JPH07117256B2 - Building air conditioning system - Google Patents

Building air conditioning system

Info

Publication number
JPH07117256B2
JPH07117256B2 JP4563088A JP4563088A JPH07117256B2 JP H07117256 B2 JPH07117256 B2 JP H07117256B2 JP 4563088 A JP4563088 A JP 4563088A JP 4563088 A JP4563088 A JP 4563088A JP H07117256 B2 JPH07117256 B2 JP H07117256B2
Authority
JP
Japan
Prior art keywords
refrigerant
condenser
air conditioning
pipe
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4563088A
Other languages
Japanese (ja)
Other versions
JPH01219436A (en
Inventor
良則 井上
晋司 三浦
忠裕 福永
康敏 吉田
節夫 兼田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Corp
Sinko Industries Ltd
Original Assignee
Takenaka Corp
Sinko Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Corp, Sinko Industries Ltd filed Critical Takenaka Corp
Priority to JP4563088A priority Critical patent/JPH07117256B2/en
Publication of JPH01219436A publication Critical patent/JPH01219436A/en
Publication of JPH07117256B2 publication Critical patent/JPH07117256B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention 【産業上の利用分野】[Industrial applications]

本発明は、ビル空調システムに係り、特にその熱搬送系
に重力式ヒートパイプを用いて冷房及び暖房の両方を行
うシステムに関するものである。
The present invention relates to a building air-conditioning system, and more particularly to a system that performs both cooling and heating by using a gravity heat pipe as its heat transfer system.

【従来技術】[Prior art]

上述のごとき熱搬送系に重力式ヒートパイプを用いて冷
房及び暖房の両方を行うビル空調システムに関する発明
について、本件出願人は既に出願済み(特願昭61−2643
09号)であるが、この既出願のビル空調システムでは冷
房回路及び暖房回路が夫々独立して構成されている。即
ち、冷房回路を構成する重力式ヒートパイプと暖房回路
を構成する重力式ヒートパイプとは、その冷媒循環経路
に関しては共有する部分を持っておらず、従って冷房回
路には冷房負荷に応じた量の冷媒が、暖房回路には暖房
負荷に応じた量の冷媒が封入されるべきものである。
The applicant of the present invention has already applied for an invention relating to a building air-conditioning system that performs both cooling and heating by using a gravity type heat pipe for the heat transfer system as described above (Japanese Patent Application No. 61-2643).
No. 09), but in the building air-conditioning system of this application, the cooling circuit and the heating circuit are independently configured. That is, the gravity type heat pipe that constitutes the cooling circuit and the gravity type heat pipe that constitutes the heating circuit do not have a shared portion regarding the refrigerant circulation path, and therefore the cooling circuit has an amount corresponding to the cooling load. This refrigerant should be sealed in the heating circuit in an amount corresponding to the heating load.

【発明が解決しようとする課題】[Problems to be Solved by the Invention]

一般に、暖房のピーク負荷は冷房のピーク負荷の約65%
程度であり、通常の暖房用装置の発熱量は冷房用装置の
冷却能力の65%程度に設定されるものである。従って上
述のような構成のビル空調システムにあっては、冷房回
路に100の冷媒が封入されるとすれば、暖房回路には約6
5の冷媒が封入されることになり、その合計量としては
約165の冷媒量を必要とすることになる。 併し乍ら、冷媒が最大限使用されたとしても冷房のピー
ク負荷時における運転のときだけであり、その量にして
全冷媒量の凡そ60%程度(100/165)だけである。残り
の約40%の冷媒は暖房回路内で全く熱搬送には供さな
い。さらに暖房運転の場合に至っては、全冷媒量の凡そ
40%弱(65/165)の冷媒が利用されるだけである。この
ように、実際に封入されている冷媒の総量は多いにも拘
わらず、その運転時に必要な冷媒量はせいぜい60%止ま
りであり、無駄な冷媒を用いなければならない。 また、特に暖房運転の場合には、その立ち上がり運転時
における負荷が極めて大きいため、一時的にでも熱交換
効率を高めてやれることが望ましいが、空調ユニット内
の熱交換器が一般的な構成である場合には、送風機の回
転数を高めるぐらいしかその手段は考えられない。 本発明は、上述のごとき従来技術の課題に鑑み、これら
を有効に解決すべく創案されたものである。従ってその
目的は、重力式ヒートパイプをその熱搬送系に用いたビ
ル空調システムにおいて、無駄な冷媒の封入をなくし、
最小限必要なだけの冷媒封入量で冷暖房運転が可能であ
り、また、暖房の立ち上がり運転時には熱交換効率を一
時的に高められるシステムを提供することにある。
Generally, the peak heating load is about 65% of the cooling peak load.
The heating value of a normal heating device is set to about 65% of the cooling capacity of the cooling device. Therefore, in the building air-conditioning system having the above-described configuration, if 100 refrigerants are filled in the cooling circuit, the heating circuit has about 6
The refrigerant of 5 will be enclosed, and the total amount of refrigerant will require about 165 refrigerants. However, even if the refrigerant is used to the maximum, it is only during operation at the peak load of cooling, and the amount is about 60% of the total amount of refrigerant (100/165). About 40% of the remaining refrigerant is not used for heat transfer in the heating circuit. Furthermore, in the case of heating operation, the total amount of refrigerant is approximately
Only 40% (65/165) of the refrigerant is used. As described above, although the total amount of the refrigerant actually enclosed is large, the amount of the refrigerant required for the operation is at most 60%, and the useless refrigerant must be used. In addition, especially in the heating operation, since the load during the startup operation is extremely large, it is desirable that the heat exchange efficiency can be improved even temporarily, but the heat exchanger in the air conditioning unit has a general configuration. In some cases, the only means possible is to increase the speed of the blower. The present invention has been devised in order to effectively solve these problems in view of the problems of the prior art as described above. Therefore, the purpose is to eliminate unnecessary refrigerant encapsulation in a building air conditioning system that uses a gravity heat pipe for its heat transfer system,
An object of the present invention is to provide a system capable of performing cooling / heating operation with a minimum required amount of refrigerant charged, and temporarily increasing heat exchange efficiency during startup operation of heating.

【課題を解決するための手段】[Means for Solving the Problems]

本発明に係るビル空調システムは、従来技術の課題を解
決し、その目的を達成するために以下のように構成され
ている。 即ち、建物の高所に冷熱源側装置熱交換器として設置さ
れる第1凝縮器と、上記第1凝縮器よりも低所の建物内
に設置された空調ユニット内の熱負荷側熱交換器として
の第1蒸発器との間を、第1冷媒液管及び第1冷媒ガス
管によって往復に連結して冷房回路を形成し、且つ上記
建物の低所に温熱源装置側熱交換器として設置される第
2蒸発器と、上記空調ユニット内の熱負荷側熱交換器と
しての第2凝縮器との間を、第2冷媒液管及び第2冷媒
ガス管によって往復に連結して暖房回路を形成し、さら
に上記第1及び第2冷媒液管の間に第1開閉弁を介設
し、同様に上記第1及び第2冷媒ガス管の間に第2開閉
弁を介設して、夫々の間を開閉可能に連結し、上記冷却
回路および暖房回路に、合計量が冷房のピーク負荷に大
略相当する量の冷媒を封入して構成されている。ここで
「大略相当する量」とは、暖房回路から冷房回路へ冷媒
が移動する際に、暖房回路の容積や配管形状に応じてそ
の回路内に冷媒がガスとなって残存してしまう分があっ
ても、冷房回路内には冷房のピーク負荷を十分に賄える
量の冷媒が回収される量を意味して「大略」と記述して
いるものである。 また、上記第1冷媒ガス管における、上記第2開閉弁か
ら上記空調ユニットへ至る管路と上記第1凝縮器へ至る
管路との最上位の分岐部分と、上記第1凝縮器の冷媒ガ
ス流入口との間、もしくは上記第1冷媒液管における、
該第1凝縮器から上記第1開閉弁へ至る管路と上記空調
ユニットへ至る管路との最上位の分岐部分と、上記第1
凝縮器の冷媒液流出口との間、の少なくともいずれか一
方に第3開閉弁が介設されてもよい。
The building air conditioning system according to the present invention is configured as follows in order to solve the problems of the prior art and achieve the object. That is, a first condenser installed as a cold heat source side device heat exchanger in a high place of a building, and a heat load side heat exchanger in an air conditioning unit installed in a building lower than the first condenser. And a first evaporator as a heat exchanger are connected to each other by a first refrigerant liquid pipe and a first refrigerant gas pipe in a reciprocating manner to form a cooling circuit, and installed as a heat source side heat exchanger in a low place of the building. The second evaporator and the second condenser as a heat load side heat exchanger in the air conditioning unit are reciprocally connected by a second refrigerant liquid pipe and a second refrigerant gas pipe to form a heating circuit. A first on-off valve is provided between the first and second refrigerant liquid pipes, and a second on-off valve is similarly provided between the first and second refrigerant gas pipes. Between the cooling circuit and the heating circuit so that the total amount of the refrigerant is approximately equivalent to the peak load of cooling. It is constructed by sealing. Here, the "approximately equivalent amount" means that, when the refrigerant moves from the heating circuit to the cooling circuit, the refrigerant remains as gas in the heating circuit depending on the volume and the pipe shape of the heating circuit. Even if there is any, it is described as "generally" to mean the amount of refrigerant that can be sufficiently recovered to cover the peak load of cooling in the cooling circuit. Further, in the first refrigerant gas pipe, the highest branch portion of the pipe line from the second opening / closing valve to the air conditioning unit and the pipe line to the first condenser, and the refrigerant gas of the first condenser. Between the inlet or in the first refrigerant liquid pipe,
An uppermost branch portion of a pipe line from the first condenser to the first opening / closing valve and a pipe line to the air conditioning unit;
A third on-off valve may be provided at least one of between the condenser and the refrigerant liquid outlet.

