JPH0799904B2 - Power interchange system for distribution system - Google Patents

Power interchange system for distribution system

Info

Publication number
JPH0799904B2
JPH0799904B2 JP1183228A JP18322889A JPH0799904B2 JP H0799904 B2 JPH0799904 B2 JP H0799904B2 JP 1183228 A JP1183228 A JP 1183228A JP 18322889 A JP18322889 A JP 18322889A JP H0799904 B2 JPH0799904 B2 JP H0799904B2
Authority
JP
Japan
Prior art keywords
switch
loop point
distribution
section
cross current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1183228A
Other languages
Japanese (ja)
Other versions
JPH0349536A (en
Inventor
明 金田
耕二 前田
順一郎 塚本
敏信 海老坂
啓司 諫早
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1183228A priority Critical patent/JPH0799904B2/en
Publication of JPH0349536A publication Critical patent/JPH0349536A/en
Publication of JPH0799904B2 publication Critical patent/JPH0799904B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、配電系統内で融通送電を行う配電系統の電
力融通システムに関するものである。
Description: TECHNICAL FIELD The present invention relates to a power interchange system of a power distribution system that performs power interchange in the power distribution system.

〔従来の技術〕[Conventional technology]

非接地系の配電系統は停電区間の極小化と配電線故障時
の故障箇所の早期発見を行うために、所定区間毎に分割
する区分開閉器と融通送電を行うループ点開閉器を配電
線に設置している。
In the non-grounded distribution system, in order to minimize the power failure section and to detect the failure point early when the distribution line fails, the division switch that is divided into predetermined sections and the loop point switch that performs interchange transmission are used as the distribution line. It is installed.

第4図は上位系統が同じ系統でつながっている(図示せ
ず)3つの配電用変電所から各々出ている配電線をルー
プ点開閉器で連系した配電系統図であり、図において、
AS/S,BS/S及びCS/Sはそれぞれ配電用変電所A,B及びC、
(1)は配電用変電所AS/Sの母線、(2)は配電用変電
所BS/Sの母線、(3)は配電用変電所CS/Sの母線、CB1
は母線(1)に接続された配電用しゃ断器、CB2は母線
(2)に接続された配電用しゃ断器、CB3は母線(3)
に接続された配電用しゃ断器、F1は配電用しゃ断器CB1
のもう一方の端子に接続され需要家に電力を供給する配
電線、F2は配電用しゃ断器CB2のもう一方の端子に接続
され需要家に電力を供給する配電線、F3は配電用しゃ断
器CB3のもう一方の端子に接続され需要家に電力を供給
する配電線、SS11,SS12は配電線F1を所定間隔毎に区分
するための区分開閉器、SS21,SS22は配電線F2を所定間
隔毎に区分するための区分開閉器、SS31は配電線F3を所
定間隔毎に区分するための区分開閉器、SS20は配電線F1
と配電線F2を連系するためのループ点開閉器、SS30は配
電線F1と配電線F3を連系するためのループ点開閉器、S
11,S12,S13はしゃ断器CB1、区分開閉器SS11,SS12及びル
ープ点開閉器SS20で区分された配電線F1の区間を示すも
ので、しゃ断器CB1に近い区間より配電線F1の第1区
間,第2区間,第3区間、S21,S22,S23はしゃ断器CB2
区間開閉器SS21,SS22及びループ点開閉器SS20で区分さ
れた配電線F2の区間を示すもので、しゃ断器CB2に近い
区間より配電線F2の第1区間,第2区間,第3区間、S
31,S32はしゃ断器CB3、区分開閉器SS31及びループ点開
閉器SS30で区分された配電線F3の区間を示すもので、し
ゃ断器CB3に近い区間より配電線F3の第1区間,第2区
間である。
Fig. 4 is a distribution system diagram in which the distribution lines from the three distribution substations that are connected by the same system (not shown) are interconnected by loop point switches.
AS / S, BS / S and CS / S are distribution substations A, B and C, respectively.
(1) Bus for distribution substation AS / S, (2) Bus for distribution substation BS / S, (3) Bus for distribution substation CS / S, CB 1
Is a circuit breaker connected to the bus (1), CB 2 is a circuit breaker connected to the bus (2), and CB 3 is a bus (3)
Distribution breaker connected to, F 1 is distribution breaker CB 1
The distribution line connected to the other terminal of the power supply to the consumer, F 2 is the distribution line connected to the other terminal of the circuit breaker CB 2 to supply power to the customer, and F 3 is the distribution line A distribution line connected to the other terminal of the circuit breaker CB 3 to supply power to the customers, SS 11 and SS 12 are division switches for dividing the distribution line F 1 at predetermined intervals, SS 21 and SS 22. Is a distribution switch for dividing the distribution line F 2 at predetermined intervals, SS 31 is a distribution switch for dividing the distribution line F 3 at predetermined intervals, and SS 20 is a distribution line F 1
And the loop point switch for connecting the distribution line F 2 with SS, SS 30 is the loop point switch for connecting the distribution line F 1 with the distribution line F 3 , S
11 , S 12 , S 13 show the section of the distribution line F 1 divided by the circuit breaker CB 1 , the section switches SS 11 , SS 12 and the loop point switch SS 20 , and the section near the circuit breaker CB 1. The first section, second section, third section of distribution line F 1 , S 21 , S 22 , S 23 are circuit breakers CB 2 ,
It shows the section of the distribution line F 2 divided by the section switches SS 21 , SS 22 and the loop point switch SS 20. From the section closer to the circuit breaker CB 2 , the first section and the second section of the distribution line F 2 , 3rd section, S
31, S 32 are breaker CB 3, section switches SS 31 and illustrates a section of a distribution line F 3 which is divided by the loop point switch SS 30, the distribution line F 3 from section close to the circuit breaker CB 3 The first section and the second section.

次に配電線F1の第2区間S12で、配電線の停電工事を行
うために、この区間を停電にする切換操作を例に説明す
る。配電線F1の第1区間S11,第2区間S12,第3区間S13
は配電用変電所AS/Sの母線(1)のみから電力の供給を
受けており、ループ点開閉器SS20,SS30は開いている。
この状態で第2区間S12を停電(第4図の斜線部分を示
し停電区間SESIと呼ぶ)にするために、まず区分開閉器
SS12を開放すると停電工事対象区間でない第3区間S13
が停電となる。第3区間S13の停電時間を最小にするた
めに区分開閉器SS12の開放直後にループ点開閉器SS20
投入し、配電用変電所BS/Sより第3区間S13に融通送電
を行う。その後区分開閉器SS11を開放し、第2区間S12
を停電区間にする。
Next, in the second section S 12 of the distribution line F 1 , an explanation will be given by taking as an example a switching operation in which the section is cut off in order to perform a power failure construction of the distribution line. First section S 11 , second section S 12 , third section S 13 of distribution line F 1
Receives power only from the bus (1) of the distribution substation AS / S, and loop point switches SS 20 and SS 30 are open.
To this state blackout the second section S 12 (called a blackout interval SESI shows a hatched portion in FIG. 4), first section switch
When SS 12 is opened, the third section that is not the target of power outage construction S 13
Becomes a power outage. The power failure time of the third section S 13 the loop point switch SS 20 was charged immediately after opening of the section switch SS 12 in order to minimize the flexibility transmission from distribution substation BS / S in the third section S 13 To do. After that, the sectional switch SS 11 is opened and the second section S 12 is opened.
To the power failure section.

以上の切換操作により第2区間S12を停電区間にするこ
とができる。この切換操作には当該開閉器を手動で開閉
する方式、あるいは特開昭64−64535号公報に記載され
ているように、ループ点開閉器SS20に外部設定可能な片
側電圧時即投入する機能を設け、区分開閉器SS12の開放
と同時にループ点開閉器SS20を投入するようにした方式
がある。
By the above switching operation, the second section S 12 can be made into a power failure section. For this switching operation, the switch is manually opened or closed, or, as described in JP-A-64-64535, the loop point switch SS 20 is immediately turned on when a voltage on one side can be set externally. There is a system in which the loop switch SW 20 is turned on at the same time when the sectional switch SS 12 is opened.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

従来の配電系統の電力融通システムは以上のように構成
されているので、停電区間を囲む区分開閉器を開放した
後、ループ点開閉器を投入するまでの間、開放した区分
開閉器とループ点開閉器間の区間が停電してしまうなど
の問題点があった。
Since the power interchange system of the conventional distribution system is configured as described above, after opening the partition switch surrounding the power failure section, until the loop point switch is turned on, the open partition switch and loop point There was a problem such as a power failure in the section between the switches.

因に、かかる区間の停電を防止するためループ点開閉器
を投入してから、上記区分開閉器を開放する操作手順も
考えられるが、ループ化したときに過大な横流が発生す
る場合があり、過大な横流が発生すると配電用変電所の
配電線用過電流保護継電器によってしゃ断器がトリップ
し、配電線が停電してしまう問題点があった。
By the way, it is possible to open the section switch after turning on the loop point switch to prevent a power failure in such a section, but there may be an excessive cross current when looping, When an excessive cross current occurs, the circuit breaker trips due to the overcurrent protection relay for the distribution line at the distribution substation, which causes a problem of power failure of the distribution line.

この発明は上記のような問題点を解消するためになされ
たもので、ある区間の停電を伴うことなく配電系統を切
り換えることができるとともに、切り換え時に発生する
横流の影響を最小限に抑えることができる配電系統の電
力融通システムを得ることを目的とする。
The present invention has been made to solve the above-mentioned problems, and it is possible to switch the distribution system without a blackout in a certain section, and to minimize the influence of the cross current generated at the time of switching. The purpose is to obtain a power interchange system for a power distribution system.

〔課題を解決するための手段〕[Means for Solving the Problems]

この発明に係る配電系統の電力融通システムは、複数の
ループ点開閉器のうち開状態にあるループ点開閉器のそ
れぞれについて、当該ループて開閉器を閉状態に切り換
えるときに流れる横流を予測し、その横流が最も小さい
ループ点開閉器を選択して閉状態に切り換えるようにし
たものである。
The power interchange system of the distribution system according to the present invention, for each of the loop point switch in the open state among the plurality of loop point switches, predicts the cross current flowing when switching the switch to the closed state by the loop, The loop point switch with the smallest cross current is selected to switch to the closed state.

〔作 用〕[Work]

この発明における横流検出器は、開放しているループ点
開閉器の接点の両端に配電系統に影響を与えないインピ
ーダンスを試挿入し、その時に流れる横流とインピーダ
ンス挿入前の接点の両端電圧から、配電系統の背後イン
ピーダンスを求めることによって当該のループ点開閉器
または区分開閉器を投入し、ループ化した時の横流を予
め正確に求めるようにし、親局はこれらの横流検出器か
らの横流値をもとにループ化対象の複数の配電系統から
最適の配電系統、すなわちループ点開閉器あるいは区分
開閉器を選択できるようにする。
The cross current detector according to the present invention is configured such that an impedance that does not affect the power distribution system is trial-inserted at both ends of the contact of the open loop point switch, and the current flowing at that time and the voltage between both ends of the contact before impedance insertion are used to distribute The loop point switch or section switch is turned on by obtaining the back impedance of the system so that the cross current when looping can be accurately obtained in advance, and the master station also obtains the cross current value from these cross current detectors. In addition, an optimum distribution system, that is, a loop point switch or a division switch can be selected from a plurality of distribution systems to be looped.

〔発明の実施例〕Example of Invention

以下、この発明の一実施例を図について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図において、第4図と同一番号は同一部分または相
当部分を示し、(11)(12)(21)(22)(31)は区分
開閉要素、(以下、区分開閉器と記す)S11,S12,S21,S
22,S31用の子局で、実横流予知手段を内蔵している。
In FIG. 1, the same numbers as those in FIG. 4 indicate the same or corresponding parts, and (11), (12), (21), (22), and (31) are section switching elements (hereinafter referred to as section switches) S 11 , S 12 , S 21 , S
22, in the slave station for S 31, a built-in actual lateral flow prediction means.

(20)(30)はループ点開閉要素(以下、ループ点開閉
器と記す)SS20,SS30用の子局で、実横流予知手段を内
蔵している。(11−1)(11−2)は区分開閉器SS11
両端電圧を子局(11)に引込むための引込み線、(11−
3)は子局11から区分開閉器SS11を開閉制御すると共に
その状態を検出するための制御線、(12−1)(12−
2),(21−1)(21−2),(22−1)(22−2),
(31−1)(31−2)は区分開閉器SS12,SS21,SS22,SS
31の両端電圧を子局(12)(21)(22)(31)に引込む
ための引込み線、(12−3)(21−3)(22−3)(31
−3)は子局(12)(21)(22)(31)から区分開閉器
SS12,SS21,SS22,SS31を開閉制御すると共にその状態を
検出するための制御線、(20−1)(20−2),(30−
1)(30−2)はループ開閉器SS20,SS30の両端電圧を
子局(20)(30)に引込むための引込み線、(20−3)
(30−3)は子局(20)(30)からループ点開閉器S
S20,SS30を開閉制御すると共にその状態を検出するため
の制御線、(40)は親局で、実横流が配電系統に与える
影響が小さいケースを選択する選択手段でもある。(5
0)は親局(40)と子局(11)(12)(20)(21)(2
2)(30)(31)とデータ伝送するための通信線であ
る。
(20) and (30) are slave stations for loop point switching elements (hereinafter referred to as loop point switches) SS 20 and SS 30 , which incorporate actual crossflow predicting means. (11-1) and (11-2) are lead-in wires for leading in the voltage between both ends of the division switch SS 11 to the slave station (11), and (11-
3) the control lines for detecting the state as well as opening and closing control section switch SS 11 from the slave station 11, (12-1) (12
2), (21-1) (21-2), (22-1) (22-2),
(31-1) and (31-2) are sectional switches SS 12 , SS 21 , SS 22 , SS
A lead-in wire for leading the voltage across 31 to the slave stations (12) (21) (22) (31), (12-3) (21-3) (22-3) (31
-3) is a switch from the slave stations (12) (21) (22) (31)
Control lines for controlling the opening and closing of SS 12 , SS 21 , SS 22 , and SS 31 and detecting their states, (20-1) (20-2), (30-
1) (30-2) is a lead-in wire for leading the voltage across the loop switches SS 20 , SS 30 to the slave stations (20) (30), (20-3)
(30-3) is a loop point switch S from the slave station (20) (30)
A control line for controlling the switching of S 20 and SS 30 and detecting the state thereof, (40) is a master station, and is also a selection means for selecting a case where the actual cross current has a small effect on the distribution system. (Five
0) is the parent station (40) and the child stations (11) (12) (20) (21) (2
2) It is a communication line for data transmission with (30) and (31).

第2図は第1図の子局の構成を示すブロック図であり、
1例として子局(20)の構成を例に説明する。図におい
て第1図と同一番号は同一部分または相当部分を示し、
(20−4)はスイッチ、(20−5)はスイッチ(20−
4)を開閉制御する制御線、(20−6)はループ点開閉
器SS20の両側電圧間の電圧差を検出する差電圧検出用変
圧器、(20−7)はスイッチ、(20−8)はスイッチ
(20−7)を開閉制御する制御線、(20−9)は横流検
出用変流器、(20−10)は横流検出するための制御回
路、Zcは横流検出用インピーダンスである。
FIG. 2 is a block diagram showing the configuration of the slave station shown in FIG.
The configuration of the slave station (20) will be described as an example. In the figure, the same numbers as in FIG. 1 indicate the same or corresponding parts,
(20-4) is a switch, (20-5) is a switch (20-
4) a control line for switching control, (20-6) a differential voltage detection transformer for detecting the voltage difference between the voltages on both sides of the loop switch SS 20 , (20-7) a switch, (20-8) ) is the control line which controls the opening and closing of the switch (20-7), (20-9) is cross flow detection current transformer (20-10) is a control circuit for detecting cross current, Z c is a lateral flow detection impedance is there.

第3図は横流検出の原理を示すブロック図であり、図に
おいて第2図と同一番号は同一部分または相当部分を示
し、Zaはループ点開閉器SS20から配電用変電所AS/Sを見
た背後インピーダンス、Zbはループ点開閉器SS20から配
電用変電所BS/Sを見た背後インピーダンスである。
Fig. 3 is a block diagram showing the principle of cross current detection. In the figure, the same numbers as in Fig. 2 indicate the same or corresponding parts, and Z a indicates the loop point switch SS 20 to the distribution substation AS / S. The viewed back impedance, Z b, is the back impedance when the distribution substation BS / S is viewed from the loop switch SS 20 .

次に動作について第1図,第2図の構成を示すブロック
図及び第3図の横流検出原理を示すブロック図に従って
具体的に説明する。
Next, the operation will be specifically described with reference to the block diagrams showing the configurations of FIGS. 1 and 2 and the block diagram showing the principle of the cross current detection of FIG.

まず、区分開閉器SS11,SS12,SS21,SS22,SS31及びループ
点開閉器SS20,SS30毎にそれぞれ横流検出機能をもった
子局(11)(12)(21)(22)(31)(20)(30)を設
置し、これらの子局はデータ授受を行うための通信線
(50)で親局(40)と接続している。親局(40)は各子
局で検出した横流検出値をポーリング方式により収集す
る。この時、配電用変電所AS/Sの配電線F1の第2区間S
12で停電工事が必要となりこの区間を停電させる。すな
わち停電区間にする必要が生じたと仮定すると、まず配
電線F1の第3区間S13を停電させないため、ループ点開
閉器SS20またはSS30を投入しループ化した後で区分開閉
器SS12,SS11を開放する必要がある。
First, the slave stations (11) (12) (21) (with the cross current detection function for each of the segment switches SS 11 , SS 12 , SS 21 , SS 22 and SS 31 and the loop point switches SS 20 and SS 30 respectively. 22) (31) (20) (30) are installed, and these slave stations are connected to the master station (40) by a communication line (50) for exchanging data. The master station (40) collects the cross current detection value detected by each slave station by the polling method. At this time, the second section S of the distribution line F 1 of the distribution substation AS / S
A power outage is required at 12 and this section will be out of service. That is, assuming that it is necessary to switch to the power failure section, first, in order to prevent the power failure of the third section S 13 of the distribution line F 1 , the loop point switch SS 20 or SS 30 is closed and looped, and then the sectional switch SS 12 It is necessary to open SS 11 .

ループ点開閉器SS20またはSS30を投入する前に親局で収
集した子局(20)(30)からの横流検出値をチェック
し、いずれのループ点開閉器を投入した方が配電系統に
与える影響が少ないかを判断し、最適のループ点開閉器
を選択する。このチェックとしては、横流と負荷電流
の合計値が配電用変電所の配電線用過電流保護継電器の
動作値以下にあること、すなわち配電用しゃ断器をしゃ
断させないこと。区分開閉器のしゃ断容量以下である
こと、等の最低必要な条件をもとに横流ができるだけ小
さく、かつ融通容量マージンの大きいループ点開閉器を
選択する。なお、配電線の負荷電流、融通容量マージン
の算出等は親局(40)にデータベースとして予め登録し
ておいた区間毎の負荷容量及び配電用変電所のバンク容
量から必要に応じ算出するか、あるいはデータ伝送系を
通してオンラインで収集した配電線の電流データを前記
データベースと組合わせて必要に応じ算出する。以上の
チェックで選択された最適のループ点開閉器は、親局
(40)から当該子局に対し投入指令が送出され、当該の
ループ点開閉器を投入しループ化する。その後、子局
(12)(11)に対し順次開放指令が親局(40)から送出
され、区間開閉器(12)(11)を開放し、配電線F1の第
2区間を停電区間にし、切換操作を終了する。
Before turning on the loop point switch SS 20 or SS 30 , check the cross current detection value from the slave stations (20) (30) collected by the master station, and which loop point switch is turned on is the distribution system. Select the optimum loop point switch, judging whether it has a small effect. For this check, the total value of the cross current and the load current must be below the operating value of the overcurrent protection relay for the distribution line at the distribution substation, that is, the distribution breaker must not be cut off. Select a loop point switch with a small cross current and a large margin of interchange capacity based on the minimum required conditions such as being less than or equal to the breaking capacity of the segment switch. It should be noted that the load current of the distribution line, calculation of the interchange capacity margin, etc. should be calculated from the load capacity for each section registered in advance in the master station (40) as a database and the bank capacity of the distribution substation, if necessary. Alternatively, the electric current data of the distribution line collected online through the data transmission system is combined with the above-mentioned database and calculated as necessary. The optimum loop point switch selected by the above check is sent from the master station (40) to the slave station, and the loop point switch is closed and looped. After that, the master station (40) sends a sequential opening command to the slave stations (12) and (11), opens the section switches (12) and (11), and sets the second section of the distribution line F 1 to the power failure section. , Switching operation is completed.

次に子局の動作を第2図で示す。Next, the operation of the slave station is shown in FIG.

子局(20)には常開のループ点開閉器SS20の両端の電
圧、すなわち配電用変電所AS/Sの配電線F1の電圧と配電
用変電所BS/Sの配電線F2の電圧を引込み線(20−1)
(20−2)で引込んでいる。この両端電圧の差電圧をΔ
Vとすると、この差電圧ΔVはスイッチ(20−4)の投
入によって差電圧検出用変圧器(20−6)で検出し、制
御回路(20−10)に送られ記憶される。
Slave station (20) to the normally open voltage across the loop point switch SS 20, i.e. the voltage of the distribution line F 1 and distribution substation BS / S of distribution substation AS / S of the distribution line F 2 Voltage drop line (20-1)
(20-2) is pulling in. The difference voltage of the voltage between both ends is Δ
If the voltage is V, this differential voltage ΔV is detected by the differential voltage detecting transformer (20-6) when the switch (20-4) is turned on, and is sent to the control circuit (20-10) and stored therein.

次に、スイッチ(20−4)を開放した後、スイッチ(20
−7)を投入し、ループ点開閉器SS20の両端間に横流検
出用インピーダンスZcを挿入する。この時に流れる横流
をIcとすると、横流Icは横流検出用変流器(20−9)で
検出し、制御回路(20−10)に送られ記憶される。その
後、スイッチ(20−7)を開放する。
Next, after opening switch (20-4), switch (20-4)
-7) is turned on and the cross current detection impedance Z c is inserted between both ends of the loop point switch SS 20 . Assuming that the cross current flowing at this time is I c , the cross current I c is detected by the cross current detecting current transformer (20-9) and is sent to the control circuit (20-10) and stored therein. After that, the switch (20-7) is opened.

以上の子局内の一連の動作により制御回路(20−10)に
はループ点開閉器SS20の差電圧ΔVと横流検出用インピ
ーダンスZcを挿入した時の横流Icが記憶されている。こ
れらの値を用いて、ループ点開閉器SS20が実際に閉じた
時の横流値(実横流値)の算出を第3図を用いて説明す
る。ループ点開閉器SS20の両側から各々配電用変電所を
見た時のインピーダンスを背後インピーダンスと呼び、
配電用変電所AS/S側を見た背後インピーダンスをZA、配
電用変電所BS/S側を見た背後インピーダンスをZBとする
と、横流ICは次式の関係にある。
Through the series of operations in the slave station described above, the control circuit (20-10) stores the differential voltage ΔV of the loop point switch SS 20 and the cross current I c when the cross current detection impedance Z c is inserted. Calculation of the cross current value (actual cross current value) when the loop point switch SS 20 is actually closed will be described using these values with reference to FIG. The impedance when looking at each distribution substation from both sides of the loop switch SW 20 is called the back impedance.
Assuming that the back impedance looking at the distribution substation AS / S side is Z A and the back impedance looking at the distribution substation BS / S side is Z B , the cross current I C is in the following relationship.

上記関係から背後インピーダンスZA,ZBの和は次式にな
る。
From the above relation, the sum of the background impedances Z A and Z B is

従って、ループ点開閉器SS20を実際に投入した時の横流
値Iは次式によって求め予知することができる。
Therefore, the cross current value I when the loop point switch SS 20 is actually turned on can be obtained and predicted by the following equation.

以上の演算を制御回路(20−10)で行うことによりルー
プ点開閉器SS20を実際に投入した時の実横流値を、背後
インピーダンスをデータベースとして予め持つことな
く、正確に予知することができる。
By performing the above calculation in the control circuit (20-10), it is possible to accurately predict the actual cross current value when the loop point switch SS 20 is actually turned on without having the back impedance as a database in advance. .

横流検出用インピーダンスZCの大きさは、その挿入時
(スイッチ(20−7)の閉成時)に配電系統に影響を与
えない(例えば線路電圧変化が生じない)程度の大き
さ、例えば背後インピーダンスZA,ZBの数10倍〜数100倍
の大きさに設定する。
The magnitude of the cross current detection impedance Z C does not affect the distribution system (for example, line voltage does not change) when the cross current detection impedance Z C is inserted (when the switch (20-7) is closed), for example, in the rear. Set to a value several tens to several hundreds times the impedance Z A and Z B.

また、各ループ点開閉器SS20,SS30に対応する各横流検
出用インピーダンスZCの挿入時期は、それぞれ同時に挿
入してもよいが、挿入している時期が重ならないように
時間的にずらす方がより正確な実横流値を予知すること
ができる。いずれにせよこれら挿入制御は、例えば親局
(40)からの指令によって行うか、子局に設けた時計に
よって行う。
The cross current detection impedances Z C corresponding to the respective loop point switches SS 20 and SS 30 may be inserted at the same time, but they should be shifted in time so that they do not overlap. The more accurate the actual cross current value can be predicted. In any case, these insertion controls are performed by, for example, a command from the master station (40) or a clock provided in the slave station.

また、親局(40)では、1週間あるいは1日のうち、ま
たは年間を通じて実横流値が小さい時間帯となるケース
を検出して選択し、当該ケースの場合に対応開閉器を投
入するようにしてもよい。
In addition, the master station (40) detects and selects a case where the actual cross current value is small during one week, one day, or throughout the year, and switches on the corresponding switch in that case. May be.

なお、上記実施例では親局と子局間のデータ伝送路とし
て通信線を用いたが、他のデータ伝送手段を用いてもよ
い。また、横流検出のための差電圧検出としてループ点
開閉器の両側間に変圧器を直接挿入する方法を示した
が、例えば両側の各々の線間に変圧器を設け、変圧器の
2次側で差電圧を検出してもよく、その検出手段の如何
にかかわらず、両側間の差電圧を検出する方式について
は同様の効果を奏する。また、ループ点開閉器の最適選
択方法として、配電用変電所との保護協調、区分開閉器
のしゃ断容量、融通容量マージン、横流値の小さいもの
等のチェックを述べたが、配電系統の運用条件によっ
て、これらのチェック内容を変更しても目的が同じであ
れば同様の効果を奏する。
Although the communication line is used as the data transmission path between the master station and the slave station in the above embodiment, other data transmission means may be used. Also, a method of directly inserting a transformer between both sides of the loop switch as the differential voltage detection for detecting the cross current was shown. For example, a transformer is provided between each line on both sides, and a secondary side of the transformer is provided. The differential voltage may be detected by, and regardless of the detecting means, the same effect can be obtained in the method of detecting the differential voltage between both sides. In addition, as the optimum selection method of the loop point switch, the protection coordination with the distribution substation, the cutoff capacity of the section switch, the interchange capacity margin, and the one with a small cross current value were checked. Therefore, even if these check contents are changed, the same effect can be obtained if the purpose is the same.

また、区分開閉器、ループ点開閉器として、例えばサイ
リスタ等の半導体スイッチを使用しても、前述の実施例
と同様の効果を奏する。
Further, even if a semiconductor switch such as a thyristor is used as the division switch and the loop point switch, the same effect as that of the above-described embodiment can be obtained.

〔発明の効果〕〔The invention's effect〕

以上のように、この発明によれば、複数のループ点開閉
器のうち開状態にあるループ点開閉器のそれぞれについ
て、当該ループ開閉器を閉状態に切り換えるときに流れ
る横流を予測し、その横流が最も小さいループ点開閉器
を選択して閉状態に切り換えるように構成したので、あ
る区間の停電を伴うことなく配電系統を切り換えること
ができるとともに、切り換え時に発生する横流の影響を
最小限に抑えることができる効果がある。
As described above, according to the present invention, for each of the loop point switches in the open state among the plurality of loop point switches, the cross current that flows when the loop switch is switched to the closed state is predicted, and the cross current is predicted. Since the loop point switch with the smallest switch is selected and switched to the closed state, the distribution system can be switched without a blackout in a certain section, and the influence of cross current generated at the time of switching can be minimized. There is an effect that can be.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の一実施例による配電線ループ切換装
置を示す構成図、第2図は第1図に示す子局の構成図を
示すブロック図、第3図は横流検出の原理を示すブロッ
ク図、第4図は従来技術を説明するための配電系統図で
ある。 AS/S,BS/S,CS/Sは配電用変電所、(1)(2)(3)は
配電用変電所AS/S,BS/S,CS/Sの母線、SS11,SS12,SS21,S
S22,SS31は区分開閉器、SS20,SS30はループ点開閉器、
(11)(12)(20)(21)(22)(30)(31)は子局、
(11−1)(11−2),(12−1)(12−2),(21−
1)(21−2),(22−1)(22−2),(31−1)
(31−2)は区分開閉器(11)(12)(21)(22)(3
1)の両側の電圧を子局に引込むための引込み線、(20
−1)と(20−2),(30−1)と(30−2)はループ
点開閉器(20)(30)の両側の電圧を子局に引込むため
の引込み線、(11−3),(12−3),(21−3),
(22−3),(31−3)は区分開閉器(11)(12)(2
1)(22)(31)を開閉制御する制御線、(20−3)(3
0−3)はループ点開閉器(20)(30)を開閉制御する
制御線、(40)は親局、(50)は通信線、(20−4)は
スイッチ、(20−5)はスイッチ(20−4)を制御する
制御線、(20−6)は差電圧検出用変圧器、(20−7)
はスイッチ、(20−8)はスイッチ(20−7)を制御す
る制御線、(20−9)は横流検出用変流器、(20−10)
は制御回路、ZCは横流検出用インピーダンスである。 なお、図中、同一符号は同一または相当部分を示す。
FIG. 1 is a block diagram showing a distribution line loop switching device according to an embodiment of the present invention, FIG. 2 is a block diagram showing a block diagram of the slave station shown in FIG. 1, and FIG. 3 shows the principle of cross current detection. FIG. 4 is a block diagram and FIG. 4 is a distribution system diagram for explaining the conventional technique. AS / S, BS / S, CS / S are distribution substations, (1) (2) (3) are distribution substations AS / S, BS / S, CS / S busbars, SS 11 , SS 12 , SS 21 , S
S 22 and SS 31 are sectional switches, SS 20 and SS 30 are loop point switches,
(11) (12) (20) (21) (22) (30) (31) are slave stations,
(11-1) (11-2), (12-1) (12-2), (21-
1) (21-2), (22-1) (22-2), (31-1)
(31-2) is a section switch (11) (12) (21) (22) (3
Drop-in wire for pulling in the voltage on both sides of 1) to the slave station, (20
-1) and (20-2), (30-1) and (30-2) are drop lines for pulling the voltage on both sides of the loop point switches (20) and (30) to the slave station, and (11-3 ), (12-3), (21-3),
(22-3) and (31-3) are sectional switches (11) (12) (2
1) Control line for controlling opening / closing of (22) (31), (20-3) (3
0-3) is a control line for controlling opening / closing of the loop point switches (20) (30), (40) is a master station, (50) is a communication line, (20-4) is a switch, and (20-5) is Control line for controlling the switch (20-4), (20-6) is a transformer for differential voltage detection, (20-7)
Is a switch, (20-8) is a control line for controlling the switch (20-7), (20-9) is a current transformer for cross current detection, (20-10)
Is a control circuit and Z C is a cross current detection impedance. In the drawings, the same reference numerals indicate the same or corresponding parts.

フロントページの続き (72)発明者 海老坂 敏信 兵庫県神戸市兵庫区和田崎町1丁目1番2 号 三菱電機株式会社制御製作所内 (72)発明者 諫早 啓司 兵庫県神戸市兵庫区和田崎町1丁目1番2 号 三菱電機株式会社制御製作所内 (56)参考文献 特開 昭56−86025(JP,A)Front page continuation (72) Inventor Toshinobu Ebisaka 1-2-2 Wadazaki-cho, Hyogo-ku, Kobe-shi, Hyogo Inside Mitsubishi Electric Corporation Control Works (72) Keiji Isahaya 1 Wadazaki-cho, Hyogo-ku, Kobe-shi, Hyogo No. 1-2, Mitsubishi Electric Corporation Control Works (56) Reference JP-A-56-86025 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】複数の配電用変電所間を連係する配電線に
複数のループ点開閉器が接続された配電系統内で、各ル
ープ点開閉器の開閉を制御して電力の融通送電を行う配
電系統の電力融通システムにおいて、上記複数のループ
点開閉器のうち開状態にあるループ点開閉器の両端にそ
れぞれ印加されている電圧の差電圧及び当該ループ点開
閉器と並列に横流検出用のインピーダンスを挿入した場
合にそのインピーダンスに流れる電流を検出し、その差
電圧とそのインピーダンスに流れる電流に基づいて当該
ループ点開閉器を閉状態に切り換えるときに流れる横流
を予測する子局と、上記複数のループ点開閉器のうち開
状態にあるループ点開閉器の何れかを閉状態に切り換え
る場合、上記子局により予測された横流が最も小さいル
ープ点開閉器を選択し、上記子局に対してその選択した
ループ点開閉器を閉状態に切り換えさせる親局とを設け
たことを特徴とする配電系統の電力融通システム。
1. In a distribution system in which a plurality of loop point switches are connected to a distribution line that links a plurality of distribution substations, the switching of each loop point switch is controlled to perform interchange power transmission. In the power interchange system of the distribution system, the differential voltage between the voltages applied to both ends of the loop point switch in the open state among the plurality of loop point switches and the cross current detection in parallel with the loop point switch. A slave station that detects a current flowing through the impedance when the impedance is inserted and predicts a cross current that flows when the loop point switch is switched to the closed state based on the voltage difference and the current flowing through the impedance; When switching any of the open loop point switches among the above loop point switches to the closed state, select the loop point switch with the smallest cross current predicted by the slave station. And, power interchange system of the distribution system, characterized in that the selected loop point switch is provided a master station for shifting to the closed state with respect to said child station.
JP1183228A 1989-07-14 1989-07-14 Power interchange system for distribution system Expired - Fee Related JPH0799904B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1183228A JPH0799904B2 (en) 1989-07-14 1989-07-14 Power interchange system for distribution system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1183228A JPH0799904B2 (en) 1989-07-14 1989-07-14 Power interchange system for distribution system

Publications (2)

Publication Number Publication Date
JPH0349536A JPH0349536A (en) 1991-03-04
JPH0799904B2 true JPH0799904B2 (en) 1995-10-25

Family

ID=16132031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1183228A Expired - Fee Related JPH0799904B2 (en) 1989-07-14 1989-07-14 Power interchange system for distribution system

Country Status (1)

Country Link
JP (1) JPH0799904B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4694168B2 (en) * 2004-08-27 2011-06-08 哲三 福田 Floor heating building
CN102496929A (en) * 2011-12-23 2012-06-13 宁波电业局 Method, device and system for closing and opening ring
CN109449945B (en) * 2018-11-22 2020-11-24 国网四川省电力公司天府新区供电公司 10kV loop closing current constraint power distribution network transfer optimization method based on DG (distributed generation) adjustment

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5686025A (en) * 1979-12-12 1981-07-13 Mitsubishi Electric Corp Distribution line power controlling device

Also Published As

Publication number Publication date
JPH0349536A (en) 1991-03-04

Similar Documents

Publication Publication Date Title
US5784237A (en) Control method and apparatus for power distribution network
CN101641849B (en) Fuse saving power distribution system fault protection
CN105207183A (en) Circuit protection system
JPS62118716A (en) Control for preventing misoperation of switchgear of distribution equipment and controller for the same
JP2000511400A (en) Ground fault protection circuit for multi-power system
CN102842897B (en) A kind of enclosed type current protection system and guard method
JP5112124B2 (en) Power distribution system operation device
JPH0799904B2 (en) Power interchange system for distribution system
KR102664843B1 (en) Three-phase batch breaker and networked distribution system using it
CN105515166B (en) 110 kilovolts of system busbar combining units of intelligent substation double bus scheme mode can back brake maintenance voltage allocation plan
JP4558088B1 (en) Circuit breaker monitoring device
JPH0773408B2 (en) Loop switching device
JP2552935B2 (en) Failure zone detector
CN113410837B (en) Grouping power distribution system suitable for limited power supply capacity and power distribution method thereof
JPS6387126A (en) System for detecting and cutting off failured section in distribution system
JP2680466B2 (en) Distribution system controller
JPS6053528B2 (en) Power system monitoring device
JP2547647B2 (en) Failure zone detector
Lehtonen et al. An automatic fault management model for distribution networks
JP2547646B2 (en) Failure zone detector
JPH0728505B2 (en) Automatic control system for power distribution equipment
JPH09233685A (en) Distribution line section switch controller
JPH1032924A (en) Device for sectionalizing faulty section of power distribution system
JPS6016141A (en) Power distributing operation monitoring device
JPH03251041A (en) Fault zone detector

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees