JPH08101120A - Wavelength dispersion correcting optical device for evanescent wave intrusion length - Google Patents

Wavelength dispersion correcting optical device for evanescent wave intrusion length

Info

Publication number
JPH08101120A
JPH08101120A JP23643994A JP23643994A JPH08101120A JP H08101120 A JPH08101120 A JP H08101120A JP 23643994 A JP23643994 A JP 23643994A JP 23643994 A JP23643994 A JP 23643994A JP H08101120 A JPH08101120 A JP H08101120A
Authority
JP
Japan
Prior art keywords
wavelength
evanescent wave
angle
prism
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23643994A
Other languages
Japanese (ja)
Inventor
Masafumi Kiguchi
雅史 木口
Midori Katou
美登里 加藤
Morio Taniguchi
彬雄 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP23643994A priority Critical patent/JPH08101120A/en
Publication of JPH08101120A publication Critical patent/JPH08101120A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE: To correct the evanescent wave intrusion length varying according to the wavelength changing the incident angle to the total reflection surface of a prism in accordance with the wavelength by the use of a dispersing element. CONSTITUTION: A diffraction light originating from an incident white light at a certain angle on a diffraction lattice 4 is collimated by a lens 1 having a focal distance f, and upon image inversion by two lenses 3, is converged by a lens 2 having a focal distance f. The optical axis of this lens system is laid on the line tying the center of the lattice 4 with a prism 5 which is formed into a semi-columnar shape and whose angle change due to refraction is ignorable. Because therein the desired incident angle can not be obtained so long as the dispersion angle of the lattice 4 remains as it is, the total reflection surface of the prism 5 is inclined from the optical axis so that an offset angle is generated, and thereby, the desired incident angle is established. This permits obtaining an evanescent wave intrusion length which is constant in the visible ray region. That is, it is possible to segregate beams of light having different, wavelengths using dispersing element of the lattice 4 and change the incident angle according to the wavelength by converging onto the total reflection surface by the lenses, and the evanescent wave intrusion length can be made constant.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ATR分光装置、近接
場顕微鏡などエバネセント波を用いた光学装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical device using an evanescent wave such as an ATR spectroscopic device and a near field microscope.

【0002】[0002]

【従来の技術】エバネセント波は、波長以下の侵入長の
範囲までに局所化した光であるので、界面近傍の性質を
調べたり、深さ方向の情報を得るのに用いられる。従
来、これを用いた装置としては、ATR分光装置や近接
場顕微鏡などが一般的である。ATR分光については、
新実験化学講座4 基礎技術3 光[II](日本化学
会編 丸善 昭和59年3月20日発行)の第408頁
から第416頁に解説されている。また、近接場顕微鏡
については、例えば、S.Jiangら著、ジャパニー
ズ ジャーナル オブ アプライド フィジックス 第
30巻(1991年)第2107頁から第2111頁
(Japanese Journal ofAppli
ed Physics 30、1991、pp.210
7−2111)に記述がある。
2. Description of the Related Art Since an evanescent wave is a light localized within a range of penetration length equal to or shorter than a wavelength, it is used for investigating properties near the interface and obtaining information in the depth direction. Conventionally, as a device using this, an ATR spectroscopic device, a near-field microscope, etc. are generally used. For ATR spectroscopy,
New Experimental Chemistry Course 4 Basic Technology 3 Light [II] (edited by the Chemical Society of Japan, Maruzen, published March 20, 1984), pages 408 to 416. Regarding the near field microscope, for example, S.M. Jiang et al., The Japanese Journal of Applied Physics, Vol. 30 (1991), pp. 2107 to 2111 (Japanese Journal of Appli).
ed Physics 30, 1991, pp. 210
7-2111).

【0003】しかし、エバネセント波の侵入長は波長の
関数であるため、分光等の目的のために白色光などスペ
クトル幅の広い光を用いた場合、色、つまり波長によっ
てエバネセント波の侵入長が異なる。以下、便宜的にこ
れをエバネセント波の侵入長の波長分散と呼ぶことにす
る。たとえば、可視光領域では、その侵入長はほぼ2倍
違ってくる。このことは、ATR分光などでは、波長に
よって実効深さが異なってしまうため、異なる条件での
測定をしていることになる。また、近接場顕微鏡では分
解能が波長によって異なってしまうという問題をもたら
す。
However, since the penetration length of the evanescent wave is a function of wavelength, when light with a wide spectrum width such as white light is used for the purpose of spectroscopy, the penetration length of the evanescent wave varies depending on the color, that is, the wavelength. . Hereinafter, for convenience, this is referred to as wavelength dispersion of the penetration length of the evanescent wave. For example, in the visible light region, the penetration length is almost doubled. This means that in ATR spectroscopy and the like, the effective depth varies depending on the wavelength, and therefore the measurement is performed under different conditions. In addition, the near-field microscope brings about a problem that the resolution varies depending on the wavelength.

【0004】従来は、これを計算で補正したり、単色光
を用いてその波長掃引しながら入射角などの条件を適宜
調整するという方法を取っていた。しかし、これらの方
法では、試料が一様であるなどの条件が必要であった
り、測定に多くの時間を有するなどの問題があった。
Conventionally, a method of correcting this by calculation or appropriately adjusting conditions such as an incident angle while sweeping its wavelength using monochromatic light has been used. However, these methods have problems that conditions such as uniform sample are required and that measurement takes a lot of time.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、白色
光などのスペクトル幅の広い光を用いても、エバネセン
ト波の侵入長の波長分散の無い光学系を提供することに
ある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide an optical system in which the penetration length of an evanescent wave is not wavelength-dispersed even when light having a wide spectrum width such as white light is used.

【0006】[0006]

【課題を解決するための手段】エバネセント波の侵入長
は、入射角にも依存するので、波長毎に入射角を変え
て、侵入長の波長分散を自動的に補正するようにすれば
よい。波長毎に入射角を変えるのは、回折格子などの分
散素子を用いることで実現できる。
Since the penetration length of the evanescent wave depends on the incident angle, the incident angle may be changed for each wavelength to automatically correct the chromatic dispersion of the penetration length. Changing the incident angle for each wavelength can be realized by using a dispersive element such as a diffraction grating.

【0007】[0007]

【作用】エバネセント波の侵入長は(数1)で与えられ
る。
FUNCTION The penetration length of the evanescent wave is given by (Equation 1).

【0008】[0008]

【数1】 [Equation 1]

【0009】ここで、tinは全反射面への光の入射角、n
pはプリズムの屈折率、nsはプリズム全反射面に接する
媒体の屈折率、ラムダは光の波長を表わす。
Where tin is the angle of incidence of light on the total reflection surface, n
p is the refractive index of the prism, ns is the refractive index of the medium in contact with the prism total reflection surface, and lambda is the wavelength of light.

【0010】よって、長波長の光ほど入射角を大きくす
ればよいことが判る。回折格子などの分散素子を用いて
波長の異なる光を空間的に分離し、レンズ等で全反射面
に集光すれば、入射角を波長によって変えることが可能
になる。回折格子などの分散角は、そのままでは所望の
入射角とはならないので、全反射面を光軸から傾けるこ
とでオフセット角を作り、また適当な倍率を有するレン
ズ系を用いて角度を定数倍に拡大縮小すれば、適当な条
件を選ぶことで、侵入長が一定となるような入射角を得
ることが可能になる。
Therefore, it is understood that the longer the wavelength of light, the larger the incident angle. By using a dispersive element such as a diffraction grating to spatially separate light having different wavelengths and condensing the light on a total reflection surface with a lens or the like, the incident angle can be changed depending on the wavelength. The dispersion angle of the diffraction grating, etc. does not reach the desired incident angle as it is, so an offset angle is created by tilting the total reflection surface from the optical axis, and the angle is a constant multiple using a lens system with an appropriate magnification. By enlarging or reducing the size, it is possible to obtain an incident angle with which the penetration length is constant by selecting appropriate conditions.

【0011】[0011]

【実施例】【Example】

実施例1 本発明の一実施例を、図1を用いて説明する。コリメー
トされた白色光を回折格子4に角度aで入射せしめ、回
折光を、焦点距離f1のレンズ1でコリメートし、2枚
のレンズ3で像反転した後、焦点距離f2のレンズ2で
集光する。ガラスプリズム5は、屈折による角度変化が
無視できるように、半円柱形に加工している。これは球
形でもよい。回折格子4とプリズム5の中心を結ぶ線上
にレンズの光軸を配置している。この線と回折格子4の
法線のなす角をcとする。プリズム5を更に傾ける角
度、つまり前述のオフセット角をtとする。レンズ3を
2枚用いたのは、短波長の光ほど回折角は小さいので、
プリズム5への入射角を小さくするためには、図1の配
置では、像を反転する必要があるためである。
Example 1 An example of the present invention will be described with reference to FIG. The collimated white light is made incident on the diffraction grating 4 at an angle a, the diffracted light is collimated by the lens 1 having the focal length f1, the image is inverted by the two lenses 3, and the light is condensed by the lens 2 having the focal length f2. To do. The glass prism 5 is processed into a semi-cylindrical shape so that an angle change due to refraction can be ignored. It may be spherical. The optical axis of the lens is arranged on the line connecting the centers of the diffraction grating 4 and the prism 5. The angle between this line and the normal to the diffraction grating 4 is c. The angle at which the prism 5 is further tilted, that is, the above-mentioned offset angle is t. Two lenses 3 are used because the shorter the wavelength of light, the smaller the diffraction angle,
This is because it is necessary to invert the image in the arrangement of FIG. 1 in order to reduce the angle of incidence on the prism 5.

【0012】回折格子4は、1200本/mmのものを
用い、1次の回折を利用した。エバネセント波の侵入長
は近接場顕微鏡を用いて測定した。光源としては、タン
グステンランプの放射光をピンホールを通したのち、レ
ンズでコリメートしたものを用いた。
As the diffraction grating 4, one having 1200 lines / mm is used, and first-order diffraction is used. The penetration length of the evanescent wave was measured using a near field microscope. As a light source, a light emitted from a tungsten lamp was passed through a pinhole and then collimated by a lens.

【0013】a=0.58度、c=36.8度、t=0.
6度、f1/f2=0.57とした時の、エバネセント
波の侵入長の計算結果と測定結果を合わせて図2に示
す。これより、可視領域でほぼ一定の侵入長を実現でき
たことがわかる。ただし、この場合の計算と測定は、図
1で試料11が無い場合、つまり、全反射面が空気とプ
リズムの界面である場合について行った。
A = 0.58 degrees, c = 36.8 degrees, t = 0.
FIG. 2 shows the calculation result and the measurement result of the penetration length of the evanescent wave when 6 degrees and f1 / f2 = 0.57. From this, it can be seen that an almost constant penetration length was realized in the visible region. However, the calculation and measurement in this case were performed in the case where the sample 11 was not present in FIG. 1, that is, the case where the total reflection surface was the interface between air and the prism.

【0014】ここでは、合計4枚のレンズを用いている
が、等価な光学系は適当なレンズを組み合わせることで
実現でき、その枚数を減らすことは容易にできる。更
に、侵入長が120nmの場合について実験したが、種
々の侵入長についても適当な条件を選ぶことで、同様の
結果を得ることができる。また、本実施例では、レンズ
の色収差を無くすため、アクロマ−トレンズを用いた。
Although a total of four lenses are used here, an equivalent optical system can be realized by combining appropriate lenses, and the number can be easily reduced. Further, although the experiment was carried out for the penetration depth of 120 nm, similar results can be obtained for various penetration lengths by selecting appropriate conditions. Further, in this embodiment, an achromatic lens is used in order to eliminate chromatic aberration of the lens.

【0015】更に、本実施例では、ATR分光を想定し
て、吸収測定が可能となるようにした。全反射した光
は、波長毎に異なる角度に反射されてくる。つまりすで
に分光されているので、そのまま1次元フォトダイオー
ドアレイを用いて強度を測定すれば、スペクトル分布を
得ることができる。ここでは、2次元のフォトダイオー
ドアレイ10を配置した。試料11はプリズム5の全反
射面の一部に密着せしめているが、図3のように、試料
の無い部分からの反射光は参照光として用いることがで
きる。これを2次元のフォトダイオードアレイを用い
て、試料に当たった光とを同時に測定すれば、2光束測
定が可能になるわけである。2次元フォトダイオードア
レイ10の代わりに、1次元フォトダイオードアレイを
2本あるいはそれ以上用いても良い。なお、レンズ12
は、反射光をコリメートするためのものである。
Further, in the present embodiment, absorption measurement is made possible by assuming ATR spectroscopy. The totally reflected light is reflected at different angles for each wavelength. That is, since the light has already been spectrally dispersed, a spectrum distribution can be obtained by measuring the intensity as it is using the one-dimensional photodiode array. Here, the two-dimensional photodiode array 10 is arranged. The sample 11 is in close contact with a part of the total reflection surface of the prism 5, but the reflected light from the part without the sample can be used as the reference light as shown in FIG. If this is measured at the same time with the light that hits the sample by using a two-dimensional photodiode array, it is possible to measure two light fluxes. Instead of the two-dimensional photodiode array 10, two or more one-dimensional photodiode arrays may be used. The lens 12
Is for collimating the reflected light.

【0016】このように分光測定に応用する場合は、元
来回折格子は必要であったわけであるから、本発明によ
って特に回折格子などの高価な部品の点数の増加を招く
訳ではない。
In the case of application to spectroscopic measurement as described above, since the diffraction grating was originally required, the present invention does not cause an increase in the number of expensive components such as the diffraction grating.

【0017】実施例2 本発明の別の実施例を、図4を用いて説明する。概ね、
実施例1と同様であるが、この場合は、像反転をする必
要がない配置になっている。これにより、レンズの数を
減らすことができ、調整等も簡単になる。更に、プリズ
ムは固定することを考え、オフセット角は回折格子側で
調節することにした。侵入長が120nmの場合も実施
例1と同様に可能であるが、ここでは、侵入長が150
nmとなるように調整した。この時のパラメータは、a
=1.56度、c=39.8度、t2=0.6度、f1/
f2=0.34であった。
Embodiment 2 Another embodiment of the present invention will be described with reference to FIG. Generally,
This is the same as the first embodiment, but in this case, the arrangement is such that it is not necessary to invert the image. As a result, the number of lenses can be reduced, and adjustment and the like can be simplified. Furthermore, in consideration of fixing the prism, we decided to adjust the offset angle on the diffraction grating side. A penetration depth of 120 nm is also possible in the same manner as in Example 1, but a penetration depth of 150 is used here.
It was adjusted to be nm. The parameter at this time is a
= 1.56 degrees, c = 39.8 degrees, t2 = 0.6 degrees, f1 /
f2 was 0.34.

【0018】[0018]

【発明の効果】本発明を用いれば、エバネセント波の侵
入長が波長によって変化しないようにできるので、エバ
ネセント波を用いた測定、たとえばATR分光や界面の
深さ方向の蛍光分光、近接場顕微鏡などの、実効深さの
波長による変化や解像度の波長変化を抑さえることがで
きる。さらに、経時変化の問題となる試料については、
光源として白色光などの極めてスペクトル幅の広い光源
を用いて、必要な波長領域を同時測定する必要がある
が、特にこの場合、本発明を用いることが重要となる。
According to the present invention, since the penetration length of the evanescent wave can be prevented from changing depending on the wavelength, measurement using the evanescent wave, for example, ATR spectroscopy, fluorescence spectroscopy in the depth direction of the interface, near-field microscope, etc. It is possible to suppress the change in the effective depth due to the wavelength and the change in the resolution due to the wavelength. Furthermore, for samples that pose a problem of aging,
It is necessary to simultaneously measure the necessary wavelength region by using a light source such as white light having an extremely wide spectrum width as a light source. In this case, it is important to use the present invention.

【0019】本実施例では、分散素子として回折格子用
いたが、プリズムでもよい。また、可視光について検討
を行ったが、紫外光、赤外光についても同様のことが実
現できる。また、光源として、白色光を用いたが、色素
レーザやチタンサファイヤレーザ、或いはパラメトリッ
ク発振器などの波長可変光源を用いてもよい。この時、
レーザを波長掃引して波長毎の測定が必要となるが、強
い光源を得ることができる。この場合でも、本発明の光
学装置を用いれば、波長毎に入射角を変える必要がな
く、固定した光学系を用いることができる。
In this embodiment, the diffraction grating is used as the dispersion element, but it may be a prism. Further, the study was conducted on visible light, but the same can be realized for ultraviolet light and infrared light. Although white light is used as the light source, a wavelength tunable light source such as a dye laser, a titanium sapphire laser, or a parametric oscillator may be used. This time,
Although it is necessary to sweep the wavelength of the laser to measure each wavelength, a strong light source can be obtained. Even in this case, if the optical device of the present invention is used, it is not necessary to change the incident angle for each wavelength, and a fixed optical system can be used.

【0020】通常、厚みの薄い試料を用いた場合には、
試料の屈折率の波長分散は無視できる。仮に、試料の屈
折率の波長分散が無視できない場合や、プリズムとして
屈折率の波長分散の大きな材質を用いた場合でも、これ
らを考慮することで、侵入長の波長分散が無視できるよ
うな条件を見い出すことができる。
Usually, when a thin sample is used,
The wavelength dispersion of the refractive index of the sample can be ignored. Even if the wavelength dispersion of the refractive index of the sample cannot be ignored, or even if a material with a large wavelength dispersion of the refractive index is used as the prism, by considering these, the condition that the wavelength dispersion of the penetration length can be ignored can be considered. Can be found.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の構成図。FIG. 1 is a configuration diagram of an embodiment of the present invention.

【図2】エバネセント波の侵入長の波長依存性。FIG. 2 shows wavelength dependence of penetration length of evanescent wave.

【図3】ATR分光装置における試料配置図。FIG. 3 is a diagram showing a sample arrangement in an ATR spectroscope.

【図4】本発明の別の実施例の構成図。FIG. 4 is a configuration diagram of another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1〜3:レンズ、4:回折格子、5:プリズム、10:
2次元フォトダイオードアレイ、11:試料、12:レ
ンズ。
1-3: lens, 4: diffraction grating, 5: prism, 10:
Two-dimensional photodiode array, 11: sample, 12: lens.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】スペクトル幅を有する光源を用いてエバネ
セント波を発生する機構を有する装置において、エバネ
セント波の侵入長の波長による変化を補正するために、
分散素子を用いて、プリズムの全反射界面への入射角を
波長により変えることを特徴とするエバネセント波侵入
長の波長分散補正光学装置。
1. A device having a mechanism for generating an evanescent wave using a light source having a spectral width, in order to correct a change in penetration length of the evanescent wave with wavelength,
A wavelength dispersion correcting optical device for evanescent wave penetration length, characterized in that an incident angle to a total reflection interface of a prism is changed by a wavelength by using a dispersive element.
【請求項2】請求項1に記載の光学装置において、分散
素子として回折格子を用いることを特徴とするエバネセ
ント波侵入長の波長分散補正光学装置。
2. An optical device according to claim 1, wherein a diffraction grating is used as the dispersion element, and a wavelength dispersion correction optical device for evanescent wave penetration length.
【請求項3】請求項1または2に記載の光学装置におい
て、プリズムとして半円柱形かあるいは半球形のものを
用いることを特徴とするエバネセント波侵入長の波長分
散補正光学装置。
3. An optical device according to claim 1 or 2, wherein a prism having a semi-cylindrical shape or a hemispherical shape is used, and an evanescent wave penetration length chromatic dispersion correction optical device is used.
JP23643994A 1994-09-30 1994-09-30 Wavelength dispersion correcting optical device for evanescent wave intrusion length Pending JPH08101120A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23643994A JPH08101120A (en) 1994-09-30 1994-09-30 Wavelength dispersion correcting optical device for evanescent wave intrusion length

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23643994A JPH08101120A (en) 1994-09-30 1994-09-30 Wavelength dispersion correcting optical device for evanescent wave intrusion length

Publications (1)

Publication Number Publication Date
JPH08101120A true JPH08101120A (en) 1996-04-16

Family

ID=17000777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23643994A Pending JPH08101120A (en) 1994-09-30 1994-09-30 Wavelength dispersion correcting optical device for evanescent wave intrusion length

Country Status (1)

Country Link
JP (1) JPH08101120A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10185806A (en) * 1996-12-27 1998-07-14 Ricoh Co Ltd Water content detector
JP2005527838A (en) * 2002-05-29 2005-09-15 トラスティーズ オブ プリンストン ユニバーシティ Method and apparatus for extended evanescent field exposure in fiber optic resonators for spectroscopic measurements of trace species
CN104949614A (en) * 2014-06-24 2015-09-30 常州和悦光电科技有限公司 System and apparatus for providing real-time wavelength correction for laser displacement interferometer

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10185806A (en) * 1996-12-27 1998-07-14 Ricoh Co Ltd Water content detector
US7504068B2 (en) 2001-12-12 2009-03-17 Trustees Of Princeton University Apparatus for enhanced evanescent field exposure in an optical fiber resonator for spectroscopic detection and measurement of trace species
US7504263B2 (en) 2001-12-12 2009-03-17 Trustees Of Princeton University Method for enhanced evanescent field exposure in an optical fiber resonator for spectroscopic detection and measurement of trace species
JP2005527838A (en) * 2002-05-29 2005-09-15 トラスティーズ オブ プリンストン ユニバーシティ Method and apparatus for extended evanescent field exposure in fiber optic resonators for spectroscopic measurements of trace species
JP2010014739A (en) * 2002-05-29 2010-01-21 Trustees Of Princeton Univ Apparatus for spectroscopic measurement of trace species
CN104949614A (en) * 2014-06-24 2015-09-30 常州和悦光电科技有限公司 System and apparatus for providing real-time wavelength correction for laser displacement interferometer

Similar Documents

Publication Publication Date Title
US7295330B2 (en) Film mapping system
JP3660680B2 (en) Spectrometer
EP0083573B1 (en) Spectrometry device
EP0740133B1 (en) Sample illumination for spectroscopic apparatus and method
US5689333A (en) Spectroscopic apparatus and methods
US6687007B1 (en) Common path interferometer for spectral image generation
US5784158A (en) Broad spectrum spectrometer apparatus
JP2733491B2 (en) Raman analyzer
US7365842B2 (en) Light scanning type confocal microscope
JP4880791B2 (en) System for measuring the polarimeter spectrum and other properties of a sample
US7292337B2 (en) Optical processor using detecting assembly and method using same
JP2007522445A (en) Method and apparatus for multi-mode spectral image analysis
US6396580B1 (en) Method and device for polychromatic fluorescence correlation spectroscopy
US20070046946A1 (en) Microscope apparatus
JPH08101120A (en) Wavelength dispersion correcting optical device for evanescent wave intrusion length
JPH02108929A (en) Double spectrographic device
CA1221851A (en) Imaging monochromator
JPH07128146A (en) Spectrometer
JPH01188816A (en) Spectral type scanning microscope
US4391523A (en) Scannable detector system for echelle grating spectrometers
JPH08271335A (en) Diffraction grating, and diffraction grating spectroscope using this diffraction grating
US20080239313A1 (en) Arrangement for an optical system for polarization-dependent, time-resolved optical spectroscopy, optical measurement systems and method for the polarization-dependent spectroscopic analysis of measurement light
US20040145744A1 (en) Measuring array
Voropai et al. Multi-object spectrometer with micromirror array
JP2532235B2 (en) Optical relay