【作用】[Action]

本発明に係るビル空調システムによれば、第1,第2開閉
弁の切り替え開閉操作によって冷房運転及び暖房運転の
切り替えが行なわれる。また、第3開閉弁の切り替え開
閉操作とも組み合わせることによって、暖房の定常運転
と立ち上がり運転の切り替えも行なわれる。 まず、冷房運転から暖房運転に切り替えられるとき、第
2開閉弁が閉じられ、第1開閉弁が開かれることによっ
て、冷房回路内の冷媒が第1開閉弁を介して暖房回路内
へ流入する。この場合の冷媒移動は殆ど重力によって流
下する。その流入量は、少なくとも暖房のピーク負荷に
相当する量である。冷媒移動が終了すれば第1開閉弁は
再び閉じられて暖房回路と冷房回路は互いに分離独立す
る。 暖房運転から冷房運転に切り替えられるとき、第1開閉
弁が閉じられるとともに第2開閉弁が開かれ、第2蒸発
器内の冷媒が総て気化されるまで熱交換が行われること
によって、暖房回路内の殆どの冷媒が第2ガス管からの
第2開閉弁を介して冷房回路へ回収される。冷媒回収が
終了すれば第2開閉弁は再び閉じられて冷房回路と暖房
回路は互いに分離独立する。 暖房の立ち上がり運転時には、冷媒が暖房回路内にある
状態で第1,第2開閉弁共に開かれ、且つ第3開閉弁が閉
じられる。通常の暖房回路の他に、冷媒が第2蒸発器か
ら順に第2ガス管,第2開閉弁,第1ガス管,第1蒸発
器,第1液管,第1開閉弁,第2受液器を経て再び第2
蒸発器へ戻って来るという第2の暖房回路とも言うべき
冷房回路の一部を利用した冷媒自然循環経路が形成され
る。
According to the building air conditioning system of the present invention, switching between the cooling operation and the heating operation is performed by the switching opening / closing operation of the first and second opening / closing valves. Further, by combining with the switching opening / closing operation of the third opening / closing valve, switching between the steady operation and the rising operation of heating is also performed. First, when the cooling operation is switched to the heating operation, the second opening / closing valve is closed and the first opening / closing valve is opened, so that the refrigerant in the cooling circuit flows into the heating circuit via the first opening / closing valve. In this case, most of the refrigerant is moved by gravity. The inflow amount is at least an amount corresponding to the peak load of heating. When the movement of the refrigerant is completed, the first opening / closing valve is closed again, and the heating circuit and the cooling circuit are separated from each other. When the heating operation is switched to the cooling operation, the first opening / closing valve is closed and the second opening / closing valve is opened, and heat exchange is performed until all the refrigerant in the second evaporator is vaporized, thereby heating the heating circuit. Most of the refrigerant therein is recovered to the cooling circuit from the second gas pipe via the second opening / closing valve. When the refrigerant recovery is completed, the second opening / closing valve is closed again, and the cooling circuit and the heating circuit are separated and independent from each other. During the heating start-up operation, both the first and second opening / closing valves are opened and the third opening / closing valve is closed while the refrigerant is in the heating circuit. In addition to the normal heating circuit, the refrigerant is in order from the second evaporator to the second gas pipe, the second opening / closing valve, the first gas pipe, the first evaporator, the first liquid pipe, the first opening / closing valve, and the second liquid receiving. Second through the vessel
A natural refrigerant circulation path is formed by using a part of the cooling circuit which should be called a second heating circuit returning to the evaporator.

