error from the actual environment becomes large.
[0042]
FIG. 4 is a diagram illustrating an example of calculation data of the distance measurement data reliability calculation unit 6.
[0043]
As shown in FIG. 4, the line segment determined to be highly reliable by the distance measurement data reliability calculation means 6 is expressed by a thin line, and the line segment determined to be low reliability is expressed by a thick line. . In this example, it is determined that the reliability of the distance measurement data at the head of the body of the parked vehicle 23 is low. In general, the front part of the body of a passenger car is more uneven than the side of the body, and the distance measurement data often varies.
[0044]
FIG. 5 shows an example of remeasurement trajectory calculation data calculated by the remeasurement trajectory calculation means 7 so that the ultrasonic sensor remeasures the low reliability area obtained by the distance measurement data reliability calculation means 6. FIG.
[0045]
In FIG. 5, reference numeral 51 denotes a travel locus, and 52 denotes an instruction track.
[0046]
FIG. 6 is a diagram showing an example of distance measurement data 62 that travels again on the indicated track 52 and is detected by the distance measuring sensor of the distance measuring means 2.
[0047]
In this example, a method of calculating a trajectory that is closer to the region where the degree of variation is larger than that at the first measurement is used. In a distance measuring sensor such as an ultrasonic sensor, the shorter the distance to an object (object) around the vehicle 21 is, the smaller the spread of the fixed beam of the ultrasonic sensor is, and the spatial resolution is improved. Accordingly, even an object with many irregularities as in this example can be measured with a small influence of multiple reflections, etc., so that distance measurement data 62 with a small variation as shown in FIG. can get.
[0048]
As shown in the first embodiment, the distance measurement characteristics of the sensor at the time of re-measurement, even when the degree of dispersion of the distance measurement data is large at the first distance measurement and it is difficult to assist driving operation during parking By instructing a remeasurement trajectory that takes into account the distance of surrounding obstacles with a small degree of variation, the parking space around the vehicle 21 can be detected accurately, and accurate parking assistance is possible. .
[0049]
FIG. 7 is a diagram showing a change in the reflected intensity of the ultrasonic wave with respect to the distance to the obstacle when the ultrasonic sensor is used, and FIG. 8 is a diagram showing the measurement conditions of FIG. In FIG. 8, reference numeral 81 denotes an ultrasonic sensor.
[0050]
In this example, the measurement is performed under the measurement conditions shown in FIG. As is clear from FIG. 7, measurement data with a smaller spread is obtained as the distance to the obstacle is shorter. This indicates that the shorter the distance to the obstacle is, the smaller the variation degree of the measurement data is, and the distance to the obstacle with a small degree of variation can be measured by approaching the obstacle again and re-measurement.
[0051]
That is, when the driver travels the vehicle 21 as shown in the travel locus 31 of FIG. 3, the position of the vehicle 21 is detected by the vehicle position detection means 1, and the vehicle 21 and its surroundings are detected by the distance measurement sensor of the distance measurement means 2. The distance and direction from the object such as the parked vehicle 23 are measured, and the distance measurement data 32 is obtained.
[0052]
The data storage means 3 stores the position of the vehicle 21 at the time when an object such as the parked vehicle 23 is detected, and the distance and direction between the vehicle 21 and surrounding objects.
[0053]
The parking target position is set by the parking target position setting means in the trajectory calculation means 4 from the object data point sequence stored in the data storage means 3.
[0054]
From the difference between the position of the vehicle 21 stored in the data storage means 3 and the parking target position, the trajectory for moving the vehicle 21 to the parking target position is calculated by the trajectory calculating means 8.
[0055]
From the data stored in the data storage means 3, the distance measurement data reliability calculation means 6 calculates the degree of variation of the distance measurement data as shown in FIG.
[0056]
From the position of the vehicle 21 and the degree of variation, the remeasurement trajectory calculating means 7 calculates a trajectory for remeasurement of the distance and direction between the vehicle 21 and the object, and the indicated trajectory 52 in FIG. This is shown in FIG.
[0057]
The driver sees it and drives the vehicle 21 as indicated by the indicated track 52.
[0058]
Then, the position of the vehicle 21 is detected again by the vehicle position detecting means 1, and the distance and direction between the vehicle 21 and the surrounding object such as the parked vehicle 23 are measured by the distance measuring sensor of the distance measuring means 2. More accurate distance measurement data 62 is obtained from the distance data 32.
[0059]
Similarly, the data storage means 3 stores the position of the vehicle 21 at the time when an object such as the parked vehicle 23 is detected, and the distance and direction between the vehicle 21 and surrounding objects.
[0060]
The parking target position is set by the parking target position setting means in the trajectory calculation means 4 from the object data point sequence stored in the data storage means 3.
[0061]
From the difference between the position of the vehicle 21 stored in the data storage means 3 and the parking target position, the trajectory calculating means 8 calculates a more accurate trajectory than before moving the vehicle 21 to the parking target position.
[0062]
The driver can accurately park the vehicle by moving the vehicle based on the indicated trajectory.
[0063]
FIG. 9 is a diagram showing a change in the reflection intensity of the ultrasonic wave with respect to the distance to the obstacle when the same ultrasonic sensor 81 as in FIG. 7 is used, and FIG. 10 is a diagram showing the measurement conditions of FIG.
[0064]
When FIG. 9 is compared with FIG. 7, the measurement data of FIG. 7 is clearly the measurement data with a smaller degree of variation. As shown in FIG. 10, when the object to be measured and the ultrasonic sensor 81 are not facing each other, the reflection is weak, the ultrasonic beam is spread, and the sensor and the obstacle are at both ends of the beam. This is because the degree of variation increases because the difference between the distances increases.
[0065]
In the first embodiment, distance measurement data with higher accuracy is obtained by re-measurement in a trajectory that is closer to the measurement target. However, as described above, from the measurement target in the medium like an ultrasonic sensor. In the sensor of the method using the reflection of the light, since the stronger reflection is obtained when the distance measuring object and the sensor are facing each other, the degree of variation is often small, so the measuring object and the sensor are facing each other. By making a trajectory that can be used as a positive measurement trajectory, it is possible to grasp surrounding obstacles with a small degree of variation.
[0066]
It is also possible to attach a sensor to the rear bumper of the vehicle and use the sensor at the time of remeasurement. In this case, the vehicle can be guided to a position where parking is easier at the same time as the remeasurement trajectory.
[0067]
Furthermore, as the calculation of reliability by the distance measurement data reliability calculation means 6, the method of calculating the degree of variation of the distance measurement data is used, but it can be replaced with a method of calculating reliability based on the number of data. In this case, for example, even if the detection speed is such that the moving speed of the vehicle is large and the interval between the data is wide, the density can be increased by instructing the trajectory for re-measurement of the area. Therefore, accurate parking assistance is possible.
[0068]
In the above description, the degree of variation is used as the reliability. However, the spatial density may be used instead of the degree of variation.
[0069]
That is, such a vehicle control device includes a vehicle position detection unit 1 that detects the position of the vehicle, and a single or a plurality of a plurality of units that measure at least a distance between the vehicle and a surrounding object and a direction of the object. Distance measuring means 2 having a distance measuring sensor, data storage means 3 for storing the position of the vehicle at the time when the object is detected, and at least the distance / azimuth between the vehicle and the object, and data storage means From the difference between the parking target position setting means (not shown; in the trajectory calculation means 8) for setting the parking target position from the data point sequence of the object stored in 3, and the parking target position, A trajectory calculation means 8 for calculating a trajectory for moving the vehicle to a position, a distance measurement data reliability calculation means 6 for calculating a spatial density of the distance measurement data from the data stored in the data storage means 3, a position of the vehicle Spatial density and Et al., In which includes the re-measurement trajectory calculating means 7 for calculating the trajectory of re-measuring at least the distance of the distance and direction between the vehicle and the object.
