JPH08101014A - Displacement/speed measuring instrument - Google Patents

Displacement/speed measuring instrument

Info

Publication number
JPH08101014A
JPH08101014A JP6261888A JP26188894A JPH08101014A JP H08101014 A JPH08101014 A JP H08101014A JP 6261888 A JP6261888 A JP 6261888A JP 26188894 A JP26188894 A JP 26188894A JP H08101014 A JPH08101014 A JP H08101014A
Authority
JP
Japan
Prior art keywords
optical fiber
polarization
measured
laser beam
displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6261888A
Other languages
Japanese (ja)
Inventor
Hisashi Tamamura
寿 玉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tektronix Japan Ltd
Original Assignee
Sony Tektronix Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Tektronix Corp filed Critical Sony Tektronix Corp
Priority to JP6261888A priority Critical patent/JPH08101014A/en
Publication of JPH08101014A publication Critical patent/JPH08101014A/en
Pending legal-status Critical Current

Links

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE: To easily measure the displacement and speed of an object to be measured with high accuracy by offsetting errors caused when a polarizing plane maintaining optical fiber is given bending, impact, or vibration, by simultaneously transmitting measuring light rays and reference light rays through the optical fiber. CONSTITUTION: First and second laser beams having different angles of polarizing planes and frequencies are propagated through a polarizing plane-maintaining optical fiber 12 while maintaining the relation between the polarizing planes after being emitted from a light source 10, and separated from each other through a beam splitter 36 in a measuring head 14, and the first laser beam is projected on an object 15 to be measured. The second laser beam is reflected by a reference reflection mirror 38, reversely propagated through the optical fiber 12 together with reflected light from the object 15, and transmitted to a measuring means 16 after being reflected by a half mirror 26. The measuring means 16 only transduces the component which is polarized in a prescribed direction through a polarizing filter 40 into electric signals. The electric signals are processed 44 by an optical heterodyne method and the speed and displacement of the object 15 are measured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、被測定対象物の変位及
び速度を非接触で測定する変位・速度測定装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a displacement / speed measuring device for measuring the displacement and speed of an object to be measured without contact.

【0002】[0002]

【従来技術】振動体等の被測定対象の変位や速度を非接
触で測定する技術として光ヘテロダイン法を利用した測
定器がある。光ヘテロダイン法の基本原理は、周波数の
僅かに異なる光を干渉させた際に生じるビート信号(う
なり)を利用するものである。異なる光路を通った2本
の光を混合し、発生したビート信号を光電変換すると、
その信号の位相Φは次式で与えられる。
2. Description of the Related Art There is a measuring instrument utilizing an optical heterodyne method as a technique for non-contactly measuring the displacement and velocity of an object to be measured such as a vibrating body. The basic principle of the optical heterodyne method is to use a beat signal (beat) generated when light beams having slightly different frequencies are made to interfere with each other. By mixing two lights that have passed through different optical paths and photoelectrically converting the generated beat signal,
The phase Φ of the signal is given by the following equation.

【数1】Φ = 2πL12/λ ここで、λは、ビート信号の波長であり、L12は、元の
2つの光の光路差を表す。この式から、ビート信号の位
相変化分ΔΦの測定をすると、光路差の変化分ΔL12が
得られ、ビート信号の周波数の測定から光路差の時間的
な変化量として現れる被測定物体の移動速度が得られ
る。
Φ = 2πL12 / λ where λ is the wavelength of the beat signal, and L12 represents the optical path difference between the original two lights. From this equation, when the phase change amount ΔΦ of the beat signal is measured, the change amount ΔL12 of the optical path difference is obtained, and the moving speed of the measured object that appears as the temporal change amount of the optical path difference is obtained from the measurement of the frequency of the beat signal. can get.

【0003】このような光ヘテロダイン法を利用した従
来の測定器には、種々の計算・制御等を行う測定器本体
と光学系素子を含む測定ヘッドの間を光ファイバーで接
続し、被測定対象物の近傍に測定ヘッドを配置して測定
するものがある。このような測定器では、ビート信号を
利用するので、周波数が所定量だけ異なる2つのレーザ
ー光、すなわち、参照光と測定光を使用する。これら2
つの光信号は、測定器本体から別々の光ファイバーを介
して測定ヘッドに供給され、被測定対象物により反射さ
れた測定光と所定位置で反射された参照光が別々の光フ
ァイバーを介して測定器本体に戻され、光ヘテロダイン
測定法により処理して速度や変位を測定できる。
In a conventional measuring instrument using such an optical heterodyne method, an optical fiber is connected between a measuring instrument main body for performing various calculations and controls and a measuring head including an optical system element to measure an object to be measured. There is a device in which a measuring head is placed in the vicinity of to measure. Since such a measuring device uses a beat signal, two laser beams having different frequencies by a predetermined amount, that is, a reference beam and a measuring beam are used. These two
The two optical signals are supplied from the measuring instrument body to the measuring head through separate optical fibers, and the measuring light reflected by the object to be measured and the reference light reflected at a predetermined position are transmitted through separate optical fibers. And can be processed by the optical heterodyne measurement method to measure velocity and displacement.

【0004】[0004]

【発明が解決しようとする課題】しかし、従来の光ヘテ
ロダイン測定器では、測定光と参照光を別々の光ファイ
バーで測定ヘッドに伝送し、測定ヘッドから別々の光フ
ァイバーを介して本体に戻すようにしているので、光フ
ァイバーが曲げられたり、振動が加わった場合には、光
ファイバーの内部のガラスが変形し、ガラス結晶の応力
により屈折率が変化することから光の伝播速度が変化
し、測定誤差が発生することになる。このため、高い測
定精度を実現するには、複数の光ファイバーの特性を揃
え、曲げたり振動が加わらないように注意しなければな
らず、作業が煩雑でコストも嵩むという問題があった。
However, in the conventional optical heterodyne measuring instrument, the measuring light and the reference light are transmitted to the measuring head through separate optical fibers, and the measuring head returns them to the main body through the separate optical fibers. Therefore, when the optical fiber is bent or vibration is applied, the glass inside the optical fiber deforms and the refractive index changes due to the stress of the glass crystal, which changes the propagation speed of the light and causes a measurement error. Will be done. For this reason, in order to realize high measurement accuracy, it is necessary to make the characteristics of a plurality of optical fibers uniform and be careful not to apply bending or vibration, and there is a problem that the work is complicated and the cost is high.

【0005】そこで、本発明の目的は、容易に高精度の
測定結果が得られる変位・速度測定装置を提供すること
である。
Therefore, an object of the present invention is to provide a displacement / velocity measuring device which can easily obtain highly accurate measurement results.

【課題を解決する為の手段】本発明の変位・速度測定装
置は、直線偏光である第1レーザー光線と、該第1レー
ザー光線の偏波面と一定角度異なる偏波面を有し、上記
第1レーザー光線の周波数から所定周波数だけシフトし
た周波数を有する第2レーザー光線とを共通の出力端子
から出力する光源と、第1及び第2レーザー光線を一端
に受ける1本の偏波面保存光ファイバーと、この偏波面
保存光ファイバーの他端に接続され、上記第1レーザー
光線を被測定対象物に照射し、その第1反射光線を上記
偏波面保存光ファイバーに戻すと共に、上記第2レーザ
ー光線を所定位置で反射した第2反射光線を上記偏波面
光ファイバーに戻す測定ヘッドと、偏波面保存光ファイ
バーの一端からの上記第1及び第2反射光線を検出し、
この検出出力から上記被測定対象物の速度及び位置の変
位を測定する測定手段とを具える。
DISCLOSURE OF THE INVENTION The displacement / velocity measuring apparatus of the present invention has a first laser beam which is linearly polarized light and a polarization plane which is different from the polarization plane of the first laser beam by a certain angle. A light source that outputs a second laser beam having a frequency shifted from the frequency by a predetermined frequency from a common output terminal, one polarization-maintaining optical fiber that receives the first and second laser beams at one end, and the polarization-maintaining optical fiber. It is connected to the other end, irradiates the object to be measured with the first laser beam, returns the first reflected beam to the polarization-maintaining optical fiber, and returns the second reflected beam obtained by reflecting the second laser beam at a predetermined position. A measuring head for returning to the polarization plane optical fiber, and detecting the first and second reflected light rays from one end of the polarization plane preserving optical fiber,
A measuring means for measuring the displacement of the speed and the position of the object to be measured from the detection output.

【0006】また、本発明の変位・速度測定装置の測定
ヘッドは、第1レーザー光線を第1被測定対象物に照射
すると共に、上記第2レーザー光線を異なる方向に分離
させるビーム・スプリッタと、このビーム・スプリッタ
からの第2レーザー光線を偏向させ、第2被測定対象物
に照射する偏向手段とを具え、第1及び第2被測定対象
物から反射された第1及び第2反射光線を偏波面保存光
ファイバーに戻すことを特徴とする。
The measuring head of the displacement / velocity measuring apparatus of the present invention irradiates the first object to be measured with the first laser beam and a beam splitter for separating the second laser beam into different directions, and this beam splitter. A deflection means for deflecting the second laser beam from the splitter and irradiating the second object to be measured, and preserving polarization planes of the first and second reflected light beams reflected from the first and second object to be measured. It is characterized by returning to an optical fiber.

【0007】[0007]

【実施例】図1は、本発明の速度・変位測定装置の一実
施例の構成を簡略に示すブロック図である。この装置
は、光源部10とこの光源部10に接続された偏波面保
存光ファイバー12と、この偏波面保存光ファイバー1
2の他端に接続された測定ヘッド14と、被測定対象物
15から測定ヘッド14及び偏波面保存光ファイバー1
2を介して戻された反射光線を測定する測定手段16と
を含んでいる。光源部10は、2つのレーザー光線を発
生する。これらの2つの出力レーザー光線は、周波数が
所定周波数(例えば80MHz)だけ異なり、偏波面も
所定角度(例えば90゜)だけ異なっている。レーザー
光源20の出力レーザー光線は、偏光ビーム・スプリッ
タ22により偏波面が所定角度(例えば90゜)だけず
れた2つの光線に分解される。ビーム・スプリッタ22
からの一方の出力光線(第1レーザー光線)は、ハーフ
・ミラー24及び26を介して光源部10から出力さ
れ、ビーム・スプリッタ22の他方の出力光線(第2レ
ーザー光線)はAOM(音響光学変調器)28により例
えば80MHzのような所定周波数シフトを受ける。発
振器30は、80MHzの基準信号を発生し、これがA
OM28における周波数シフト量に等しくなる。AOM
28から出力された第2レーザー光線は、反射器32及
び34、ハーフ・ミラー24及び26を介して第1レー
ザー光線と共に共通の出力端から出力される。
1 is a block diagram schematically showing the construction of an embodiment of a velocity / displacement measuring apparatus of the present invention. This apparatus includes a light source unit 10, a polarization-maintaining optical fiber 12 connected to the light source unit 10, and a polarization-maintaining optical fiber 1.
2, a measuring head 14 connected to the other end of the measuring object 14, the measuring head 14 to the measuring head 14 and the polarization-maintaining optical fiber 1
And measuring means 16 for measuring the reflected light beam returned via 2. The light source unit 10 generates two laser beams. These two output laser beams differ in frequency by a predetermined frequency (for example, 80 MHz) and also differ in polarization plane by a predetermined angle (for example, 90 °). The output laser beam of the laser light source 20 is split by the polarization beam splitter 22 into two beams whose polarization planes are deviated by a predetermined angle (for example, 90 °). Beam splitter 22
One output light beam (first laser light beam) from the beam splitter 22 is output from the light source unit 10 via the half mirrors 24 and 26, and the other output light beam (second laser light beam) from the beam splitter 22 is an AOM (acousto-optic modulator). ) 28 undergoes a predetermined frequency shift, for example 80 MHz. The oscillator 30 generates a reference signal of 80 MHz, which is
It becomes equal to the frequency shift amount in the OM 28. AOM
The second laser beam output from 28 is output from a common output end together with the first laser beam via the reflectors 32 and 34 and the half mirrors 24 and 26.

【0008】光源部10から出力された第1及び第2レ
ーザー光線は、偏波面保存光ファイバー12を偏波面の
関係を維持しながら伝播する。これら第1及び第2レー
ザー光線は、測定ヘッド14の中のビーム・スプリッタ
36により分離され、第1レーザー光線が被測定対象物
15に照射され、その反射光線が同じ光路を逆行する。
また、第2レーザー光線は、測定ヘッド14の中の所定
位置に設けられた基準反射ミラー38で反射され、同じ
光路を逆行する。被測定対象物15からの第1反射光線
と基準反射ミラー38からの第2反射光線は、偏波面保
存光ファイバー12を逆行し、ハーフ・ミラー26で反
射され、測定手段16に送られる。これら第1及び第2
反射光線は、先ず偏光フィルタ40に照射され、所定偏
光方向の成分のみが通過する。偏光フィルタ40を通過
した光線は、光/電変換器(O/E)42により電気信
号に変換され、測定処理部44により光ヘテロダイン法
により処理されて被測定対象物の速度及び変位が測定さ
れる。この測定処理部44では、ヘテロダイン法により
ビート周波数(実施例では80MHz)の信号が必要な
ので、発振器30の出力信号が測定処理部44に供給さ
れている。
The first and second laser beams output from the light source section 10 propagate through the polarization-maintaining optical fiber 12 while maintaining the relationship of polarization planes. These first and second laser beams are separated by the beam splitter 36 in the measuring head 14, the first laser beam is applied to the object 15 to be measured, and the reflected beams thereof travel in the same optical path.
Further, the second laser beam is reflected by the reference reflection mirror 38 provided at a predetermined position in the measuring head 14 and goes backward in the same optical path. The first reflected light beam from the object to be measured 15 and the second reflected light beam from the reference reflection mirror 38 go backward through the polarization-preserving optical fiber 12, are reflected by the half mirror 26, and are sent to the measuring means 16. These first and second
The reflected light beam is first applied to the polarization filter 40, and only the component in the predetermined polarization direction passes through. The light beam that has passed through the polarization filter 40 is converted into an electric signal by an optical / electrical converter (O / E) 42, and is processed by an optical heterodyne method by a measurement processing unit 44 to measure the velocity and displacement of an object to be measured. It Since the measurement processing unit 44 needs a signal having a beat frequency (80 MHz in the embodiment) by the heterodyne method, the output signal of the oscillator 30 is supplied to the measurement processing unit 44.

【0009】図1の測定装置によれば、第1及び第2レ
ーザー光線及び第1及び第2反射光線が共通の偏波面保
存光ファイバー12を通るように構成したので、たとえ
ファイバーが曲げられたり、振動が加えられたりして
も、その影響は伝播する光線に同等に与えられることか
ら、測定手段で光ヘテロダイン法により測定した際に誤
差成分は相互に相殺されることとなる。よって、取扱い
の面倒は無くなり、光ファイバーも1本のみなのでコス
トも低減する。
According to the measuring apparatus of FIG. 1, the first and second laser beams and the first and second reflected beams are configured to pass through the common polarization-maintaining optical fiber 12, so that even if the fibers are bent or vibrate. Even if is added, the influence is equally given to the propagating light beam, and therefore the error components cancel each other out when measured by the optical heterodyne method by the measuring means. Therefore, the trouble of handling is eliminated, and the cost is reduced because there is only one optical fiber.

【0010】図2は、図1の測定処理部44の実施例の
構成を示すブロック図である。O/E42からの電気信
号は帯域通過フィルタBPF50を通り、緩衝増幅器5
2を介して第1ミキサ54に供給され、第1基準発振器
56の出力(70MHz)と混合される。この第1ミキ
サ54の出力は、FM検波器58及び位相検波器60に
供給される。第1基準発振器56の出力と第2基準発振
器62の出力とが第2ミキサ64で混合され、このミキ
サ64の出力が位相検波器60の他方の入力端に供給さ
れる。FM検波器58からLPF(低域通過フィルタ)
66を介して得んは被測定対象物15の速度信号であ
る。また、位相検波器60からLPF68を介して得ら
れるのは、被測定対象物15の変位信号である。更に、
FM検波器58の出力は、微分器70にも供給され、こ
こで更に微分されて被測定対象物15の加速度信号が得
られる。これら速度信号、変位信号、加速度信号及び緩
衝増幅器52の出力であるモニタ信号がマイクロ・プロ
セッサ(図示せず)に供給され適切に処理される。この
図2の構成は、光ヘテロダイン法による測定装置として
当業者には周知のものである。ここでは、第2発振器を
含んでいるが、図1のように、光源部の発振器30から
供給するようにしても良い。
FIG. 2 is a block diagram showing the configuration of an embodiment of the measurement processing unit 44 of FIG. The electric signal from the O / E 42 passes through the band pass filter BPF 50, and the buffer amplifier 5
2 and is supplied to the first mixer 54 via 2 and mixed with the output (70 MHz) of the first reference oscillator 56. The output of the first mixer 54 is supplied to the FM detector 58 and the phase detector 60. The output of the first reference oscillator 56 and the output of the second reference oscillator 62 are mixed by the second mixer 64, and the output of this mixer 64 is supplied to the other input end of the phase detector 60. From the FM detector 58 to the LPF (low pass filter)
What is obtained via 66 is the velocity signal of the measured object 15. Further, what is obtained from the phase detector 60 via the LPF 68 is a displacement signal of the measured object 15. Furthermore,
The output of the FM detector 58 is also supplied to the differentiator 70, where it is further differentiated to obtain the acceleration signal of the measured object 15. The velocity signal, the displacement signal, the acceleration signal, and the monitor signal output from the buffer amplifier 52 are supplied to a microprocessor (not shown) and appropriately processed. The configuration shown in FIG. 2 is well known to those skilled in the art as a measuring device using the optical heterodyne method. Although the second oscillator is included here, it may be supplied from the oscillator 30 of the light source unit as shown in FIG.

【0011】図3は、測定ヘッド14の他の実施例の構
成を示す簡略図である。偏波面保存光ファイバー12か
らの第1及び第2レーザー光線は、ビーム・スプリッタ
36により2つに分岐され、第1レーザー光線は第1被
測定対象物に照射される。他方、第2レーザー光線は、
反射器のような偏光器39により第2被測定対象物に照
射される。これら第1及び第2被測定対象物による反射
光線は、同じ光路を逆行して図1の装置の測定手段16
に戻される。この図3の構成による測定ヘッドを用いる
と、2つの被測定対象物の間の離間距離の変位及び相対
的速度を測定することができる。
FIG. 3 is a simplified diagram showing the configuration of another embodiment of the measuring head 14. The first and second laser beams from the polarization-maintaining optical fiber 12 are split into two by the beam splitter 36, and the first laser beam is applied to the first measured object. On the other hand, the second laser beam
The second object to be measured is illuminated by the polarizer 39 such as a reflector. The light rays reflected by the first and second objects to be measured traverse the same optical path, and the measuring means 16 of the apparatus of FIG.
Is returned to. By using the measuring head having the configuration of FIG. 3, it is possible to measure the displacement of the separation distance between the two objects to be measured and the relative speed.

【0012】以上本発明の好適実施例について説明した
が、本発明はここに説明した実施例のみに限定されるも
のではなく、本発明の要旨を逸脱することなく必要に応
じて種々の変形及び変更を実施し得ることは当業者には
明らかである。
Although the preferred embodiments of the present invention have been described above, the present invention is not limited to the embodiments described herein, and various modifications and changes can be made as necessary without departing from the gist of the present invention. It will be apparent to those skilled in the art that changes can be made.

【0013】[0013]

【発明の効果】本発明によれば、1本の偏波面保存光フ
ァイバを用い、測定光線及び参照光線の両方を同時に伝
送するように構成したので、光ファイバーに曲げ、衝
撃、振動等が加えられても、発生する誤差が相殺され、
高い測定精度を容易に維持することができる。
According to the present invention, since one polarization-maintaining single-mode optical fiber is used to simultaneously transmit both the measurement light beam and the reference light beam, bending, shock, vibration, etc. are applied to the optical fiber. However, the errors that occur are canceled out,
High measurement accuracy can be easily maintained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の速度・変位測定装置の一実施例の構成
を示すブロック図である。
FIG. 1 is a block diagram showing a configuration of an embodiment of a velocity / displacement measuring device of the present invention.

【図2】図1の測定処理部の一実施例の構成を示すブロ
ック図である。
FIG. 2 is a block diagram showing a configuration of an embodiment of a measurement processing unit in FIG.

【図3】図1の測定ヘッドの別の実施例の構成を示すブ
ロック図である。
3 is a block diagram showing the configuration of another embodiment of the measuring head of FIG. 1. FIG.

【符号の説明】 10 光源部 12 偏波面保存光ファイバー 14 測定ヘッド 16 測定手段[Explanation of Codes] 10 Light Source Section 12 Polarization Preserving Optical Fiber 14 Measuring Head 16 Measuring Means

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 直線偏光である第1レーザー光線と、該
第1レーザー光線の偏波面と一定角度異なる偏波面を有
し、上記第1レーザー光線の周波数から所定周波数だけ
シフトした周波数を有する第2レーザー光線とを出力す
る光源と、 上記第1及び第2レーザー光線を一端に受ける1本の偏
波面保存光ファイバーと、 該偏波面保存光ファイバーの他端に接続され、上記第1
レーザー光線を被測定対象物に照射し、その第1反射光
線を上記偏波面保存光ファイバーに戻すと共に、上記第
2レーザー光線を所定位置で反射した第2反射光線を上
記偏波面光ファイバーに戻す測定ヘッドと、 上記偏波面保存光ファイバーの上記一端に接続され、上
記第1及び第2反射光線を検出しこの検出出力から上記
被測定対象物の速度及び位置の変位を測定する測定手段
とを具えることを特徴とする変位・速度測定装置。
1. A first laser beam that is linearly polarized light, and a second laser beam that has a plane of polarization that differs from the plane of polarization of the first laser beam by a certain angle and that has a frequency shifted from the frequency of the first laser beam by a predetermined frequency. A polarization-preserving optical fiber for receiving the first and second laser beams at one end, and a first polarization-maintaining optical fiber connected to the other end of the polarization-preserving optical fiber.
A measurement head which irradiates a laser beam on an object to be measured, returns the first reflected light beam to the polarization-maintaining optical fiber, and returns the second reflected light beam reflected from the second laser beam at a predetermined position to the polarization-polarized optical fiber. A measuring means connected to the one end of the polarization-maintaining optical fiber for detecting the first and second reflected light rays and measuring the displacement of the velocity and the position of the object to be measured from the detection output. Displacement / velocity measuring device.
【請求項2】 上記測定ヘッドは、上記第1レーザー光
線を第1被測定対象物に照射すると共に、上記第2レー
ザー光線を異なる方向に分離させるビーム・スプリッタ
と、 該ビーム・スプリッタからの上記第2レーザー光線を偏
向させ、第2被測定対象物に照射する偏向手段とを具
え、 上記第1及び第2被測定対象物から反射された第1及び
第2反射光線を上記偏波面保存光ファイバーに戻すこと
を特徴とする請求項1記載の変位・速度測定装置。
2. The measuring head irradiates the first object to be measured with the first laser beam and separates the second laser beam into different directions; and a second beam splitter from the beam splitter. A deflection means for deflecting the laser beam and irradiating the second object to be measured, wherein the first and second reflected light beams reflected from the first and second object to be measured are returned to the polarization-preserving optical fiber. The displacement / velocity measuring device according to claim 1.
JP6261888A 1994-09-30 1994-09-30 Displacement/speed measuring instrument Pending JPH08101014A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6261888A JPH08101014A (en) 1994-09-30 1994-09-30 Displacement/speed measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6261888A JPH08101014A (en) 1994-09-30 1994-09-30 Displacement/speed measuring instrument

Publications (1)

Publication Number Publication Date
JPH08101014A true JPH08101014A (en) 1996-04-16

Family

ID=17368166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6261888A Pending JPH08101014A (en) 1994-09-30 1994-09-30 Displacement/speed measuring instrument

Country Status (1)

Country Link
JP (1) JPH08101014A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100568345B1 (en) * 2001-11-21 2006-04-05 주식회사 포스코 Apparatus for measuring speed of strip using single mode optical fiber
JP2015502032A (en) * 2011-11-09 2015-01-19 ザイゴ コーポレーションZygo Corporation Fiber transmission for metrology systems used in lithography tools
CN107917669A (en) * 2017-11-15 2018-04-17 苏州润桐专利运营有限公司 A kind of optical fibre displacement sensor demodulation method
KR20210108469A (en) * 2019-01-23 2021-09-02 닛폰세이테츠 가부시키가이샤 Measuring device and measuring method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100568345B1 (en) * 2001-11-21 2006-04-05 주식회사 포스코 Apparatus for measuring speed of strip using single mode optical fiber
JP2015502032A (en) * 2011-11-09 2015-01-19 ザイゴ コーポレーションZygo Corporation Fiber transmission for metrology systems used in lithography tools
CN107917669A (en) * 2017-11-15 2018-04-17 苏州润桐专利运营有限公司 A kind of optical fibre displacement sensor demodulation method
KR20210108469A (en) * 2019-01-23 2021-09-02 닛폰세이테츠 가부시키가이샤 Measuring device and measuring method
US11635520B2 (en) * 2019-01-23 2023-04-25 Nippon Steel Corporation Measuring device and measuring method

Similar Documents

Publication Publication Date Title
US5894531A (en) Method and apparatus for detection of ultrasound using a fiber-optic interferometer
EP0321252B1 (en) Optical fiber sensor
JP6452958B2 (en) Vibrometer with optical interferometer
US5274436A (en) Laser interferometer for measuring distance using a frequency difference between two laser beams
JPH0342622B2 (en)
US4444503A (en) Ring interferometer with a mode diaphragm
JP2691781B2 (en) Laser Doppler vibrometer using beam splitting optical system
US20120218555A1 (en) Optical ingredient-measuring apparatus
JP4208069B2 (en) Refractive index and thickness measuring apparatus and measuring method
JPH03504768A (en) Interferometer system for measuring distance and shift movements, especially of moving components
JPH08101014A (en) Displacement/speed measuring instrument
JPS5882113A (en) Sensor for angular velocity
JP2696117B2 (en) Laser Doppler vibrometer using beam splitting optical system
JPS6344136A (en) Heterodyne michelson interferometer related to polarimetry
US4704031A (en) Rotation rate measuring device
JPH11108614A (en) Light-wave interference measuring instrument
JPS5948668A (en) Optical fiber speedometer
RU2069839C1 (en) Device determining lateral displacements
JP2592254B2 (en) Measuring device for displacement and displacement speed
JPH0755571A (en) Plarization dispersion measuring instrument
JPH01156628A (en) Optical fiber sensor device
JPH05281357A (en) Interferometer incorporating probe type laser doppler velocimeter
JP3260484B2 (en) Measurement target position measuring device
JPH04249719A (en) Optical fiber laser doppler vibration sensor
JPH04248421A (en) Multidimensional vibrometer