【実施例】【Example】

以下に本発明の好適な一実施例について、第1図及び第
2図を参照して説明する。第1図は本発明のビル空調シ
ステムに係る一実施例の概略構成を示す模式図である。
この図において建物の構成は図示していないが図の上側
が建物の高所側を示しており、各構成はそれらの設置位
置が高さ関係において規定されている。即ち、最も高い
位置には冷房回路1の放熱側熱交換器としての第1凝縮
器3が設置され、最も低い位置には暖房回路2の吸熱側
熱交換器としての第2蒸発器6が設置されている。ま
た、これら第1凝縮器3と第2蒸発器6の間の高さ位置
には、冷房回路1の吸熱側熱交換器としての第1蒸発器
4及び暖房回路の放熱側熱交換器としての第2凝縮器5
を内蔵する空調ユニット7が、各階に群をなして設置さ
れている。 冷房回路1としては、第1凝縮器3と第1蒸発器4との
間が第1冷媒液管(以下、単に第1液管と称す)及び第
1冷媒ガス管(以下、単に第1ガス管と称す)によって
往復に連結されている。また、暖房回路2としては、第
2蒸発器6と第2凝縮器5との間が第2冷媒液管(以
下、単に第2液管と称す)及び第2冷媒ガス管(以下、
単に第2ガス管と称す)によって往復に連結されてい
る。第1液管8と第2液管10とは夫々の縦管部分で第1
開閉弁13を介設して連結されており、第1ガス管9と第
2ガス管11とも夫々の縦管部分で第2開閉弁14を介設し
て連結されている。これら冷房回路1及び暖房回路2に
は、両回路で合計が冷房負荷に大略相当する量の冷媒が
封入されている。 第1凝縮器3の冷媒ガス入口側及び冷媒液出口側には夫
々に第3,第4開閉弁15,16が介設されている。この第3,
第4開閉弁15,16は、第1ガス管9における、第2開閉
弁14から空調ユニット7へ至る管路と第1凝縮器3へ至
る管路との最上位の分岐部分P1と、第1凝縮器3の冷媒
ガス流入口29との間、もしくは第1液管8における、第
1凝縮器3から第1開閉弁13へ至る管路と空調ユニット
7へ至る管路との最上位の分岐部分P2と、第1凝縮器3
の冷媒液流出口30との間、の少なくともいずれか一方に
介設される第3開閉弁に相当している。また、第1液管
8の第4開閉弁16の直ぐ下流側には第1受液器19が介設
されている。一方、第2蒸発器6の冷媒液入口側には、
第1流量制御弁21が介設されており、冷媒ガス出口側に
は第5開閉弁17が介設されている。また、第2液管10に
介設されている第1流量制御弁21よりも直ぐ上流側に
は、第2蒸発器6よりも高い位置に第2受液器20が介設
され、さらにこの第2受液器20の直ぐ上流側には第6開
閉弁18が介設されている。第2蒸発器6には、その内部
での冷媒液位を適正に保つため、液位制御手段としての
液面検知スイッチ22が取り付けられており、この液面検
知スイッチ22からの信号によって上記第1流量制御弁21
が開閉されるようにこれらの間が電気的に接続されてい
る。 各空調ユニット7はその主な構成として、第2図に示す
ように、冷房用熱交換器としての第1蒸発器4,暖房用熱
交換器としての第2凝縮器5並びに送風機23と、さらに
この送風機23へ吸入される還流室内空気の温度を検知す
るサーミスタ24とを内蔵している。その他には、第1蒸
発器4の冷媒液入口側、及び第2凝縮器5の冷媒ガス入
口側の夫々に第2,第3流量制御弁25,26が介設され、特
に第1蒸発器4には液位検知手段としての液面検知セン
サ27が取り付けられている。また、サーミスタ24及び液
面検知センサ27からの各出力検知信号が入力される制御
器28も設けられている。制御器28は、これらの信号に基
づいて演算処理を行い、第2,第3流量制御弁25,26の夫
々の開度及び送風機23の回転数を算出して各流量制御弁
25,26及び送風機23に各開度及び回転数を指示する操作
命令信号を出力する。 以下に、上述のごとく構成されたビル空調システムの作
用について説明する。 まず、重力式ヒートパイプで構成された本実施例の冷暖
房回路1,2では、その内部に封入された冷媒が熱源側と
負荷側との間で熱搬送を行うべく自然循環する。この自
然循環は以下のようにして行なわれる。即ち、冷媒は凝
縮器3,5での熱交換に伴って冷媒ガスから冷媒液に変化
し、その冷媒液が液管8,10内を重力によって流下して蒸
発器4,6内に流入し、蒸発器4,6では熱交換に伴って冷媒
液から冷媒ガスに変化し、その冷媒ガスはガス圧によっ
てガス管9,11内を上昇して再び凝縮器3,5へ戻る。 上述のように自然循環が行なわれる冷暖房回路1,2にあ
って、最初に全冷媒が冷房回路1内にある場合を想定す
る。この状態で冷房運転が行われる場合には、第1,第2
開閉弁13,14が閉じられて冷房回路1が暖房回路2に対
して独立分離されている。冷房のピーク負荷に必要な冷
媒量が冷房回路1内に確保されており、その時の負荷に
応じた量の冷媒が冷房回路1内を自然循環する。 次に、全冷媒が冷房回路1内にあって冷房運転を行って
いた状態から暖房運転に切り替えられる場合には、第1
開閉弁13が開かれて冷房回路1の第1蒸発器4,第1受液
器19及び第1液管8等の夫々の中にあった冷媒液が第1
開閉弁13を経、より低い位置に設置された第2受液器20
および第2蒸発器6内へ流入する。第2蒸発器6内での
冷媒液位は、液面検知スイッチ22と第1流量制御弁21に
よって適正に保たれる。この切り替え時には第1凝縮器
3の出入口部に設けられている第3,第4開閉弁15,16が
閉じられるが、冷媒の流入量は、暖房のピーク負荷時に
必要な冷媒量、即ち冷媒のピーク負荷に相当する冷媒量
の約65%が少なくとも確保されればよく、幾らかは冷房
回路1内に残存していてもよい。尚、このときの第6開
閉弁18は開かれていて冷媒の流動を阻害しないが、そも
そもこの第6開閉弁18はメインテナンス用開閉弁であ
り、システム運転時は常時開状態にされている。冷媒の
流入が完了した時点で第1開閉弁13が閉じられ、通常の
暖房運転が可能となる。 暖房運転にあって特にその立ち上がり運転時には、第3,
第4開閉弁15,16が共に閉じられ且つ第1,第2開閉弁13,
14を共に開くことによって、暖房回路2内の冷媒を、空
調ユニット7内の二つの熱交換器である第1蒸発器4及
び第2凝縮器5へ冷媒ガスとして供給することができ
る。即ち、通常の暖房運転時における第2凝縮器5,第2
液管10,第2蒸発器6及び第2ガス管11という冷媒自然
循環経路の他に、第2蒸発器6から順に第2ガス管11,
第2開閉弁14,第1ガス管9,第1蒸発器4,第1液管8,第
1開閉弁13,第2受液器20を経て再び第2蒸発器6へ戻
って来るという第2の暖房回路とも言うべき冷媒自然循
環経路が形成されることになる。このことによって各空
調ユニット7では熱交換効率が通常の暖房運転時に比べ
て大略2倍になり、立ち上がり運転時の高負荷に対応し
て速く定常運転状態にすることができる。定常運転に戻
す場合には、立ち上がり運転の状態から第2開閉弁14の
みを最初に閉じれば、第1蒸発器4及び第1液管8内の
冷媒が流下し、第1開閉弁13を経て第2受液器20内へ回
収され、大略回収された後に更に第1開閉弁13を閉じれ
ばよい。 暖房運転を行っていた状態から冷房運転に切り替える場
合には、第1開閉弁13を閉じた状態で第3,第4開閉弁1
5,16を開くと共に第2開閉弁14も開けば、第2蒸発器6
で蒸発気化された冷媒が第2ガス管11から第2開閉弁1
4,第1ガス管9を経て第1凝縮器3へ回収され、ここで
凝縮されて第1受液器19及び第1液管8内に冷媒液が供
給される。暖房回路2内の冷媒が大略回収された後に第
2開閉弁14を閉じて暖房回路2と冷房回路1を分離し、
その後、通常の冷房運転を行う。
A preferred embodiment of the present invention will be described below with reference to FIGS. 1 and 2. FIG. 1 is a schematic diagram showing a schematic configuration of an embodiment of a building air conditioning system of the present invention.
Although the configuration of the building is not shown in this figure, the upper side of the figure shows the high side of the building, and the installation position of each configuration is defined by the height relationship. That is, the first condenser 3 as the heat radiation side heat exchanger of the cooling circuit 1 is installed at the highest position, and the second evaporator 6 as the heat absorption side heat exchanger of the heating circuit 2 is installed at the lowest position. Has been done. Further, at the height position between the first condenser 3 and the second evaporator 6, the first evaporator 4 as the heat absorption side heat exchanger of the cooling circuit 1 and the heat radiation side heat exchanger of the heating circuit are provided. Second condenser 5
The air-conditioning units 7 that have built-in units are installed in groups on each floor. The cooling circuit 1 includes a first refrigerant liquid pipe (hereinafter simply referred to as a first liquid pipe) and a first refrigerant gas pipe (hereinafter simply referred to as a first gas) between the first condenser 3 and the first evaporator 4. It is connected in a reciprocating manner by a pipe). Further, in the heating circuit 2, a portion between the second evaporator 6 and the second condenser 5 is a second refrigerant liquid pipe (hereinafter, simply referred to as a second liquid pipe) and a second refrigerant gas pipe (hereinafter,
It is reciprocally connected by a second gas pipe). The first liquid pipe 8 and the second liquid pipe 10 are first vertical pipe portions of the first liquid pipe 8 and the second liquid pipe 10, respectively.
The first on-off valve 13 is connected via the second on-off valve 14, and the first gas pipe 9 and the second gas pipe 11 are also connected on the respective vertical pipe portions via the second on-off valve 14. The cooling circuit 1 and the heating circuit 2 are filled with a refrigerant in an amount that approximately corresponds to the cooling load in both circuits. Third and fourth opening / closing valves 15 and 16 are provided on the refrigerant gas inlet side and the refrigerant liquid outlet side of the first condenser 3, respectively. This third,
The fourth on-off valves 15 and 16 are the highest branch portion P 1 of the first gas pipe 9 between the second on-off valve 14 and the air conditioning unit 7, and the first condenser 3. Between the refrigerant gas inflow port 29 of the first condenser 3 or in the first liquid pipe 8, the highest level of the pipeline from the first condenser 3 to the first opening / closing valve 13 and the pipeline to the air conditioning unit 7. Branch portion P 2 of the first condenser 3
Corresponding to the third opening / closing valve interposed between at least one of the refrigerant liquid outlet 30 and the refrigerant liquid outlet 30. A first liquid receiver 19 is provided immediately downstream of the fourth opening / closing valve 16 in the first liquid pipe 8. On the other hand, on the refrigerant liquid inlet side of the second evaporator 6,
A first flow control valve 21 is provided, and a fifth opening / closing valve 17 is provided on the refrigerant gas outlet side. Further, immediately upstream of the first flow rate control valve 21 provided in the second liquid pipe 10, a second liquid receiver 20 is provided at a position higher than the second evaporator 6, and A sixth opening / closing valve 18 is provided immediately upstream of the second liquid receiver 20. A liquid level detection switch 22 as a liquid level control means is attached to the second evaporator 6 in order to keep the refrigerant liquid level inside the second evaporator 6 properly. 1 Flow control valve 21
These are electrically connected so that they can be opened and closed. As shown in FIG. 2, each air conditioning unit 7 has, as shown in FIG. 2, a first evaporator 4 as a cooling heat exchanger, a second condenser 5 as a heating heat exchanger, and a blower 23. The thermistor 24 for detecting the temperature of the recirculation room air sucked into the blower 23 is built in. In addition, second and third flow rate control valves 25 and 26 are provided on the refrigerant liquid inlet side of the first evaporator 4 and the refrigerant gas inlet side of the second condenser 5, respectively, and particularly the first evaporator. A liquid level detecting sensor 27 as a liquid level detecting means is attached to 4. Further, a controller 28 to which each output detection signal from the thermistor 24 and the liquid level detection sensor 27 is input is also provided. The controller 28 performs arithmetic processing on the basis of these signals, calculates the respective opening degrees of the second and third flow rate control valves 25 and 26, and the rotation speed of the blower 23 to calculate the flow rate control valves.
An operation command signal for instructing each opening degree and rotation speed is output to 25 and 26 and the blower 23. The operation of the building air conditioning system configured as described above will be described below. First, in the cooling and heating circuits 1 and 2 of the present embodiment configured by the gravity type heat pipe, the refrigerant enclosed therein circulates naturally between the heat source side and the load side to carry heat. This natural circulation is performed as follows. That is, the refrigerant changes from refrigerant gas to refrigerant liquid with heat exchange in the condensers 3 and 5, and the refrigerant liquid flows down in the liquid pipes 8 and 10 by gravity and flows into the evaporators 4 and 6. In the evaporators 4 and 6, the refrigerant liquid changes into a refrigerant gas with heat exchange, and the refrigerant gas rises in the gas pipes 9 and 11 by the gas pressure and returns to the condensers 3 and 5 again. In the cooling and heating circuits 1 and 2 in which natural circulation is performed as described above, it is assumed that all the refrigerant is initially in the cooling circuit 1. When the cooling operation is performed in this state, the first and second
The on-off valves 13 and 14 are closed so that the cooling circuit 1 is separated from the heating circuit 2 independently. The amount of refrigerant required for the peak load of cooling is ensured in the cooling circuit 1, and the amount of refrigerant corresponding to the load at that time naturally circulates in the cooling circuit 1. Next, when all the refrigerant is in the cooling circuit 1 and is switched from the cooling operation to the heating operation,
The on-off valve 13 is opened so that the refrigerant liquid contained in each of the first evaporator 4, the first receiver 19 and the first liquid pipe 8 of the cooling circuit 1 becomes the first refrigerant liquid.
The second liquid receiver 20 installed at a lower position through the on-off valve 13
And flows into the second evaporator 6. The refrigerant liquid level in the second evaporator 6 is properly maintained by the liquid level detection switch 22 and the first flow rate control valve 21. At the time of this switching, the third and fourth on-off valves 15 and 16 provided at the inlet and outlet of the first condenser 3 are closed, but the inflow amount of the refrigerant is the amount of the refrigerant required at the peak load of heating, that is, the amount of the refrigerant. At least about 65% of the refrigerant amount corresponding to the peak load may be secured, and some may remain in the cooling circuit 1. Although the sixth opening / closing valve 18 at this time is open and does not hinder the flow of the refrigerant, the sixth opening / closing valve 18 is an opening / closing valve for maintenance, and is always open during system operation. When the inflow of the refrigerant is completed, the first on-off valve 13 is closed, and the normal heating operation can be performed. In heating operation, especially during the start-up operation,
The fourth on-off valves 15, 16 are both closed and the first and second on-off valves 13,
By opening 14 together, the refrigerant in the heating circuit 2 can be supplied as refrigerant gas to the two heat exchangers in the air conditioning unit 7, which are the first evaporator 4 and the second condenser 5. That is, the second condenser 5 and the second condenser 5 during the normal heating operation
In addition to the refrigerant natural circulation path of the liquid pipe 10, the second evaporator 6 and the second gas pipe 11, the second gas pipe 11,
The second on-off valve 14, the first gas pipe 9, the first evaporator 4, the first liquid pipe 8, the first on-off valve 13, the second liquid receiver 20, and the second evaporator 6 are returned again. The refrigerant natural circulation path which should be called the heating circuit of No. 2 is formed. As a result, the heat exchange efficiency of each air conditioning unit 7 is approximately doubled as compared with the normal heating operation, and the steady operation state can be quickly achieved in response to the high load during the startup operation. When returning to the steady operation, if only the second opening / closing valve 14 is first closed from the start-up operation state, the refrigerant in the first evaporator 4 and the first liquid pipe 8 flows down, and passes through the first opening / closing valve 13. The first on-off valve 13 may be further closed after the liquid is collected in the second liquid receiver 20 and roughly collected. When switching from the heating operation to the cooling operation, the third and fourth opening / closing valves 1 with the first opening / closing valve 13 closed.
By opening 5, 16 and the second on-off valve 14, the second evaporator 6
Refrigerant that has been evaporated and vaporized in the second gas pipe 11 to the second opening / closing valve 1
4, It is recovered by the first condenser 3 via the first gas pipe 9, condensed here, and the refrigerant liquid is supplied into the first liquid receiver 19 and the first liquid pipe 8. After the refrigerant in the heating circuit 2 is almost recovered, the second opening / closing valve 14 is closed to separate the heating circuit 2 and the cooling circuit 1,
Then, the normal cooling operation is performed.

【効果】【effect】

以上の説明より明らかなように、本発明によれば次のご
とき優れた効果が発揮される。 即ち、重力式ヒートパイプによる冷房回路と暖房回路を
その熱搬送系に有するビル空調システムにおいて、その
熱搬送系内に封入される冷媒量を最小限必要量にでき、
更に暖房運転の立ち上がり運転時には熱交換効率を高め
て定常運転状態に至るまでの時間を短縮できる。
As is clear from the above description, according to the present invention, the following excellent effects are exhibited. That is, in a building air conditioning system that has a cooling circuit and a heating circuit by a gravity heat pipe in its heat transfer system, the amount of refrigerant enclosed in the heat transfer system can be minimized,
Further, during the rising operation of the heating operation, the heat exchange efficiency can be increased to shorten the time until the steady operation state is reached.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明のビル空調システムに係る一実施例の概
略構成を示す模式図、第2図は本実施例における空調ユ
ニットの概略構成を示す模式図である。 1……冷媒回路、2……暖房回路、3……第1凝縮器、
4……第1蒸発器、5……第2凝縮器、6……第2蒸発
器、7……空調ユニット、8……第1液管、9……第1
ガス管、10……第2液管、11……第2ガス管、13……第
1開閉弁、14……第2開閉弁、15……第3開閉弁、16…
…第4開閉弁、29……第1凝縮器の冷媒ガス流入口、30
……第1凝縮器の冷媒液流出口、P1……第2開閉弁から
空調ユニットへ至る管路と第1凝縮器へ至る管路との最
上位の分岐部分、P2……第1凝縮器から第1開閉弁へ至
る管路と空調ユニットへ至る管路との最上位の分岐部分
FIG. 1 is a schematic diagram showing a schematic configuration of an embodiment relating to a building air conditioning system of the present invention, and FIG. 2 is a schematic diagram showing a schematic configuration of an air conditioning unit in the present embodiment. 1 ... Refrigerant circuit, 2 ... Heating circuit, 3 ... First condenser,
4 ... 1st evaporator, 5 ... 2nd condenser, 6 ... 2nd evaporator, 7 ... Air conditioning unit, 8 ... 1st liquid pipe, 9 ... 1st
Gas pipe, 10 ... second liquid pipe, 11 ... second gas pipe, 13 ... first on-off valve, 14 ... second on-off valve, 15 ... third on-off valve, 16 ...
… 4th on-off valve, 29 …… Refrigerant gas inlet of the 1st condenser, 30
...... Prefrigerant liquid outlet of the first condenser, P 1 ...... The highest branch part between the pipeline from the second opening / closing valve to the air conditioning unit and the pipeline to the first condenser, P 2 ...... First The highest branch part of the pipeline from the condenser to the first on-off valve and the pipeline to the air conditioning unit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 福永 忠裕 大阪府大阪市東区本町4丁目27番地 株式 会社竹中工務店内 (72)発明者 吉田 康敏 大阪府大阪市東区大川町1番地 日土地淀 屋橋ビル 新晃工業株式会社内 (72)発明者 兼田 節夫 大阪府大阪市東区大川町1番地 日土地淀 屋橋ビル 新晃工業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tadahiro Fukunaga 4-27, Honmachi, Higashi-ku, Osaka, Osaka Prefecture Takenaka Corporation (72) Inventor, Yasutoshi Yoshida, Okawa-cho, Higashi-ku, Osaka, Osaka Building Inside Shinko Industrial Co., Ltd. (72) Inventor Setsuo Kaneda 1 Okawa-cho, Higashi-ku, Osaka-shi, Osaka Nichichiyodo Yabashi Building Inside Shinko Industry Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】建物の高所に冷熱源装置側熱交換器として
設置される第1凝縮器(3)と、上記第1凝縮器(3)
よりも低所の建物内に設置された空調ユニット(7)内
の熱負荷側熱交換器としての第1蒸発器(4)との間
を、第1冷媒液管(8)及び第1冷媒ガス管(9)によ
って往復に連結して冷房回路(1)を形成し、 上記建物の低所に温熱源装置側熱交換器として設置され
る第2蒸発器(6)と、上記空調ユニット(7)内の熱
負荷側熱交換器としての第2凝縮器(5)との間を、第
2冷媒液管(10)及び第2冷媒ガス管(11)によって往
復に連結して暖房回路(2)を形成し、 上記第1及び第2冷媒液管(8,10)の間に第1開閉弁
(13)を介設し、且つ上記第1及び第2冷媒ガス管(9,
11)の間に第2開閉弁(14)を介設して、夫々の間を開
閉可能に連結し、 上記冷房回路(1)および暖房回路(2)に、合計量が
冷房のピーク負荷に大略相当する量の冷媒を封入したこ
とを特徴とするビル空調システム。
1. A first condenser (3) installed as a heat exchanger on the side of a cold heat source device in a high place of a building, and the first condenser (3).
A first refrigerant liquid pipe (8) and a first refrigerant between the first evaporator (4) as a heat load side heat exchanger in the air conditioning unit (7) installed in a building lower than A second evaporator (6) installed as a heat exchanger on the side of the heat source device in the lower part of the building to form a cooling circuit (1) reciprocally connected by a gas pipe (9), and the air conditioning unit ( A second refrigerant liquid pipe (10) and a second refrigerant gas pipe (11) reciprocally connect between a second condenser (5) as a heat load side heat exchanger in 7) and a heating circuit ( 2) is formed, a first opening / closing valve (13) is interposed between the first and second refrigerant liquid pipes (8, 10), and the first and second refrigerant gas pipes (9, 9) are formed.
A second on-off valve (14) is provided between 11) to connect the two so that they can be opened and closed, and the total amount becomes the peak load of cooling in the cooling circuit (1) and the heating circuit (2). A building air-conditioning system that is filled with approximately the same amount of refrigerant.
【請求項2】上記第1冷媒ガス管(9)における、上記
第2開閉弁(14)から上記空調ユニット(7)へ至る管
路と上記第1凝縮器(3)へ至る管路との最上位の分岐
部分(P1)と、上記第1凝縮器(3)の冷媒ガス流入口
(29)との間、 もしくは上記第1冷媒液管(8)における、該第1凝縮
器(3)から上記第1開閉弁(13)へ至る管路と上記空
調ユニット(7)へ至る管路との最上位の分岐部分
(P2)と、上記第1凝縮器(3)の冷媒液流出口(30)
との間、の少なくともいずれか一方に第3開閉弁(15)
が介設された請求項1記載のビル空調システム。
2. A pipe line in the first refrigerant gas pipe (9) from the second opening / closing valve (14) to the air conditioning unit (7) and a pipe line to the first condenser (3). Between the highest branch portion (P 1 ) and the refrigerant gas inlet port (29) of the first condenser (3), or in the first refrigerant liquid pipe (8), the first condenser (3 ) To the first on-off valve (13) and the uppermost branch portion (P 2 ) of the pipeline to the air conditioning unit (7), and the refrigerant liquid flow of the first condenser (3). Exit (30)
The third opening / closing valve (15) on at least one of
The building air conditioning system according to claim 1, wherein the air conditioning system is provided.
JP4563088A 1988-02-26 1988-02-26 Building air conditioning system Expired - Fee Related JPH07117256B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4563088A JPH07117256B2 (en) 1988-02-26 1988-02-26 Building air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4563088A JPH07117256B2 (en) 1988-02-26 1988-02-26 Building air conditioning system

Publications (2)

Publication Number Publication Date
JPH01219436A JPH01219436A (en) 1989-09-01
JPH07117256B2 true JPH07117256B2 (en) 1995-12-18

Family

ID=12724688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4563088A Expired - Fee Related JPH07117256B2 (en) 1988-02-26 1988-02-26 Building air conditioning system

Country Status (1)

Country Link
JP (1) JPH07117256B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03160240A (en) * 1989-11-17 1991-07-10 Takenaka Komuten Co Ltd Air conditioning system with natural circulation of refrigerant
JP2804160B2 (en) * 1990-06-29 1998-09-24 三機工業株式会社 Heating system
JP2006313034A (en) * 2005-05-06 2006-11-16 Nippon Steel Engineering Co Ltd Geothermal unit

Also Published As

Publication number Publication date
JPH01219436A (en) 1989-09-01

Similar Documents

Publication Publication Date Title
US4399664A (en) Heat pump water heater circuit
EP0676595B1 (en) Air conditioning apparatus
JP6644154B2 (en) Air conditioner
AU2016200078B2 (en) Outdoor unit of air conditioner and air conditioner
JPH0359362A (en) Air conditioner
CA1085179A (en) Reversible heat pump system
JPWO2019215916A1 (en) Refrigeration cycle equipment
JP2908013B2 (en) Air conditioner
JPH07117256B2 (en) Building air conditioning system
JP2522065B2 (en) Operation control device for air conditioner
JP2001355924A (en) Air conditioner
JPH03217771A (en) Air conditioner
JPH0810066B2 (en) Building air conditioning system
JPS592832B2 (en) Heat recovery air conditioner
JPH0332904Y2 (en)
JP2716559B2 (en) Cooling / heating mixed type multi-room air conditioner
JPH05240522A (en) Air conditioning apparatus
JPH0522761Y2 (en)
JPS6028935Y2 (en) Heat pump air conditioning system
JP3791019B2 (en) Air conditioner
JPS5919255Y2 (en) air conditioner
JPS5930366Y2 (en) air conditioner
JP2017150682A (en) Air conditioner
JPH025323Y2 (en)
JP2543560B2 (en) Building air conditioning system

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees