JPH0810066B2 - Building air conditioning system - Google Patents

Building air conditioning system

Info

Publication number
JPH0810066B2
JPH0810066B2 JP62276568A JP27656887A JPH0810066B2 JP H0810066 B2 JPH0810066 B2 JP H0810066B2 JP 62276568 A JP62276568 A JP 62276568A JP 27656887 A JP27656887 A JP 27656887A JP H0810066 B2 JPH0810066 B2 JP H0810066B2
Authority
JP
Japan
Prior art keywords
evaporator
condenser
refrigerant
air conditioning
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62276568A
Other languages
Japanese (ja)
Other versions
JPH01121641A (en
Inventor
良則 井上
晋司 三浦
忠裕 福永
康敏 吉田
節夫 兼田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Corp
Sinko Industries Ltd
Original Assignee
Takenaka Corp
Sinko Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Corp, Sinko Industries Ltd filed Critical Takenaka Corp
Priority to JP62276568A priority Critical patent/JPH0810066B2/en
Priority to US07/152,427 priority patent/US4843832A/en
Priority to ES198888101622T priority patent/ES2033348T3/en
Priority to DE8888101622T priority patent/DE3871995T2/en
Priority to EP88101622A priority patent/EP0281762B1/en
Priority to KR1019880001612A priority patent/KR950003786B1/en
Priority to CA000559610A priority patent/CA1295129C/en
Priority to MX1053388A priority patent/MX167565B/en
Priority to AU12746/88A priority patent/AU599760B2/en
Priority to CN88101287A priority patent/CN1009858B/en
Publication of JPH01121641A publication Critical patent/JPH01121641A/en
Publication of JPH0810066B2 publication Critical patent/JPH0810066B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Other Air-Conditioning Systems (AREA)
  • Air Conditioning Control Device (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention 【産業上の利用分野】[Industrial applications]

本発明は、ビル空調システムに係り、特に重力式ヒー
トパイプによって熱移動が行なわれるビル空調システム
に関するものである。
The present invention relates to a building air conditioning system, and more particularly to a building air conditioning system in which heat is transferred by a gravity heat pipe.

【従来技術】[Prior art]

一般に、ビル空調システムにおいて熱源側と各空調ユ
ニットの間を循環して熱搬送に寄与する熱媒体として
は、通常は蒸気や温水、あるいは冷水のかたちで水が用
いられる。ところで、この空調ユニットを被空調室であ
る居室側に設置する場合があるが、居室での漏水事故の
恐れがあるため、このような配置はあまり好まれない。
そこで近来のビル空調システムでは、熱媒体としては水
に代わってフロン等の冷媒を用い、この冷媒を熱源側か
ら各空調ユニットの熱交換器へ直接導くシステムが注目
されている。 このようなビル空調システムの一つとして、本件出願
人はすでに重力式ヒートパイプを用いたビル空調システ
ムに関する発明を出願(特願昭61−264309号)してい
る。この重力式ヒートパイプを用いたビル空調システム
では、熱源側と各空調ユニットの間の冷媒循環系を圧縮
機のない自然循環系で構成されている。すなわちこの発
明では、冷房用の第1の重力式ヒートパイプと暖房用の
第2の重力式ヒートパイプが構成されており、被空調室
のある建物内には各空調ユニットが設置され、その空調
ユニット内には暖房用熱交換器として第2の重力式ヒー
トパイプの凝縮部と冷房用熱交換器として第1の重力式
ヒートパイプの蒸発部が設けられている。一方、各空調
ユニットよりも高所には冷房用熱交換器としての蒸発部
に対応して第1の重力式ヒートパイプの凝縮部が、また
各空調ユニットよりも低所には暖房用熱交換器としての
凝縮部に対応して第2の重力式ヒートパイプの蒸発部が
それぞれ設けられている。各重力式ヒートパイプ内には
冷媒が封入されており、その冷媒が各蒸発部および凝縮
部で熱交換とともに気液相変化を生じながら各ヒートパ
イプ内を自然循環することによって熱搬送が行なわれれ
る。
Generally, in a building air conditioning system, water is usually used in the form of steam, hot water, or cold water as a heat medium that circulates between the heat source side and each air conditioning unit and contributes to heat transfer. By the way, there are cases where this air conditioning unit is installed on the side of the living room, which is the room to be air conditioned, but such an arrangement is not preferred because there is a risk of water leakage in the living room.
Therefore, in recent building air conditioning systems, attention has been paid to a system in which a refrigerant such as CFC is used as a heat medium instead of water and the refrigerant is directly led from the heat source side to the heat exchanger of each air conditioning unit. As one of such building air conditioning systems, the applicant of the present application has already applied for an invention relating to a building air conditioning system using a gravity type heat pipe (Japanese Patent Application No. 61-264309). In a building air conditioning system using this gravity type heat pipe, the refrigerant circulation system between the heat source side and each air conditioning unit is composed of a natural circulation system without a compressor. That is, according to the present invention, the first gravity heat pipe for cooling and the second gravity heat pipe for heating are configured, and each air conditioning unit is installed in the building having the air-conditioned room. In the unit, a condensing part of the second gravity type heat pipe as a heat exchanger for heating and a vaporizing part of the first gravity type heat pipe as a heat exchanger for cooling are provided. On the other hand, the condensing part of the first gravity type heat pipe is located higher than each air conditioning unit corresponding to the evaporating part as a heat exchanger for cooling, and the heat exchanging part for heating is located lower than each air conditioning unit. The evaporator of the second gravity heat pipe is provided corresponding to the condenser as the container. Refrigerant is enclosed in each gravity heat pipe, and the refrigerant naturally circulates in each heat pipe while undergoing heat exchange and vapor-liquid phase change in each evaporator and condenser, thereby performing heat transfer. Be done.

【発明が解決しようとする問題点】[Problems to be Solved by the Invention]

ところで、上述のような熱搬送系を持つ空調システム
にあっては、各被空調室での熱負荷に対応して各運転モ
ードにおける暖房能力および冷房能力を制御する場合に
は、それぞれの冷媒自然循環系での冷媒循環流量を制御
することになる。しかしながら、実際に冷媒の流量制御
を行なうとすれば種々の問題が生じ、例えば各空調ユニ
ットの設置高さ位置が異なった場合には、それぞれの空
調ユニットに作用する冷媒液の水頭圧が異なり、各空調
ユニットで同等の熱交換条件を満たせなくなる。また、
各被空調室の熱負荷が異なっていれば、それぞれの被空
調室の熱負荷に応じて冷房能力あるいは暖房能力を調整
制御しなければならないが、例えば冷房モードで運転さ
れる場合には、冷房負荷の大きな空調ユニットほど熱交
換量が大きいため冷媒の熱発量も多くなり、したがって
冷媒ガス管内での抵抗が大きくなってしまう。すなわ
ち、冷媒の流量を多く必要とする系ほど抵抗が大きくな
るため、実際には負荷がさほど大きくなくて冷媒流量も
さほど必要としない系への多量の冷媒が供給されるとい
う冷媒の偏流を生じる。 本発明は上述のごとき問題点を鑑み、これらを有効に
解決すべく創案されたものである。したがってその目的
は、重力式ヒートパイプを用いて熱搬送を行なうビル空
調システムをより具体的に実現化する上で、その能力制
御を可能ならしめ得るビル空調システムを提供すること
にある。
By the way, in the air conditioning system having the heat transfer system as described above, when controlling the heating capacity and the cooling capacity in each operation mode in response to the heat load in each room to be air-conditioned, each refrigerant natural The circulation flow rate of the refrigerant in the circulation system will be controlled. However, if the flow rate control of the refrigerant is actually performed, various problems occur, for example, when the installation height position of each air conditioning unit is different, the head pressure of the refrigerant liquid acting on each air conditioning unit is different, Equal heat exchange conditions cannot be satisfied in each air conditioning unit. Also,
If the heat load of each air-conditioned room is different, it is necessary to adjust and control the cooling capacity or heating capacity according to the heat load of each air-conditioned room. Since the air-conditioning unit with a larger load has a larger amount of heat exchange, the amount of heat generated by the refrigerant also increases, and therefore the resistance in the refrigerant gas pipe also increases. That is, since the resistance increases in a system that requires a larger flow rate of the refrigerant, in actuality, a large amount of refrigerant is supplied to the system that does not require a large load and does not require a large flow rate of the refrigerant. . The present invention has been devised in view of the above problems to effectively solve these problems. Therefore, it is an object of the present invention to provide a building air conditioning system capable of controlling its capacity in more concretely realizing the building air conditioning system that carries heat by using a gravity type heat pipe.

【問題点を解決するための手段】[Means for solving problems]

本発明に係るビル空調システムは、従来技術の問題点
を解決し、その目的を達成するために以下のような構成
を備えている。 すなわち、室内空気加熱用熱交換器としての第1凝縮
器と、室内空気冷却用熱交換器としての第1蒸発器とを
有する空調ユニットを備え、前記空調ユニットよりも下
方に設置され、前記第1凝縮器に対応する温熱源用熱交
換器としての第2蒸発器を備え、前記空調ユニットより
も上方に設置され、前記第1蒸発器に対応する冷熱源用
熱交換器としての第2凝縮器を備え、前記第1凝縮器と
前記第2蒸発器とを、且つ前記第1蒸発器と前記第2凝
縮器とを、それぞれ冷媒液管および冷媒ガス管で連結
し、それぞれに冷媒自然循環系を形成してなるビル空調
システムにして、前記第1凝縮器および第1蒸発器の各
冷媒流入口には、設定された室温の目標値と前記空調ユ
ニットへの還流空気温度との差を縮小すべく、それぞれ
の開度が相互に連携して制御される流量制御弁がそれぞ
れ設けられ、前記第1蒸発器は、該蒸発器内の冷媒液位
が所定の高さ位置であることを検知するとともにその検
知信号を出力する液位検知手段を備え、前記流量制御弁
のうち前記第1蒸発器の冷媒流入口に設けられる流量制
御弁は、前記液位検知手段からの検知信号により閉じら
れるように構成されている。
The building air conditioning system according to the present invention has the following configuration in order to solve the problems of the conventional technology and achieve the object. That is, an air conditioning unit having a first condenser as a heat exchanger for heating indoor air and a first evaporator as a heat exchanger for cooling indoor air is provided, and the air conditioning unit is installed below the air conditioning unit. No. 1 condenser is provided with a second evaporator as a heat exchanger for a heat source, is installed above the air conditioning unit, and is a second condenser as a heat exchanger for a cold heat source corresponding to the first evaporator. And a first condenser and a second evaporator, and a first condenser and a second condenser are connected by a refrigerant liquid pipe and a refrigerant gas pipe, respectively, and a natural refrigerant circulation to each of them. In a building air conditioning system that forms a system, a difference between the set target value of room temperature and the temperature of the return air to the air conditioning unit is set at each refrigerant inlet of the first condenser and the first evaporator. In order to reduce, each opening cooperates with each other Flow rate control valves to be controlled are respectively provided, and the first evaporator has a liquid level detecting means for detecting that the refrigerant liquid level in the evaporator is at a predetermined height position and outputting a detection signal thereof. Of the flow rate control valves, the flow rate control valve provided at the refrigerant inlet of the first evaporator is configured to be closed by a detection signal from the liquid level detection means.

【作用】[Action]

本発明に係るビル空調システムよれば、第1凝縮器と
第2蒸発器と、これらの間を連結する冷媒液管および冷
媒ガス管とによって構成される冷媒自然循環系で暖房運
転が行なわれる。一方、第1蒸発器と第2凝縮器と、こ
れらの間を連結する冷媒液管および冷媒ガス管とによっ
て構成される冷媒自然循環系によって冷房運転が行なわ
れる。 空調ユニット内の第1凝縮器および第1蒸発器に供給
される冷媒の流量は、それぞれの各冷媒流入口に設けら
れた流量制御弁によって制御される。その制御は、空調
ユニットへ還流する被空調室内の空気温度が、その被空
調室に設定されている室温の目標値に近付くように弁開
度が相互に関連して調整され、例えば、還流空気温度が
目標値よりも高い場合には冷房運転を行なうべく第1蒸
発器の流量制御弁が開かれる。あるいは開度が大きくさ
れる。したがって第1凝縮器の流量制御弁は全閉にされ
る。また、還流空気温度が目標値よりも低い場合には暖
房運転を行なうべく第1凝縮器の流量制御弁が開かれ、
あるいは開度が大きくされる。したがって第1蒸発器の
流量制御弁は全閉にされる。このように、各空調ユニッ
トにおける負荷に応じて弁開度が制御されて冷媒供給量
が制御されるので、熱交換量すなわち蒸発量の多少によ
る冷媒の偏流を抑制できる。なお、各流量制御弁の開度
制御は、開閉だけの2値制御でもよく、あるいは開度を
段階的あるいは無段階に制御してもよい。 また、第1蒸発器の流量制御弁は、第1蒸発器内に満
たされる冷媒の液位が所定の高さを超えないようにも制
御される。すなわち、第1蒸発器の流量制御弁が開かれ
て冷媒液がこの蒸発器内に流入するとき、蒸発器内での
冷媒液位は冷媒液管内の液位に等しくなろうとして蒸発
器の最上部よりも高い位置にまで流入しようとするが、
この第1蒸発器に設けられた液位検知手段が第1蒸発器
内の冷媒液位を監視しており、この液位検知手段が流量
制御弁を閉じさせる検知信号を出力する液位を、例えば
最も熱交換効率の高くなる液位に設定しておけば、流入
した冷媒がその液位に達したときに流量制御弁が閉じら
れる。したがって、第1蒸発器への冷媒供給量は還流空
気温度と室温目標値との差に基づいて制御されつつ、さ
らに第1蒸発器内での液位が所定の高さを超えないよう
にも規制される。 さらには、第1凝縮器および第1蒸発器を通過する風
量とともに上記各流量制御弁を制御することも可能であ
る。
According to the building air-conditioning system of the present invention, the heating operation is performed by the refrigerant natural circulation system including the first condenser, the second evaporator, and the refrigerant liquid pipe and the refrigerant gas pipe connecting the first condenser and the second evaporator. On the other hand, the cooling operation is performed by the refrigerant natural circulation system including the first evaporator, the second condenser, and the refrigerant liquid pipe and the refrigerant gas pipe that connect them. The flow rate of the refrigerant supplied to the first condenser and the first evaporator in the air conditioning unit is controlled by the flow rate control valve provided at each refrigerant inlet. The control is such that the valve opening is adjusted in relation to each other so that the air temperature in the air-conditioned room that returns to the air-conditioning unit approaches the target value of room temperature set in the air-conditioned room. When the temperature is higher than the target value, the flow control valve of the first evaporator is opened to perform the cooling operation. Alternatively, the opening is increased. Therefore, the flow control valve of the first condenser is fully closed. When the recirculated air temperature is lower than the target value, the flow control valve of the first condenser is opened to perform the heating operation,
Alternatively, the opening is increased. Therefore, the flow control valve of the first evaporator is fully closed. In this way, the valve opening degree is controlled and the refrigerant supply amount is controlled according to the load in each air conditioning unit, so it is possible to suppress uneven flow of the refrigerant due to the amount of heat exchange, that is, the amount of evaporation. The opening control of each flow control valve may be binary control of only opening and closing, or the opening may be controlled stepwise or steplessly. The flow rate control valve of the first evaporator is also controlled so that the liquid level of the refrigerant filled in the first evaporator does not exceed a predetermined height. That is, when the flow rate control valve of the first evaporator is opened and the refrigerant liquid flows into this evaporator, the refrigerant liquid level in the evaporator tends to become equal to the liquid level in the refrigerant liquid pipe, and the maximum of the evaporator is reached. It tries to flow into a position higher than the upper part,
The liquid level detecting means provided in the first evaporator monitors the refrigerant liquid level in the first evaporator, and the liquid level detecting means outputs a liquid level for outputting a detection signal for closing the flow control valve, For example, if the liquid level is set to the highest heat exchange efficiency, the flow control valve is closed when the inflowing refrigerant reaches the liquid level. Therefore, the refrigerant supply amount to the first evaporator is controlled on the basis of the difference between the reflux air temperature and the room temperature target value, and the liquid level in the first evaporator is controlled so as not to exceed the predetermined height. Regulated. Furthermore, it is also possible to control each of the flow rate control valves together with the amount of air passing through the first condenser and the first evaporator.

【発明の効果】【The invention's effect】

以上の説明より明らかなように、本発明によれば次の
ごとき優れた効果が発揮される。 すなわち、重力式ヒートパイプを用いて熱搬送を行な
うビル空調システムをより具体的に実用化する上で、被
空調室の負荷に応じてその能力制御を可能ならしめ得
る。特に、各空調ユニットの設置される高さ位置がそれ
ぞれ異なっていても、それぞれの第1蒸発器内において
適切な冷媒液位を確保でき、且つ負荷に対する冷媒の偏
流を防止できる。
As is clear from the above description, according to the present invention, the following excellent effects are exhibited. That is, in practically implementing a building air-conditioning system that uses a gravity heat pipe to transfer heat, it is possible to control its capacity according to the load of the air-conditioned room. In particular, even if the height positions of the air conditioning units are different from each other, it is possible to secure an appropriate refrigerant liquid level in each of the first evaporators and prevent the refrigerant from flowing unevenly with respect to the load.

【実施例】【Example】

以下に本発明の好適一実施例について第1図ないし第
3図を参照して説明する。 第1図は本発明に係るビル空調システムを示す概略構
成図である。本システムでは、各構成の位置が高さ位置
に関して特定されている。すなわち、建物内の各被空調
室に各空調ユニット1が設置され、この空調ユニット1
内には暖房運転用すなわち室内空気加熱用の熱交換器と
して第1凝縮器2と、冷房運転用すなわち室内空気冷却
用の熱交換器として第1蒸発器3とが設けられているの
に対して、第1凝縮器2とともに暖房用冷媒循環系を構
成する第2蒸発器5が空調ユニット1よりも低い位置に
設けられ、一方、第1蒸発器3とともに冷房用冷媒循環
系を構成する第2凝縮器4が空調ユニット1よりも高い
位置に設けられ、それぞれの冷媒循環系において蒸発器
と凝縮器との間が冷媒液管6,7および冷媒ガス管8,9で連
結されている。第2凝縮器4は例えば建物の屋上等に設
置された冷熱源側としての氷蓄熱槽10内に設けられ、第
2蒸発器5は建物の地下等に設置された温熱源側として
の温水蓄熱槽11内に設けられている。各蓄熱槽10,11に
蓄冷ないし蓄熱するための熱源装置は、製氷器12および
温水器13を内蔵したヒートポンプチラー14である。氷蓄
熱槽10と製氷器12の間には、製氷器12で作られた氷を氷
蓄熱槽10へ圧送するスラリーポンプ15が介設されてい
る。また、温水蓄熱槽11と温水器13の間には、温水器13
で作られた温水を温水蓄熱槽11へ圧送する温水ポンプ16
が介設されている。なお、図中17はアキュムレータ、18
は膨張弁、19は空気熱交換器、20は圧縮機である。 各空調ユニット1は、上述の第1凝縮器2および第1
蒸発器3の他の主な構成として送風機21と、この送風機
21へ吸入される還流室内空気の温度を検知するサーミス
タ22とを備えている。その他、第1蒸発器3の冷媒液流
入口および第1凝縮器2の冷媒流出口のそれぞれには、
流量制御弁23,24が設けられ、特に第1蒸発器3の上端
部には液位置検知手段としての液面検知センサ26が取り
付けられている。サーミスタ22および液面検知センサ26
からは、それぞれの検知信号が出力されて制御器25に入
力される。制御器25は、これらの信号に基づいて演算処
理し、各流量制御弁23,24のそれぞれの開度および送風
機21の回転数を算出して、各流量制御弁23,24および送
風機21に各開度および回転数を指示する操作命令信号を
出力する。 第2図は、本実施例における第1凝縮器2および第1
蒸発器3のそれぞれの弁開度と、送風機21の回転数とに
ついて、還流室内空気温度に関する制御状態を示すグラ
フ図である。図中、上段が第1凝縮器2の流量制御弁24
の開度、中段が第1蒸発器3の流量制御弁23の開度、下
段が送風機21の回転数をそれぞれ示している。本実施例
では、設定された室温目標値を設定ポイントSPとし、大
略的に見て還流室内空気温度が設定ポイントよりも低く
なった場合には暖房運転を行ない、高くなった場合には
冷房運転を行なうように制御される。 まず弁開度について、本実施例では各流量制御弁23,2
4はオン・オフだけで全開もしくは全閉の2値制御がな
され、設定された室温目標値を設定ポイントSPとして、
還流室内空気温度が設定ポイントよりも高い場合には冷
房運転を行なうべく第1凝縮器2の流量制御弁24が閉じ
られ、第1蒸発器3の流量制御弁23が開かれる。また逆
に還流室内空気温度が設定ポイントよりも低い場合に
は、暖房運転を行なうべく第1凝縮器2の流量制御弁24
が開かれて第1蒸発器3の流量制御弁23が閉じられる。
すなわち、設定ポイントを中心として暖房運転と冷房運
転とが切り替えられる。この切り替えには、それぞれの
流量制御弁23,24が開かれる温度差と閉じられる温度差
とに幅が持たされており、冷房運転から暖房運転に切り
替えられる場合には、グラフ図中に実線で示されるよう
に還流室内空気温度が設定ポイントを僅かに下回ったと
きに第1蒸発器3の流量制御弁23が閉じられ、さらに還
流室内空気温度が下がったときに第1凝縮器2の流量制
御弁24が開かれる。また、暖房運転から冷房運転に切り
替えられる場合には、グラフ図中に2点鎖線で示される
ように還流室内空気温度が設定ポイントを僅かに上回っ
たときに第1凝縮器2の流量制御弁24が閉じられ、さら
に還流室内空気温度が上がったときに第1蒸発器3の流
量制御弁23が開かれる。ただし、冷房運転中で第1蒸発
器3の流量制御弁23が開かれるような還流室内空気温度
であっても、第1蒸発器3内の冷媒が器内を満たしてい
るような所定の高さの液位にある場合には、液位面検知
センサ26から検知信号が出力され、この流量制御弁23が
閉じられる。 次に送風器の回転数について、本実施例では低・中・
高の3段階に制御され、暖房運転の場合も冷房運転の場
合も、還流室内空気温度が設定ポイントSPから離れるほ
ど回転数が高くされている。また、冷房運転から暖房運
転に切り替えられる場合は実線で、暖房運転から冷房運
転に切り替えられる場合は2点鎖線で示しているよう
に、回転数が低から方へ切り替えられる場合よりも回転
数が高い方へ切り替えられる場合の方が、還流空気室内
温度は設定ポイントから離れるように設定されており、
特に、回転数が低から中へ切り替えられるときは、暖房
運転および冷房運転のそれぞれの場合において、第1凝
縮器2の流量制御弁24が開かれるとき、および第1蒸発
器3の流量制御弁23がひらかれるときと大略同時に設定
されている。 また、送風機21の回転数は一定とし、第3図のグラフ
図に示すように、第1凝縮器2および第1蒸発器3のそ
れぞれの流量制御弁23,24の開度だけについて、還流室
内空気温度が設定ポイントSPから離れるほど弁開度が大
きくなるように比例制御してもよい。なお図中、実線は
流量制御弁23の弁開度、破線は流量制御弁24の弁開度を
それぞれ示す。 上述の実施例では、液位検知手段として液面検知セン
サ26を用いられているが、例えば、第1蒸発器3の冷媒
流入口および冷媒流出口のそれぞれに温度センサ(図示
せず)を取り付け、双方の温度センサが検知する温度に
よって第1蒸発器3内の冷媒液位を検知することも可能
である。すなわち、第1蒸発器3内で熱交換されて蒸発
した冷媒は幾分スーパーヒートされた状態となっている
ので、もし第1蒸発器3内の冷媒液位が低く、冷媒流入
口に取り付けられた温度センサは浸漬していても冷媒流
出口に取り付けられた温度センサの高さ位置まで冷媒液
面が達していない場合には、流入口の温度センサよりも
流出口の温度センサの方が高い温度を計測することにな
る。逆に、第1蒸発器3内の冷媒液位が十分に高く、流
入口および流出口に取り付けられた双方の温度センサを
浸漬している状態では、いずれの温度センサも同じ温度
を計測することになる。したがって、双方の温度センサ
の計測値を比較することによって第1蒸発器3内の冷媒
液位を検知することができ、上述の液面検知センサ26と
同様に液位検知手段として利用できる。 以上のように、弁開度を還流室内空気温度と室温目標
値との差に基づいて制御すれば、特に第1蒸発器3内で
の熱交換量すなわち蒸発量に依存して冷媒循環系内の抵
抗が変動するよりも、むしろ流量制御弁23,24の開度に
依存してその抵抗が変動するかたちとなって冷媒の流量
が制御されるので、冷媒の供給を必要としている空気ユ
ニット1へ必要量の冷媒を供給できる。また、それぞれ
の空調ユニット1の設置高さ位置が異なっていっても、
各空調ユニット1内の第1蒸発器3に満たされる冷媒液
位の上限が液面検知センサ26と流量制御弁23とによって
制御されるので、低位置に設置された空調ユニットが高
位置に設置される空調ユニットの影響を受けることはな
く、それぞれの空調ユニット1で適切な冷媒液位が得ら
れる。 なお、第1蒸発器3で過冷却除湿を行ない、第1凝縮
器2の再熱器として用いれば除湿運転を行うことも可能
である。この場合には、両方の流量制御弁23,24がそれ
ぞれ開かれる。
A preferred embodiment of the present invention will be described below with reference to FIGS. FIG. 1 is a schematic configuration diagram showing a building air conditioning system according to the present invention. In this system, the position of each component is specified with respect to the height position. That is, each air conditioning unit 1 is installed in each air-conditioned room in the building.
Whereas the first condenser 2 is provided as a heat exchanger for heating operation, that is, indoor air heating, and the first evaporator 3 is provided as a heat exchanger for cooling operation, that is, indoor air cooling. The second evaporator 5 that constitutes the heating refrigerant circulation system together with the first condenser 2 is provided at a position lower than the air conditioning unit 1, while the first evaporator 3 constitutes the cooling refrigerant circulation system together with the first evaporator 3. The two condensers 4 are provided at a position higher than the air conditioning unit 1, and in each refrigerant circulation system, the evaporator and the condenser are connected by refrigerant liquid pipes 6 and 7 and refrigerant gas pipes 8 and 9. The second condenser 4 is provided, for example, in an ice heat storage tank 10 as a cold heat source side installed on the roof of a building, and the second evaporator 5 is hot water heat storage as a hot heat source side installed in the underground of the building. It is provided in the tank 11. A heat source device for storing or storing heat in the heat storage tanks 10 and 11 is a heat pump chiller 14 having an ice maker 12 and a water heater 13 built therein. A slurry pump 15 is interposed between the ice heat storage tank 10 and the ice maker 12 to pump the ice produced by the ice maker 12 to the ice heat storage tub 10. In addition, between the hot water heat storage tank 11 and the water heater 13, a water heater 13
Hot water pump 16 for sending hot water made by
Is interposed. In the figure, 17 is an accumulator, 18
Is an expansion valve, 19 is an air heat exchanger, and 20 is a compressor. Each air conditioning unit 1 includes a first condenser 2 and a first condenser 2 described above.
The blower 21 is another main configuration of the evaporator 3, and this blower
And a thermistor 22 for detecting the temperature of the recirculated room air sucked into 21. In addition, at the refrigerant liquid inlet of the first evaporator 3 and the refrigerant outlet of the first condenser 2, respectively,
Flow rate control valves 23 and 24 are provided, and in particular, a liquid level detection sensor 26 as liquid position detection means is attached to the upper end of the first evaporator 3. Thermistor 22 and liquid level sensor 26
From, the respective detection signals are output and input to the controller 25. The controller 25 performs arithmetic processing based on these signals to calculate the opening of each of the flow rate control valves 23 and 24 and the rotation speed of the blower 21, and to calculate the flow rate control valves 23 and 24 and the blower 21 respectively. An operation command signal for instructing the opening degree and the rotation speed is output. FIG. 2 shows the first condenser 2 and the first condenser 2 in this embodiment.
It is a graph figure which shows the control state regarding the recirculation room air temperature about each valve opening of the evaporator 3, and the rotation speed of the air blower 21. In the figure, the upper stage is the flow control valve 24 of the first condenser 2.
Of the flow rate control valve 23 of the first evaporator 3 is shown in the middle stage, and the rotational speed of the blower 21 is shown in the lower stage. In the present embodiment, the set room temperature target value is set as a set point SP, and roughly speaking, when the recirculation room air temperature becomes lower than the set point, heating operation is performed, and when it becomes higher, cooling operation is performed. Controlled to do. First, regarding the valve opening, in this embodiment, each flow control valve 23, 2
4 is a binary control of fully open or fully closed only by turning on / off, and the set room temperature target value is set point SP,
When the air temperature in the recirculation chamber is higher than the set point, the flow control valve 24 of the first condenser 2 is closed and the flow control valve 23 of the first evaporator 3 is opened to perform the cooling operation. On the contrary, when the air temperature in the recirculation room is lower than the set point, the flow rate control valve 24 of the first condenser 2 is operated to perform the heating operation.
Is opened and the flow control valve 23 of the first evaporator 3 is closed.
That is, the heating operation and the cooling operation are switched around the set point. This switching has a range between the temperature difference in which the flow control valves 23 and 24 are opened and the temperature difference in which they are closed, and when switching from cooling operation to heating operation, the solid line in the graph diagram As shown, the flow control valve 23 of the first evaporator 3 is closed when the temperature of the recirculation chamber air is slightly below the set point, and when the temperature of the recirculation chamber air is further decreased, the flow control of the first condenser 2 is controlled. Valve 24 is opened. Further, when the heating operation is switched to the cooling operation, the flow rate control valve 24 of the first condenser 2 is set when the recirculating room air temperature slightly exceeds the set point, as indicated by the two-dot chain line in the graph. Is closed and the flow control valve 23 of the first evaporator 3 is opened when the temperature of the air in the reflux chamber further rises. However, even if the air temperature of the recirculation chamber is such that the flow control valve 23 of the first evaporator 3 is opened during the cooling operation, the refrigerant in the first evaporator 3 has a predetermined high temperature so as to fill the inside thereof. When the liquid level is high, a detection signal is output from the liquid level detection sensor 26, and the flow rate control valve 23 is closed. Next, regarding the number of revolutions of the blower, in this embodiment, low, medium,
It is controlled in three stages of high, and in both heating operation and cooling operation, the rotational speed is increased as the recirculated room air temperature departs from the set point SP. Further, as indicated by a solid line when the cooling operation is switched to the heating operation and as indicated by a two-dot chain line when the heating operation is switched to the cooling operation, the rotation speed is lower than that when the rotation speed is switched from the low rotation speed to the low rotation speed. When switching to a higher one, the temperature of the recirculating air chamber is set to be far from the set point,
In particular, when the rotation speed is switched from low to middle, the flow control valve 24 of the first condenser 2 is opened and the flow control valve of the first evaporator 3 is opened in each of the heating operation and the cooling operation. It is set at the same time as when 23 is opened. Further, the rotation speed of the blower 21 is constant, and as shown in the graph of FIG. 3, only the opening degree of the flow control valves 23 and 24 of the first condenser 2 and the first evaporator 3 is changed. Proportional control may be performed such that the valve opening degree increases as the air temperature moves away from the set point SP. In the figure, the solid line indicates the valve opening of the flow control valve 23, and the broken line indicates the valve opening of the flow control valve 24. Although the liquid level detection sensor 26 is used as the liquid level detection means in the above-described embodiment, for example, a temperature sensor (not shown) is attached to each of the refrigerant inlet and the refrigerant outlet of the first evaporator 3. It is also possible to detect the refrigerant liquid level in the first evaporator 3 based on the temperatures detected by both temperature sensors. That is, since the refrigerant that has been heat-exchanged and evaporated in the first evaporator 3 is in a superheated state to some extent, if the refrigerant liquid level in the first evaporator 3 is low and the refrigerant is attached to the refrigerant inlet port. Even if the temperature sensor is immersed, if the coolant level does not reach the height of the temperature sensor attached to the coolant outlet, the temperature sensor at the outlet will be higher than the temperature sensor at the inlet. The temperature will be measured. On the contrary, in a state where the refrigerant liquid level in the first evaporator 3 is sufficiently high and both temperature sensors attached to the inflow port and the outflow port are immersed, both temperature sensors should measure the same temperature. become. Therefore, the refrigerant liquid level in the first evaporator 3 can be detected by comparing the measured values of both temperature sensors, and it can be used as a liquid level detecting means similar to the above-described liquid level detecting sensor 26. As described above, if the valve opening degree is controlled based on the difference between the recirculation room air temperature and the room temperature target value, the inside of the refrigerant circulation system depends on the heat exchange amount, that is, the evaporation amount in the first evaporator 3. Of the air unit 1 requiring the supply of the refrigerant because the resistance of the refrigerant is controlled not by the resistance of the refrigerant fluctuating but by fluctuating the resistance depending on the opening degree of the flow control valves 23, 24. The required amount of refrigerant can be supplied to. In addition, even if the installation height position of each air conditioning unit 1 is different,
Since the upper limit of the liquid level of the refrigerant filled in the first evaporator 3 in each air conditioning unit 1 is controlled by the liquid level detection sensor 26 and the flow control valve 23, the air conditioning unit installed in the low position is installed in the high position. The appropriate refrigerant liquid level can be obtained in each air conditioning unit 1 without being affected by the air conditioning unit. It is also possible to perform dehumidification operation by performing supercooling dehumidification in the first evaporator 3 and using it as a reheater of the first condenser 2. In this case, both flow control valves 23, 24 are opened respectively.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に係るビル空調システムを示す概略構成
図である。第2図は、本発明に係るビル空調システムの
一実施例において、第1凝縮器および第1蒸発器のそれ
ぞれの弁開度と、送風機の回転数とについて、還流室内
空気温度に関する制御の一実施例を示すグラフ図であ
る。第3図は、本発明に係るビル空調システムの一実施
例において、第1凝縮器および第1蒸発器のそれぞれの
弁開度について還流室内空気温度に関する制御の他の実
施例を示すグラフ図である。 1…空調ユニット、2…第1凝縮器、3…第1蒸発器、
4…第2凝縮器、5…第2蒸発器、6,7…冷媒液管、8,9
…冷媒ガス管、10…氷蓄熱槽、11…温水蓄熱槽、12…製
氷器、13…温水器、14…ヒートポンプチラー、15…スラ
リーポンプ、16…温水ポンプ、17…アキュムレータ、18
…膨張弁、19…空気熱交換器、20…圧縮機、21…送風
機、22…サーミスタ、23,24…流量制御弁、25…制御
器、26…液位検知手段としての液面検知センサ
FIG. 1 is a schematic configuration diagram showing a building air conditioning system according to the present invention. FIG. 2 shows an example of control relating to the air temperature in the recirculation chamber with respect to the valve opening degree of each of the first condenser and the first evaporator and the rotation speed of the blower in one embodiment of the building air conditioning system according to the present invention. It is a graph figure which shows an Example. FIG. 3 is a graph showing another embodiment of the control relating to the temperature of the recirculated indoor air for the valve openings of the first condenser and the first evaporator in the embodiment of the building air conditioning system according to the present invention. is there. 1 ... Air conditioning unit, 2 ... 1st condenser, 3 ... 1st evaporator,
4 ... 2nd condenser, 5 ... 2nd evaporator, 6,7 ... Refrigerant liquid pipe, 8,9
... Refrigerant gas pipe, 10 ... Ice heat storage tank, 11 ... Hot water heat storage tank, 12 ... Ice maker, 13 ... Water heater, 14 ... Heat pump chiller, 15 ... Slurry pump, 16 ... Hot water pump, 17 ... Accumulator, 18
... expansion valve, 19 ... air heat exchanger, 20 ... compressor, 21 ... blower, 22 ... thermistor, 23,24 ... flow control valve, 25 ... controller, 26 ... liquid level detection sensor as liquid level detection means

───────────────────────────────────────────────────── フロントページの続き (72)発明者 福永 忠裕 大阪府大阪市東区本町4丁目27番地 株式 会社竹中工務店内 (72)発明者 吉田 康敏 大阪府大阪市東区大川町1番地 日土地淀 屋橋ビル 新晃工業株式会社内 (72)発明者 兼田 節夫 大阪府大阪市東区大川町1番地 日土地淀 屋橋ビル 新晃工業株式会社内 (56)参考文献 特開 平1−3447(JP,A) 特開 昭63−118546(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tadahiro Fukunaga 4-27, Honmachi, Higashi-ku, Osaka City, Osaka Prefecture Takenaka Corporation (72) Inventor, Yasutoshi Yoshida, Okawa-cho, Higashi-ku, Osaka, Osaka Building Shinko Industry Co., Ltd. (72) Inventor Setsuo Kaneda, 1 Okawa-cho, Higashi-ku, Osaka City, Osaka Prefecture Nichichiyodo Yabashi Building Shinko Industry Co., Ltd. (56) Reference Japanese Patent Laid-Open No. 1-3447 (JP, A) ) JP-A-63-118546 (JP, A)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】室内空気加熱用熱交換器としての第1凝縮
器(2)と、室内空気冷却用熱交換器としての第1蒸発
器(3)とを有する空調ユニット(1)を備え、 前記空調ユニット(1)よりも下方に設置され、前記第
1凝縮器(2)に対応する温熱源用熱交換器としての第
2蒸発器(5)を備え、 前記空調ユニット(1)よりも上方に設置され、前記第
1蒸発器(3)に対応する冷熱源用熱交換器としての第
2凝縮器(4)を備え、 前記第1凝縮器(2)と前記第2蒸発器(5)とを、且
つ前記第1蒸発器(3)と前記第2凝縮器(4)とを、
それぞれ冷媒液管(6,7)および冷媒ガス管(8,9)で連
結し、それぞれに冷媒自然循環系を形成してなるビル空
調システムにして、 前記第1凝縮器(2)および第1蒸発器(3)の各冷媒
流入口には、設定された室温の目標値と前記空調ユニッ
ト(1)への還流空気温度との差を縮小すべく、それぞ
れの開度が相互に連携して制御される流量制御弁(23お
よび24)がそれぞれ設けられ、 前記第1蒸発器(3)は、該蒸発器(3)内の冷媒液位
が所定の高さ位置であることを検知するとともにその検
知信号を出力する液位検知手段(26)を備え、 前記流量制御弁のうち前記第1蒸発器(3)の冷媒流入
口に設けられる流量制御弁(23)は、前記液位検知手段
(26)からの検知信号により閉じられることを特徴とす
るビル空調システム。
1. An air conditioning unit (1) having a first condenser (2) as a heat exchanger for heating indoor air and a first evaporator (3) as a heat exchanger for cooling indoor air, A second evaporator (5), which is installed below the air conditioning unit (1) and serves as a heat exchanger for a heat source corresponding to the first condenser (2), is provided more than the air conditioning unit (1). A second condenser (4) installed above and serving as a heat exchanger for a cold heat source corresponding to the first evaporator (3) is provided, and the first condenser (2) and the second evaporator (5) ), And the first evaporator (3) and the second condenser (4),
The first condenser (2) and the first condenser (2) and the first condenser (2) are constructed by connecting a refrigerant liquid pipe (6, 7) and a refrigerant gas pipe (8, 9) to each other to form a refrigerant natural circulation system. In order to reduce the difference between the set target value of the room temperature and the temperature of the recirculated air to the air conditioning unit (1), the opening of each of the refrigerant inlets of the evaporator (3) cooperates with each other. Flow rate control valves (23 and 24) to be controlled are respectively provided, and the first evaporator (3) detects that the refrigerant liquid level in the evaporator (3) is at a predetermined height position. The liquid level detection means (26) for outputting the detection signal is provided, and the flow rate control valve (23) provided at the refrigerant inlet of the first evaporator (3) of the flow rate control valves is the liquid level detection means. A building air conditioning system characterized by being closed by a detection signal from (26).
【請求項2】前記空調ユニット(1)は、前記設定され
た室温の目標値と前記空調ユニット(1)への還流空気
温度との差によりその送風量が制御される特許請求の範
囲第1項記載のビル空調システム。
2. The air flow rate of the air conditioning unit (1) is controlled by the difference between the set target value of room temperature and the temperature of the recirculated air to the air conditioning unit (1). The building air-conditioning system according to item.
JP62276568A 1987-03-12 1987-10-31 Building air conditioning system Expired - Lifetime JPH0810066B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP62276568A JPH0810066B2 (en) 1987-10-31 1987-10-31 Building air conditioning system
US07/152,427 US4843832A (en) 1987-03-12 1988-02-04 Air conditioning system for buildings
ES198888101622T ES2033348T3 (en) 1987-03-12 1988-02-04 AIR CONDITIONING SYSTEM FOR BUILDINGS.
DE8888101622T DE3871995T2 (en) 1987-03-12 1988-02-04 AIR CONDITIONING FOR BUILDING.
EP88101622A EP0281762B1 (en) 1987-03-12 1988-02-04 Air conditioning system for buildings
KR1019880001612A KR950003786B1 (en) 1987-03-12 1988-02-16 Air conditioning system for buildings
CA000559610A CA1295129C (en) 1987-03-12 1988-02-23 Air conditioning system for buildings
MX1053388A MX167565B (en) 1987-03-12 1988-02-24 AIR CONDITIONING SYSTEM FOR BUILDINGS
AU12746/88A AU599760B2 (en) 1987-03-12 1988-03-07 Air conditioning system for buildings
CN88101287A CN1009858B (en) 1987-03-12 1988-03-09 Air conditioning system for building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62276568A JPH0810066B2 (en) 1987-10-31 1987-10-31 Building air conditioning system

Publications (2)

Publication Number Publication Date
JPH01121641A JPH01121641A (en) 1989-05-15
JPH0810066B2 true JPH0810066B2 (en) 1996-01-31

Family

ID=17571294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62276568A Expired - Lifetime JPH0810066B2 (en) 1987-03-12 1987-10-31 Building air conditioning system

Country Status (1)

Country Link
JP (1) JPH0810066B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG171566A1 (en) 2009-12-01 2011-06-29 Hitachi Plant Technologies Ltd Cooling method and cooling system of electronic device
JP5351097B2 (en) * 2010-06-18 2013-11-27 株式会社日立製作所 Refrigerant circulation device
CN208170588U (en) 2017-01-26 2018-11-30 特灵国际有限公司 The water cooler for having ice storage

Also Published As

Publication number Publication date
JPH01121641A (en) 1989-05-15

Similar Documents

Publication Publication Date Title
AU599760B2 (en) Air conditioning system for buildings
US8074459B2 (en) Heat pump system having auxiliary water heating and heat exchanger bypass
US20080197206A1 (en) Refrigerant System With Water Heating
US8056348B2 (en) Refrigerant charge control in a heat pump system with water heater
JPH0810066B2 (en) Building air conditioning system
EP3674622B1 (en) Fluid control for a variable flow fluid circuit of a unit in an hvacr system
JPH0651756U (en) Cooling system
JPH01281378A (en) Heat pump type cooler/hot water heater
JP2716559B2 (en) Cooling / heating mixed type multi-room air conditioner
JP2757900B2 (en) Air conditioner
JPH0810067B2 (en) Cooling system
CN219037061U (en) Air conditioning system
JPS60108633A (en) Air conditioner with many separate indoor units
JP3326322B2 (en) Air conditioner and air conditioner system equipped with this air conditioner
JP3630892B2 (en) Air conditioner
JPH07117256B2 (en) Building air conditioning system
JPS62275623A (en) Temperature control system of greenhouse
JPH04283361A (en) Multichamber type air conditioner
JPS6028935Y2 (en) Heat pump air conditioning system
JPH09170824A (en) Heat conveying device
JP2889799B2 (en) Heat pump equipment
JPH0571834A (en) Air-conditioning device
JP2542649B2 (en) Air conditioner
JPH04217755A (en) Multiroom type air-conditioner
JPS61114060A (en) Heat pump type air conditioner

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080131

Year of fee payment: 12