[0070]
Embodiment 2
FIG. 11 is a diagram showing the configuration of the vehicle parking apparatus according to the second embodiment of the present invention.
[0071]
In the second embodiment of the present invention, only items different from the first embodiment will be described.
[0072]
In the second embodiment, a plurality of distance measuring means 2 are provided, and a sensor switching means 8 is further added. The sensor switching means 8 determines whether or not the vehicle is moving on the remeasurement trajectory based on the remeasurement trajectory calculated by the remeasurement trajectory calculation means and the position of the vehicle 21 detected by the vehicle position detection means 1. When the re-measurement trajectory is moving, the sensor is switched to a different sensor from that at the first measurement. For example, the sensor is switched to a sensor arranged by shifting the distance measuring axis. In this case, at the time of the first measurement, even in an environment where the reflection intensity is small due to the angle between the measurement object and the distance measurement axis and the distance measurement data varies, Since distance measurement can be performed with different distance measurement axes, it is possible to grasp surrounding obstacles with a small degree of variation.
[0073]
Furthermore, in the second embodiment, instead of switching to a sensor having a different distance measurement axis, a sensor with a combination of different distance measurement principles and media such as an ultrasonic sensor and a stereo camera, an optical radar and a radio wave radar, etc. May be switched.
[0074]
Although the present invention has been specifically described above based on the embodiments, the present invention is not limited to the above-described embodiments, and it is needless to say that various modifications can be made without departing from the scope of the invention. For example, in Embodiments 1 and 2 described above, the present invention is applied to a parking assistance device in which a driver performs a driving operation. It is also applicable to.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of a vehicle parking apparatus according to a first embodiment of the present invention.
FIG. 2 is a diagram illustrating a parking trajectory of a vehicle in a parking lot, an arrangement of other parked vehicles, and an object detection range of a distance measuring sensor.
FIG. 3 is a diagram showing an example of distance measurement data detected by a distance measurement sensor based on a vehicle travel locus in the parking lot shown in FIG. 2 and stored in data storage means;
FIG. 4 is a diagram showing an example of calculation data of distance measurement data reliability calculation means.
FIG. 5 is a diagram illustrating an example of remeasurement trajectory calculation data.
FIG. 6 is a diagram illustrating an example of ranging data detected by a ranging sensor after traveling again on a designated track.
FIG. 7 is a diagram showing a change in ultrasonic reflection intensity with respect to a distance to an obstacle when an ultrasonic sensor is used.
FIG. 8 is a diagram showing the measurement conditions of FIG.
FIG. 9 is a diagram showing a change in reflection intensity of ultrasonic waves with respect to a distance to an obstacle when the same ultrasonic sensor as that in FIG. 7 is used.
10 is a diagram showing the measurement conditions of FIG. 9. FIG.
FIG. 11 is a diagram showing a configuration of a vehicle parking apparatus according to a second embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Vehicle position detection means, 2 ... Ranging means, 3 ... Data storage means, 4 ... Trajectory calculation means, 5 ... Trajectory instruction apparatus, 6 ... Ranging data reliability calculation means, 7 ... Remeasurement trajectory calculation means, 8 DESCRIPTION OF SYMBOLS ... Sensor switching means, 21 ... Vehicle, 22 ... Parking track, 23 ... Parked vehicle, 24 ... Object detection range of distance measuring sensor, 31 ... Traveling track, 32 ... Distance measurement data, 51 ... Traveling track, 52 ... Indication track, 62: Distance measurement data, 81: Ultrasonic sensor.

Claims (9)

車両の位置を検出する車両位置検出手段と、
前記車両と前記車両の周囲の物体との距離・前記物体の方位のうちの少なくとも距離を計測する単一または複数個の測距センサを有する測距手段と、
前記物体が検出された時点での前記車両の位置と、前記車両と前記物体との距離・前記方位のうちの少なくとも距離とを記憶するデータ蓄積手段と、
前記データ蓄積手段に蓄積された前記物体のデータ点列から駐車目標位置を設定する駐車目標位置設定手段と、
前記車両の位置と前記駐車目標位置との差から、前記駐車目標位置へ前記車両を移動させる軌道を算出する軌道算出手段と、
前記データ蓄積手段に蓄積されたデータから、測距データのばらつき度合いを算出する測距データばらつき度合い算出手段と、
前記測距データのばらつき度合いが大きいと判断された領域を抽出し、前記測距手段により前記車両と前記物体との距離・前記方位のうちの少なくとも距離を再計測するために、前記軌道算出手段により算出された軌道よりも、前記抽出された領域に前記車両が接近する軌道を再度算出する再計測軌道算出手段と、を具備することを特徴とする車両駐車装置。
Vehicle position detection means for detecting the position of the vehicle;
Ranging means having a single or a plurality of ranging sensors for measuring at least a distance of a distance between the vehicle and an object around the vehicle and an orientation of the object;
Data storage means for storing the position of the vehicle at the time when the object is detected, the distance between the vehicle and the object, and at least the distance of the azimuth;
A parking target position setting means for setting a parking target position from the data point sequence of the object stored in the data storage means;
Trajectory calculating means for calculating a trajectory for moving the vehicle to the parking target position from the difference between the position of the vehicle and the parking target position;
Ranging data variation degree calculating means for calculating a variation degree of ranging data from the data accumulated in the data accumulating means,
The trajectory calculating means for extracting an area determined to have a large degree of variation in the distance measurement data and re-measuring at least the distance / direction of the vehicle and the object by the distance measuring means. A vehicle parking apparatus comprising: a remeasurement trajectory calculation unit that recalculates a trajectory in which the vehicle approaches the extracted area, rather than the trajectory calculated by the above .
車両の位置を検出する車両位置検出手段と、
前記車両と前記車両の周囲の物体との距離・前記物体の方位のうちの少なくとも距離を計測する単一または複数個の測距センサを有する測距手段と、
前記物体が検出された時点での前記車両の位置と、前記車両と前記物体との距離・前記方位のうちの少なくとも距離とを記憶するデータ蓄積手段と、
前記データ蓄積手段に蓄積された前記物体のデータ点列から駐車目標位置を設定する駐車目標位置設定手段と、
前記車両の位置と前記駐車目標位置との差から、前記駐車目標位置へ前記車両を移動させる軌道を算出する軌道算出手段と、
前記データ蓄積手段に蓄積されたデータから、測距データの空間密度を算出する測距データ空間密度算出手段と、 前記測距データの空間密度が小さいと判断された領域を抽出し、前記測距手段により前記車両と前記物体との距離・前記方位のうちの少なくとも距離を再計測するために、前記軌道算出手段により算出された軌道よりも、前記抽出された領域に前記車両が接近する軌道を再度算出する再計測軌道算出手段と、を具備することを特徴とする車両駐車装置。
Vehicle position detection means for detecting the position of the vehicle;
Ranging means having a single or a plurality of ranging sensors for measuring at least a distance of a distance between the vehicle and an object around the vehicle and an orientation of the object;
Data storage means for storing the position of the vehicle at the time when the object is detected, the distance between the vehicle and the object, and at least the distance of the azimuth;
A parking target position setting means for setting a parking target position from the data point sequence of the object stored in the data storage means;
Trajectory calculating means for calculating a trajectory for moving the vehicle to the parking target position from the difference between the position of the vehicle and the parking target position;
Ranging data spatial density calculating means for calculating the spatial density of ranging data from the data accumulated in the data accumulating means, and extracting a region where the spatial density of the ranging data is determined to be small, and the ranging In order to remeasure at least the distance of the distance between the vehicle and the object and the direction by the means, a trajectory where the vehicle approaches the extracted area rather than the trajectory calculated by the trajectory calculating means. And a re-measurement trajectory calculating means for calculating again .
前記再計測軌道算出手段により算出された軌道を表示する軌道指示手段をさらに備え、  A trajectory indicating means for displaying the trajectory calculated by the remeasurement trajectory calculating means,
前記測距手段は、前記軌道指示手段に前記軌道が表示された後に走行する前記車両と前記物体との距離・前記方位のうちの少なくとも距離を再計測し、前記データ蓄積手段に送出することを特徴とする請求項1又は2に記載の車両駐車装置。  The distance measuring means re-measures at least the distance / direction between the vehicle and the object that travels after the trajectory is displayed on the trajectory instruction means, and sends the distance to the data storage means. The vehicle parking apparatus according to claim 1 or 2, characterized in that
前記測距手段が備える測距センサは、超音波センサであることを特徴とする請求項1〜3の何れか一項に記載の車両駐車装置。The vehicle parking apparatus according to any one of claims 1 to 3, wherein the distance measuring sensor provided in the distance measuring means is an ultrasonic sensor. 前記車両位置検出手段は、前記車両の移動距離と進行方向とを検出することを特徴とする請求項1〜4の何れか一項に記載の車両駐車装置。The said vehicle position detection means detects the moving distance and the advancing direction of the said vehicle, The vehicle parking apparatus as described in any one of Claims 1-4 characterized by the above-mentioned. 前記測距センサは、前記車両と前記物体との距離および方位を計測することを特徴とする請求項1〜5の何れか一項に記載の車両駐車装置。6. The vehicle parking apparatus according to claim 1 , wherein the distance measuring sensor measures a distance and a direction between the vehicle and the object. 前記再計測時に前記測距センサの測距方向を変更する測距方向変更手段を有することを特徴とする請求項1〜6の何れか一項に記載の車両駐車装置。The vehicle parking apparatus according to any one of claims 1 to 6 , further comprising a distance measuring direction changing unit that changes a distance measuring direction of the distance measuring sensor during the remeasurement. 前記測距手段が、異なる計測原理に基づく複数の測距センサを有し、再計測時にセンサの種別を変更して計測することを特徴とする請求項1〜7の何れか一項に記載の車両駐車装置。The distance measuring means, different measuring comprises a plurality of distance measuring sensors based on the principle, according to any one of claims 1 to 7, characterized in that to measure by changing the type of sensor when remeasurement Vehicle parking device. 前記軌道算出手段と前記再計測軌道算出手段とでそれぞれ算出された軌道を指示する軌道指示手段を有することを特徴とする請求項1又は2に記載の車両駐車装置。 3. The vehicle parking apparatus according to claim 1, further comprising a trajectory instruction unit that instructs a trajectory calculated by the trajectory calculation unit and the remeasurement trajectory calculation unit. 4.
JP2001246018A 2001-08-14 2001-08-14 Vehicle parking device Expired - Fee Related JP4686934B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001246018A JP4686934B2 (en) 2001-08-14 2001-08-14 Vehicle parking device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001246018A JP4686934B2 (en) 2001-08-14 2001-08-14 Vehicle parking device

Publications (2)

Publication Number Publication Date
JP2003058998A JP2003058998A (en) 2003-02-28
JP4686934B2 true JP4686934B2 (en) 2011-05-25

Family

ID=19075659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001246018A Expired - Fee Related JP4686934B2 (en) 2001-08-14 2001-08-14 Vehicle parking device

Country Status (1)

Country Link
JP (1) JP4686934B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005009992A (en) * 2003-06-18 2005-01-13 Denso Corp Periphery monitoring apparatus for vehicle
DE102004027640A1 (en) * 2004-06-05 2006-06-08 Robert Bosch Gmbh Method and device for assisted parking of a motor vehicle
JP4179285B2 (en) * 2005-01-12 2008-11-12 トヨタ自動車株式会社 Parking assistance device
JP4618506B2 (en) * 2005-10-20 2011-01-26 アイシン精機株式会社 Object recognition device
JP4662147B2 (en) * 2005-10-20 2011-03-30 アイシン精機株式会社 Object recognition device
JP2007240275A (en) * 2006-03-07 2007-09-20 Olympus Corp Range finder/imaging device, range finding method/imaging method, range finding program/imaging program and recording medium
WO2009060688A1 (en) * 2007-11-08 2009-05-14 Bosch Corporation Parking assistance device
JP4598048B2 (en) * 2007-11-28 2010-12-15 三菱電機株式会社 Parking assistance device
WO2010140458A1 (en) * 2009-06-03 2010-12-09 ボッシュ株式会社 Parking assist apparatus
JP4896208B2 (en) * 2009-11-10 2012-03-14 三菱電機株式会社 Parking assistance device
JP4896207B2 (en) * 2009-11-10 2012-03-14 三菱電機株式会社 Parking assistance device
US11410557B2 (en) * 2018-03-22 2022-08-09 Hitachi Astemo, Ltd. Parking assistance device
JP7236835B2 (en) * 2018-09-28 2023-03-10 株式会社デンソー Output device and output method
JP7192724B2 (en) * 2019-09-20 2022-12-20 株式会社デンソー parking assist device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03128416A (en) * 1989-07-04 1991-05-31 Nippondenso Co Ltd Device for guiding vehicle to garage
JPH05296777A (en) * 1992-04-24 1993-11-09 Nippondenso Co Ltd Target position guidance system of vehicle
JPH0765293A (en) * 1993-08-26 1995-03-10 Toyota Motor Corp Parking space detecting device
JPH07248382A (en) * 1994-03-11 1995-09-26 Nissan Motor Co Ltd Vehicle surrounding monitor device
JPH11255052A (en) * 1998-03-10 1999-09-21 Nissan Motor Co Ltd Parking space detecting device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03128416A (en) * 1989-07-04 1991-05-31 Nippondenso Co Ltd Device for guiding vehicle to garage
JPH05296777A (en) * 1992-04-24 1993-11-09 Nippondenso Co Ltd Target position guidance system of vehicle
JPH0765293A (en) * 1993-08-26 1995-03-10 Toyota Motor Corp Parking space detecting device
JPH07248382A (en) * 1994-03-11 1995-09-26 Nissan Motor Co Ltd Vehicle surrounding monitor device
JPH11255052A (en) * 1998-03-10 1999-09-21 Nissan Motor Co Ltd Parking space detecting device

Also Published As

Publication number Publication date
JP2003058998A (en) 2003-02-28

Similar Documents

Publication Publication Date Title
US11249182B2 (en) Methods and systems for clearing sensor occlusions
JP4686934B2 (en) Vehicle parking device
JP3865121B2 (en) Vehicle obstacle detection device
KR102052313B1 (en) Device for assisting a driver driving a vehicle or for independently driving a vehicle
CN101808852B (en) Control device for a display device of a parking device, and representation method
US20090128364A1 (en) Parking device
US20040239490A1 (en) Alarming system for vehicle and alarm generating method for vehicle
CN102310857A (en) The parking assisting system that is used for horizontal parking position
EP2148220A1 (en) A motor-vehicle driving assistance system based on radar sensors for detecting the presence of obstacles in an area behind and/or beside the vehicle, particularly for parking assistance
JP2018189422A (en) Obstacle detector
CN101616833A (en) Parking aid
CN102596691A (en) Method for support when driving out of a parking space
CN101228059A (en) Parking apparatus
CN112771591B (en) Method for evaluating the influence of an object in the environment of a vehicle on the driving maneuver of the vehicle
JP4759878B2 (en) Parking assistance device for vehicles
CN1960896A (en) Method and device for supporting parking process of vehicle
US20080238722A1 (en) Parking Aid for a Vehicle and Parking Aid Method
JP4406608B2 (en) Method for detecting geometric shape data for vehicle parking process
JP2004108944A (en) Obstacle detection device
WO2012140769A1 (en) Object detection device and method for vehicle
JP2002228734A (en) Peripheral object confirming device
JP2002243857A (en) Surrounding body recognizer
US20220146652A1 (en) Multi-Sensor Synchronization Measurement Device
JP2001122059A (en) Parking space detecting device for vehicle
JP2009294094A (en) System and method for detecting obstacle, and computer program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080625

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20091009

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100916

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20101013

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110131

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees