JPH08101069A - Method and apparatus for estimating temperature of bar-like material - Google Patents

Method and apparatus for estimating temperature of bar-like material

Info

Publication number
JPH08101069A
JPH08101069A JP6237807A JP23780794A JPH08101069A JP H08101069 A JPH08101069 A JP H08101069A JP 6237807 A JP6237807 A JP 6237807A JP 23780794 A JP23780794 A JP 23780794A JP H08101069 A JPH08101069 A JP H08101069A
Authority
JP
Japan
Prior art keywords
temperature
outlet
strip
outlet side
inlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6237807A
Other languages
Japanese (ja)
Inventor
Masaki Nohira
正樹 野平
Kazuo Yamaguchi
和夫 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP6237807A priority Critical patent/JPH08101069A/en
Publication of JPH08101069A publication Critical patent/JPH08101069A/en
Pending legal-status Critical Current

Links

Landscapes

  • Radiation Pyrometers (AREA)
  • Control Of Metal Rolling (AREA)

Abstract

PURPOSE: To obtain a method and apparatus for estimating the temperature of a bar-like material with high accuracy and workability. CONSTITUTION: A multiple regression coefficient (k) and a correction amount αlearnt by a temperature achievement learning unit 7 are fed, along with an inlet side temperature T0 , to an arithmetic unit 8 where a predictive temperature Te on the outlet side is calculated according to a formula; Te=kT0 +α. A defective measurement detector 10 outputs an outlet side temperature T based on detection results from an end part detector 9 when a bar-like material S passes through a spot position of a thermometer 2. When the outlet side temperature T drops abruptly, the detector 10 makes a decision that the thermometer 2 is defective and interrupts provision of the outlet side temperature T. Furthermore, a command is delivered to the arithmetic unit 8 for outputting the outlet side predictive temperature Te on the outlet side. When the outlet side temperature T is substantially recovered to a level prior to failure of the thermometer 2, the detector 10 interrupts provision of output from the arithmetic unit 8 and resumes output of the outlet side temperature T.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、条材を圧延する複数の
圧延機にあって、最終圧延機の出側における条材の温度
を推定する方法、及びその実施に使用する装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for estimating the temperature of a strip material at the exit side of a final rolling mill in a plurality of rolling mills for rolling strip material, and an apparatus used for implementing the method.

【0002】[0002]

【従来の技術】複数の圧延機で熱間圧延することにより
条材が製造されている。その際、高品質の製品を製造す
るため、最終圧延機を通過した後の条材の温度に基づい
て、その上流における条材の加熱温度又は冷却温度等が
制御されている。従って、最終圧延機を通過した後の条
材の温度がその全長にわたって測定されないと、前述し
た制御が不能となるため、これを連続的に測定すること
が重要である。
2. Description of the Related Art Strips are manufactured by hot rolling with a plurality of rolling mills. At that time, in order to manufacture a high quality product, the heating temperature or the cooling temperature of the strip material upstream of the strip material is controlled based on the temperature of the strip material after passing through the final rolling mill. Therefore, if the temperature of the strip after passing through the final rolling mill is not measured over its entire length, the above-mentioned control becomes impossible, so it is important to measure this continuously.

【0003】図6は従来の測温装置の使用状態を示す模
式図であり、図中Sは条材である。矢符方向に搬送され
る条材Sの搬送域には、一対の圧延ロールを備え該圧延
ロールで条材Sを熱間圧延する圧延機14,15が所定距離
を隔てて配置してあり、条材Sは両圧延機14,15によっ
て製品径まで縮径される。圧延機14,15の入側及び出側
には、条材Sからの放射光を集光するレンズ11a ,12a
及び受光素子11b ,12b を備える温度計11,12が、条材
Sに対向して配置してある。条材Sの搬送域には、前記
レンズ11a ,12a が条材Sからの放射光を集光するため
のスポットが設定してあり、前記スポットを条材Sの中
央部が通過するようにしてある。そして圧延機15の入側
に配置された温度計11が測定した温度T0 は記録計16
に、また圧延機15の出側に配置された温度計12が測定し
た温度Tは記録計17に与えられるようになっている。
FIG. 6 is a schematic view showing a usage state of a conventional temperature measuring device, in which S is a strip. In the conveyance area of the strip S conveyed in the arrow direction, rolling mills 14 and 15 that are provided with a pair of rolling rolls and hot-roll the strip S with the rolling rolls are arranged at a predetermined distance. The strip S is reduced to the product diameter by both rolling mills 14 and 15. Lenses 11a and 12a for converging the radiated light from the strip S are provided on the entrance and exit sides of the rolling mills 14 and 15, respectively.
Also, thermometers 11 and 12 including the light receiving elements 11b and 12b are arranged to face the strip S. In the transport area of the strip S, there are set spots for the lenses 11a and 12a to collect the emitted light from the strip S, so that the central portion of the strip S passes through the spots. is there. The temperature T 0 measured by the thermometer 11 arranged on the inlet side of the rolling mill 15 is recorded by the recorder 16
Further, the temperature T measured by the thermometer 12 arranged on the output side of the rolling mill 15 is given to the recorder 17.

【0004】[0004]

【発明が解決しようとする課題】このような側温装置に
あっては、高い測定精度を得るためにレンズ11a ,12a
のスポットを狭くしてある。一方、条材Sは圧延機14,
15によって圧延されつつ搬送されるが、その際、条材S
の張力及び圧延機14,15の圧下力等の影響によって、条
材Sはその長手方向の軸がブレながら搬送される。その
ため、条材Sの製品径が20mm以下と小さい場合、圧
延機15を通過した条材Sは前述したブレによって該圧延
機15出側に配置された温度計12のスポットから外れる場
合があり、そのような場合には条材Sの温度が測定され
ない。なお、圧延機15の入側の条材Sにあっては、条材
Sの径が比較的大きいため、条材Sにブレが発生しても
圧延機15入側に配置した温度計11のスポットから外れな
い。
In such a side temperature device, in order to obtain high measurement accuracy, the lenses 11a, 12a
The spot is narrowed. On the other hand, the strip S is the rolling mill 14,
The material is rolled and conveyed by 15, but at that time, the strip S
Due to the influence of the tension of the strip and the rolling force of the rolling mills 14 and 15, the strip S is conveyed while its longitudinal axis is deviated. Therefore, when the product diameter of the strip S is as small as 20 mm or less, the strip S that has passed through the rolling mill 15 may deviate from the spot of the thermometer 12 arranged on the delivery side of the rolling mill 15 due to the above-mentioned blurring. In such a case, the temperature of the strip S is not measured. Since the diameter of the strip S is relatively large in the strip S on the inlet side of the rolling mill 15, even if the strip S is shaken, the temperature of the thermometer 11 arranged on the inlet side of the rolling mill 15 can be reduced. You can't get off the spot.

【0005】そのため従来の装置にあっては、オペレー
タが、圧延機15の入側に配置した温度計11から記録計16
に記録された結果に基づいて、圧延機15の出側に配置し
た温度計12で測定されなかった部分の温度を推定し、そ
れを補完していた。従って、作業効率が低く、また補完
すべき温度推定の精度が低いという問題があった。
Therefore, in the conventional apparatus, the operator operates the thermometer 11 to the recorder 16 arranged on the entrance side of the rolling mill 15.
Based on the result recorded in the above, the temperature of the portion which was not measured by the thermometer 12 arranged on the exit side of the rolling mill 15 was estimated and complemented. Therefore, there is a problem that work efficiency is low and temperature estimation accuracy to be supplemented is low.

【0006】本発明はかかる事情に鑑みてなされたもの
であって、その目的とするところは最終圧延機入側及び
出側に配置した温度計によって各々測定された複数の条
材の入側温度及び出側温度に基づいて相関関係と補正量
とを求め、求めた補正値及び相関関係並びに当該条材の
入側温度に基づいてその出側温度を推定することによっ
て、作業効率及び推定精度が高い条材温度の推定方法及
びその実施に使用する装置を提供することにある。
The present invention has been made in view of the above circumstances, and an object thereof is to measure the inlet side temperatures of a plurality of strips respectively measured by thermometers arranged at the inlet side and the outlet side of the final rolling mill. By calculating the correlation and the correction amount based on the output temperature and the output temperature, and estimating the output temperature based on the calculated correction value and the correlation and the input temperature of the strip, work efficiency and estimation accuracy can be improved. An object of the present invention is to provide a method for estimating a high strip temperature and an apparatus used for implementing the method.

【0007】[0007]

【課題を解決するための手段】第1発明に係る条材の推
定度方法は、条材を圧延する複数の圧延機の最終圧延機
の入側及び出側に前記条材の温度を測定する温度計がそ
れぞれ配置してあり、入側温度計が測定した入側温度に
基づいて出側温度を推定する方法において、両温度計に
よって各々測定された複数の条材の入側温度及び出側温
度に基づいて両者の相関関係を求め、該相関関係及び前
記入側温度を用いて出側温度を算出し、この算出温度及
び前記出側温度に基づいて補正値を求め、求めた補正値
及び前記相関関係並びに当該条材の入側温度に基づいて
その出側温度を推定することを特徴とする。
A strip material estimation method according to a first aspect of the present invention measures the temperature of the strip material on the inlet side and outlet side of a final rolling mill of a plurality of rolling mills for rolling the strip material. In the method of estimating the outlet temperature based on the inlet temperature measured by the inlet thermometer, the inlet temperature and outlet side of multiple strips measured by both thermometers are arranged. The correlation between the two is obtained based on the temperature, the outlet temperature is calculated using the correlation and the inlet temperature, a correction value is obtained based on the calculated temperature and the outlet temperature, and the obtained correction value and The outlet temperature is estimated based on the correlation and the inlet temperature of the strip.

【0008】第2発明に係る条材の推定度装置は、条材
を圧延する複数の圧延機の最終圧延機の入側及び出側に
前記条材の温度を測定する温度計がそれぞれ配置してあ
り、入側温度計が測定した入側温度に基づいて出側温度
を推定する装置において、両温度計によって各々測定さ
れた複数の条材の入側温度及び出側温度に基づいて両者
の相関関係を求める手段と、該相関関係及び前記入側温
度を用いて出側温度を算出する手段と、この算出温度及
び前記出側温度に基づいて補正値を求める手段と、求め
た補正値及び前記相関関係並びに当該条材の入側温度に
基づいてその出側温度を推定する手段とを備えることを
特徴とする。
In the strip degree estimating device according to the second aspect of the invention, thermometers for measuring the temperature of the strip are respectively arranged at the inlet side and the outlet side of the final rolling mill of a plurality of rolling mills for rolling the strip. In the device that estimates the outlet temperature based on the inlet temperature measured by the inlet thermometer, the temperature of both sides is estimated based on the inlet and outlet temperatures of the strips measured by both thermometers. Means for obtaining a correlation, means for calculating an outlet temperature using the correlation and the inlet temperature, means for obtaining a correction value based on the calculated temperature and the outlet temperature, and the obtained correction value and And a means for estimating the outlet temperature based on the correlation and the inlet temperature of the strip.

【0009】[0009]

【作用】本発明にあっては、複数の圧延機の最終圧延機
の入側及び出側に配置した温度計によって各々測定され
た複数の条材の入側温度及び出側温度に基づいて両者の
相関関係を、例えば入側温度と両者の温度差とを重回帰
することによって求める。更に、求めた相関関係及び入
側温度を用いて、各入側温度に対応する出側温度を算出
し、この算出温度及び前記出側温度に基づいて補正値
を、例えば算出温度と出側温度との差の平均値として求
める。そして、求めた補正値及び前記相関関係,並びに
当該条材の入側温度に基づいて出側温度をその全長にわ
って推定する。
In the present invention, based on the inlet temperature and the outlet temperature of a plurality of strips respectively measured by thermometers arranged on the inlet side and the outlet side of the final rolling mill of the plurality of rolling mills, both Is obtained by, for example, multiple regression of the inlet temperature and the temperature difference between the two. Further, using the obtained correlation and the inlet temperature, the outlet temperature corresponding to each inlet temperature is calculated, and a correction value is calculated based on the calculated temperature and the outlet temperature, for example, the calculated temperature and the outlet temperature. Calculated as the average value of the difference between and. Then, the outlet temperature is estimated over the entire length based on the calculated correction value, the correlation, and the inlet temperature of the strip.

【0010】[0010]

【実施例】以下本発明をその実施例を示す図面に基づい
て具体的に説明する。図1は本発明に係る装置の使用状
態を示す模式図であり、図中Sは条材である。矢符方向
に搬送される条材Sの搬送域には、一対の圧延ロールを
備え該圧延ロールで条材Sを熱間圧延する圧延機4,5
が所定距離を隔てて配置してあり、条材Sは両圧延機
4,5によって製品径まで縮径される。圧延機4,5の
入側及び出側には、条材Sからの放射光を集光するレン
ズ1a,2a及び受光素子1b,2bを備える温度計1,2が、
条材Sに対向して配置してある。条材Sの搬送域には、
前記レンズ1a,2aが条材Sからの放射光を集光するため
のスポットが設定してあり、前記スポットを条材Sの中
央部が通過するようにしてある。そして、圧延機5の入
側に配置された温度計1が測定した入側温度T0 、及び
圧延機5の出側に配置された温度計2が測定した出側温
度Tは温度学習演算装置6の実績温度学習器7に与えら
れるようになっている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below with reference to the drawings showing the embodiments thereof. FIG. 1 is a schematic view showing a usage state of the device according to the present invention, and S in the drawing is a strip. Rolling machines 4 and 5 for hot-rolling the strip S with a pair of rolling rolls are provided in the transport area of the strip S transported in the arrow direction.
Are arranged at a predetermined distance, and the strip material S is reduced to the product diameter by both rolling mills 4 and 5. Thermometers 1 and 2 equipped with lenses 1a and 2a for condensing the radiated light from the strip S and light receiving elements 1b and 2b are provided on the entrance and exit sides of the rolling mills 4 and 5, respectively.
It is arranged facing the strip S. In the transport area of the strip S,
A spot is set for the lenses 1a and 2a to collect the emitted light from the strip S, and the central portion of the strip S passes through the spot. Then, the inlet side temperature T 0 measured by the thermometer 1 arranged on the inlet side of the rolling mill 5 and the outlet side temperature T measured by the thermometer 2 arranged on the outlet side of the rolling mill 5 are the temperature learning calculation device. 6 is given to the actual temperature learning device 7 of FIG.

【0011】実績温度学習器7には上位コンピュータ
(図示せず)から条材Sの種類情報及びサイズ情報が与
えられるようになっており、実績温度学習器7は両情報
に基づいて条材Sに係る情報に層ナンバを付与する。実
績温度学習器7は層ナンバ別に、入側温度T0 及び出側
温度Tに基づいて、後述するように重回帰定数k及び補
正量αが学習されるようになっており、当該層ナンバの
重回帰定数k及び補正量αを演算器8に与える。演算器
8は与えられた重回帰定数k及び補正量α,及び入側温
度T0 を用いて、次の(1)式によって出側予測温度T
e を算出する。 Te =kT0 +α …(1)
The actual temperature learning device 7 is provided with the type information and the size information of the strip S from a host computer (not shown), and the actual temperature learning device 7 is based on both the information. A layer number is added to the information related to. The actual temperature learning device 7 is designed to learn the multiple regression constant k and the correction amount α based on the inlet-side temperature T 0 and the outlet-side temperature T for each layer number, and the layer number of the relevant layer number is learned. The multiple regression constant k and the correction amount α are given to the calculator 8. The calculator 8 uses the given multiple regression constant k, the correction amount α, and the input temperature T 0 to calculate the output predicted temperature T by the following equation (1).
Calculate e . T e = kT 0 + α (1)

【0012】圧延機4,5には条材Sの先頭及び末尾を
検出する端部検出器9が接続してあり、端部検出器9の
検出結果は前述した実績温度学習器7に与えられ、そこ
で入側温度T0 と出側温度T又は出側予測温度Te との
対応付けに利用されると共に、測定不良検出器10に与え
られる。測定不良検出器10には温度計2から出側温度T
も与えられるようになっており、測定不良検出器10は端
部検出器9の検出結果に基づいて、条材Sが温度計2の
スポット位置を通過中であるか否かを判断し、通過中で
ある場合は通常、出側温度Tを出力する。
The rolling mills 4 and 5 are connected to an end detector 9 for detecting the beginning and end of the strip S, and the detection result of the end detector 9 is given to the above-mentioned actual temperature learning device 7. Therefore, it is used for associating the inlet side temperature T 0 with the outlet side temperature T or the outlet side predicted temperature T e and is given to the measurement failure detector 10. In the measurement failure detector 10, the temperature T from the thermometer 2 is output.
Based on the detection result of the end detector 9, the measurement failure detector 10 determines whether the strip S is passing the spot position of the thermometer 2 and passes it. When it is in the middle, the outlet temperature T is normally output.

【0013】このとき、出側温度Tが急激に低下する
と、測定不良検出器10は温度計2の測定不良が発生した
と判断して出側温度Tの出力を停止すると共に、演算器
8に指令を与えて出側予測温度Te を出力させる。そし
て測定不良検出器10は、出側温度Tが温度計2の測定不
良が発生する前の温度にまでほぼ回復したとき、演算器
8の出力を停止させ、出側温度Tの出力を再開する。
At this time, if the temperature T on the outlet side drops sharply, the measurement failure detector 10 determines that the measurement failure of the thermometer 2 has occurred, stops the output of the temperature T on the outlet side, and causes the calculator 8 to operate. A command is given to output the predicted temperature T e on the output side. Then, the measurement failure detector 10 stops the output of the calculator 8 and restarts the output of the exit temperature T when the exit temperature T is almost recovered to the temperature before the measurement failure of the thermometer 2 occurs. .

【0014】図2は、入側温度T0 及び該入側温度T0
に基づいて算出された出側予測温度Te を示すグラフで
あり、図3は出側予測温度Te で一部補完された出側温
度Tを示すグラフである。両図中、縦軸は温度を、横軸
は条材の先端からの時間をそれぞれ示している。図2の
如く、出側予測温度Te は入側温度T0 に略対応して入
側温度T0 より低い温度として連続的に算出されてい
る。そして、図3の如く、出側温度Tに破線で示した如
き測定不良が発生すると、その部分が出側予測温度Te
で補完される。
FIG. 2 shows the inlet temperature T 0 and the inlet temperature T 0.
4 is a graph showing an outlet-side predicted temperature T e calculated on the basis of FIG. 3, and FIG. 3 is a graph showing an outlet-side temperature T partially supplemented by the outlet-side predicted temperature T e . In both figures, the vertical axis represents temperature and the horizontal axis represents time from the tip of the strip. As shown in FIG. 2, it is calculated continuously as a delivery side predicted temperature T e is a temperature lower than the inlet side temperature T inlet side temperature T 0 and corresponds substantially to zero. Then, as shown in FIG. 3, when a measurement failure as indicated by the broken line occurs in the outlet temperature T, that portion is the estimated outlet temperature T e.
Is complemented by.

【0015】図4は図1に示した実績温度学習器7にお
ける重回帰定数k及び補正量αの更新手順を示すフロー
チャートである。実績温度学習器7には上位コンピュー
タから条材Sの種類情報及びサイズ情報を読み込み(ス
テップS1)、また温度計1,2から入側温度T0 ,出
側温度Tを読み込む(ステップS2)。実績温度学習器
7は入側温度T0 及び出側温度Tに層ナンバを付与する
(ステップS3)。実績温度学習器7には予め条材の種
類及びサイズ別に層ナンバが付与された複数の実績デー
タ(入側温度T0 及び出側温度T)が記憶されており、
実績温度学習器7は最も古い実績データの上に読み込ん
だデータを書き込む(ステップS4)。そして、各実績
データそれぞれについて温度差ΔTを次の(2)式に基
づいて算出し(ステップS5)、入側温度T0 と温度差
ΔTとの関係を示す重回帰定数Kを、多重回帰計算を行
う次の(3)式によって求める(ステップS6)。 ΔT=T0 −T …(2) K=f(T0 ,ΔT) …(3)
FIG. 4 is a flow chart showing the procedure for updating the multiple regression constant k and the correction amount α in the actual temperature learning device 7 shown in FIG. The actual temperature learning device 7 reads the type information and the size information of the strip S from the host computer (step S1), and also reads the inlet temperature T 0 and the outlet temperature T from the thermometers 1 and 2 (step S2). The actual temperature learning device 7 gives a layer number to the inlet temperature T 0 and the outlet temperature T (step S3). The actual temperature learning device 7 stores a plurality of actual data (inlet temperature T 0 and outlet temperature T) to which layer numbers are given in advance according to the type and size of the strip,
The actual temperature learning device 7 writes the read data on the oldest actual data (step S4). Then, the temperature difference ΔT is calculated based on the following equation (2) for each actual data (step S5), and the multiple regression constant K indicating the relationship between the inlet temperature T 0 and the temperature difference ΔT is calculated by multiple regression calculation. Is calculated by the following equation (3) (step S6). ΔT = T 0 −T (2) K = f (T 0 , ΔT) (3)

【0016】求めた重回帰定数Kで前述した(1)式の
K項を更新し(ステップS7)、更新された式及び実績
温度学習器7に記憶されている入側温度T0n(nは測温
回数)それぞれに基づいて、出側予測温度Tenをそれぞ
れ算出する(ステップS8)。そして次の(4)式に基
づいて、算出された出側予測温度Tenと実績温度学習器
7に記憶されている出側温度Tn との差分Δαn を求
め、該差分Δαn 及び次の(5)式に基づいて補正量α
を算出し(ステップS9)、算出された補正量αで
(1)式のα項を更新する(ステップS10)。
The K term of the above-mentioned equation (1) is updated with the obtained multiple regression constant K (step S7), and the input side temperature T 0n (n is stored in the updated equation and the actual temperature learning device 7) The estimated outgoing temperature T en is calculated based on each of the temperature measurement times (step S8). Then, based on the following equation (4), the difference Δα n between the calculated outlet-side predicted temperature T en and the outlet-side temperature T n stored in the actual temperature learning device 7 is calculated, and the difference Δα n and the following The correction amount α based on the equation (5)
Is calculated (step S9), and the α term of the equation (1) is updated with the calculated correction amount α (step S10).

【0017】[0017]

【数1】 [Equation 1]

【0018】図5は出側予測温度Te の演算手順を示す
フローチャートである。実績温度学習器7は上位コンピ
ュータから条材Sの種類情報及びサイズ情報を読み込み
(ステップS11)、また温度計1,2から入側温度
0 ,出側温度Tを読み込む(ステップS12)。実績温
度学習器7は入側温度T0 及び出側温度Tに層ナンバを
付与する(ステップS13)。実績温度学習器7は層ナン
バ別に更新された重回帰定数k及び補正量αから当該層
ナンバに係るものを演算器8に与える(ステップS1
4)。演算器8は与えられた重回帰定数k及び補正量
α,及び入側温度T0 を用いて、次の(1)式によって
出側予測温度Te を算出する(ステップS15)。 Te =kT0 +α …(1)
FIG. 5 is a flow chart showing the calculation procedure of the outlet predicted temperature T e . The actual temperature learning device 7 reads the type information and size information of the strip S from the host computer (step S11), and also reads the inlet temperature T 0 and the outlet temperature T from the thermometers 1 and 2 (step S12). The actual temperature learning device 7 gives a layer number to the inlet temperature T 0 and the outlet temperature T (step S13). The actual temperature learning device 7 gives the arithmetic unit 8 a value related to the layer number from the multiple regression constant k and the correction amount α updated for each layer number (step S1).
Four). The calculator 8 uses the given multiple regression constant k, the correction amount α, and the inlet temperature T 0 to calculate the outlet predicted temperature T e by the following equation (1) (step S15). T e = kT 0 + α (1)

【0019】[0019]

【発明の効果】以上詳述した如く本発明にあっては、最
終圧延機の入側温度計及び出側温度計によって測定され
た複数の条材の入側温度及び出側温度に基づいて相関関
係及び補正量を求め、当該条材の入側温度,前記相関関
係及び補正量に基づいてその出側温度を推定するため、
当該条材の出側温度をその全長にわたって高精度に求め
ることができると共に、出側温度計に測定不良が生じた
場合、前述した如く推定した出側温度を用いることによ
って当該条材の出側温度を連続的に求めることができ、
出側温度の決定の作業効率が向上する等、本発明は優れ
た効果を奏する。
As described above in detail, in the present invention, the correlation is based on the inlet side temperature and the outlet side temperature of a plurality of strips measured by the inlet side thermometer and the outlet side thermometer of the final rolling mill. In order to obtain the relationship and the correction amount, and to estimate the outlet temperature based on the inlet temperature of the strip, the correlation and the correction amount,
The outlet temperature of the strip can be obtained with high accuracy over its entire length, and if a measurement error occurs on the outlet thermometer, the outlet temperature of the strip is estimated by using the estimated outlet temperature as described above. The temperature can be calculated continuously,
The present invention has excellent effects such as improving the work efficiency of determining the outlet temperature.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る装置の使用状態を示す模式図であ
る。
FIG. 1 is a schematic view showing a usage state of an apparatus according to the present invention.

【図2】入側温度T0 及び該入側温度T0 に基づいて算
出された出側予測温度Te を示すグラフである。
2 is a graph showing the entry side temperature T 0 and said input-side temperature T 0 on the exit side predicted temperature T e, which is calculated based.

【図3】出側予測温度Te で一部補完された出側温度T
を示すグラフである。
FIG. 3 is an outlet temperature T partially supplemented by an outlet predicted temperature T e.
It is a graph which shows.

【図4】図1に示した実績温度学習器における重回帰定
数k及び補正量αの更新手順を示すフローチャートであ
る。
FIG. 4 is a flowchart showing a procedure for updating a multiple regression constant k and a correction amount α in the actual temperature learning device shown in FIG.

【図5】出側予測温度Te の演算手順を示すフローチャ
ートである。
FIG. 5 is a flowchart showing a calculation procedure of a predicted outlet temperature T e .

【図6】従来の測温装置の使用状態を示す模式図であ
る。
FIG. 6 is a schematic view showing a usage state of a conventional temperature measuring device.

【符号の説明】[Explanation of symbols]

1 温度計 1a レンズ 1b 受光素子 2 温度計 2a レンズ 2b 受光素子 6 温度学習演算装置 7 実績温度学習器 8 演算器 9 端部検出器 10 測定不良検出器 1 thermometer 1a lens 1b light receiving element 2 thermometer 2a lens 2b light receiving element 6 temperature learning calculation device 7 actual temperature learning device 8 calculation device 9 edge detector 10 measurement failure detector

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 条材を圧延する複数の圧延機の最終圧延
機の入側及び出側に前記条材の温度を測定する温度計が
それぞれ配置してあり、入側温度計が測定した入側温度
に基づいて出側温度を推定する方法において、 両温度計によって各々測定された複数の条材の入側温度
及び出側温度に基づいて両者の相関関係を求め、該相関
関係及び前記入側温度を用いて出側温度を算出し、この
算出温度及び前記出側温度に基づいて補正値を求め、求
めた補正値及び前記相関関係並びに当該条材の入側温度
に基づいてその出側温度を推定することを特徴とする条
材温度の推定方法。
1. A thermometer for measuring the temperature of the strip is arranged on each of the inlet side and the outlet side of a final rolling mill of a plurality of rolling mills for rolling the strip. In the method of estimating the outlet temperature based on the inlet temperature, the correlation between the two is obtained based on the inlet temperature and the outlet temperature of a plurality of strips measured by both thermometers. The outlet side temperature is calculated using the side temperature, the correction value is obtained based on the calculated temperature and the outlet side temperature, and the outlet side is obtained based on the obtained correction value and the correlation and the inlet side temperature of the strip. A method for estimating the temperature of a strip material, which comprises estimating the temperature.
【請求項2】 条材を圧延する複数の圧延機の最終圧延
機の入側及び出側に前記条材の温度を測定する温度計が
それぞれ配置してあり、入側温度計が測定した入側温度
に基づいて出側温度を推定する装置において、 両温度計によって各々測定された複数の条材の入側温度
及び出側温度に基づいて両者の相関関係を求める手段
と、該相関関係及び前記入側温度を用いて出側温度を算
出する手段と、この算出温度及び前記出側温度に基づい
て補正値を求める手段と、求めた補正値及び前記相関関
係並びに当該条材の入側温度に基づいてその出側温度を
推定する手段とを備えることを特徴とする条材温度の推
定装置。
2. A thermometer for measuring the temperature of the strip is arranged at each of the inlet side and the outlet side of the final rolling mill of a plurality of rolling mills for rolling the strip, and the inlet side thermometer measures the input temperature. In the device for estimating the outlet temperature based on the side temperature, a means for obtaining a correlation between the two based on the inlet temperature and the outlet temperature of a plurality of strips respectively measured by both thermometers, and the correlation and Means for calculating the outlet temperature using the inlet temperature, means for obtaining a correction value based on the calculated temperature and the outlet temperature, the obtained correction value and the correlation, and the inlet temperature of the strip. And a means for estimating the outlet temperature based on the above.
JP6237807A 1994-09-30 1994-09-30 Method and apparatus for estimating temperature of bar-like material Pending JPH08101069A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6237807A JPH08101069A (en) 1994-09-30 1994-09-30 Method and apparatus for estimating temperature of bar-like material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6237807A JPH08101069A (en) 1994-09-30 1994-09-30 Method and apparatus for estimating temperature of bar-like material

Publications (1)

Publication Number Publication Date
JPH08101069A true JPH08101069A (en) 1996-04-16

Family

ID=17020706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6237807A Pending JPH08101069A (en) 1994-09-30 1994-09-30 Method and apparatus for estimating temperature of bar-like material

Country Status (1)

Country Link
JP (1) JPH08101069A (en)

Similar Documents

Publication Publication Date Title
US11474032B2 (en) Scale composition determination system, scale composition determination method, and program
JPH089738B2 (en) Buckling occurrence prediction device
JPH08101069A (en) Method and apparatus for estimating temperature of bar-like material
JPH08193887A (en) Method for measuring temperature of material in hot rolling line
JP2018161668A (en) Tracking device and tracking method of hot rolling material
JP5589260B2 (en) Thick steel plate quality assurance system
JPH0275409A (en) Method for controlling winding temperature of hot rolled steel sheet
JP2968637B2 (en) Strip width control method in hot rolling
TWI720585B (en) Data collection device
JPH11179414A (en) Method for estimating amount of uneven elongation in cold rolling mill and method for controlling shape
JPH0332412A (en) Method for keeping flatness under control in reverse rolling time
JP3394685B2 (en) Anomaly prediction method and apparatus for metal strip heat treatment furnace
JP3121499B2 (en) Heat Buckle Monitoring Method for Continuous Strip Annealing Equipment
JP2706355B2 (en) Meandering control method during plate rolling
JPH0719830A (en) Measuring apparatus for shape of hot steel plate
JP3553552B2 (en) On-line identification method of strip width deformation model in hot finishing mill
JPS61289908A (en) Roll gap setter for rolling mill
JP2003035530A (en) Board thickness measuring method, board thickness measuring device, and board thickness controlling method of hot-rolled steel sheet
JPH09239422A (en) Method for automatically controlling thickness at time of passing through
JP2751275B2 (en) How to determine rolling parameters
JPH0631324A (en) Method for controlling plate width in hot rolling
JP2820360B2 (en) Rolling warpage prediction / control device
JPH05104123A (en) Hot continuous rolling method
JPH09168809A (en) Rolling control method for hot strip finishing mill
JP5207858B2 (en) Method for predicting temperature at the tip of rolled material