JPH0773408B2 - Loop switching device - Google Patents

Loop switching device

Info

Publication number
JPH0773408B2
JPH0773408B2 JP2047481A JP4748190A JPH0773408B2 JP H0773408 B2 JPH0773408 B2 JP H0773408B2 JP 2047481 A JP2047481 A JP 2047481A JP 4748190 A JP4748190 A JP 4748190A JP H0773408 B2 JPH0773408 B2 JP H0773408B2
Authority
JP
Japan
Prior art keywords
loop
switch
cross current
data
distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2047481A
Other languages
Japanese (ja)
Other versions
JPH03251047A (en
Inventor
明 金田
耕二 前田
順一郎 塚本
敏信 海老坂
啓司 諫早
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2047481A priority Critical patent/JPH0773408B2/en
Publication of JPH03251047A publication Critical patent/JPH03251047A/en
Publication of JPH0773408B2 publication Critical patent/JPH0773408B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は配電系統における逆送融通送電を行うループ
切換操作、及び配電系統を平常時の系統に戻すループ切
戻し操作を行うループ切換装置に関するものである。
Description: TECHNICAL FIELD The present invention relates to a loop switching device for performing reverse switching power transmission in a distribution system and a loop switching back operation for returning the distribution system to a normal system. It is a thing.

〔従来の技術〕[Conventional technology]

非接地系の配電系統は停電区間の極小化と配電線故障時
の故障箇所の早期発見を行うために、所定区間毎に分割
する区分開閉器と電力融通を行うループ点開閉線を配電
線に設置している。
In the non-grounded distribution system, in order to minimize the power outage section and to quickly find the failure point when the distribution line fails, the distribution switch has a division switch that is divided into predetermined sections and a loop point switching line that interchanges power. It is installed.

第2図は上位系統が同じ系統でつながっている(図示せ
ず)3つの配電用変電所から各々出ている配電線をルー
プ点開閉器で連系した配電系統図であり、図において、
AS/S,BS/S及びCS/Sはそれぞれ配電用変電所A,B及びC、
1は配電用変電所AS/Sの母線,2は配電用変電所BS/Sの母
線、3は配電用変電所CS/Sの母線、CB1は母線1に接続
された配電用しゃ断器、CB2は母線2に接続された配電
用しゃ断器、CB3は母線3に接続された配電用しゃ断
器、F1は配電用しゃ断器CB1のもう一方の端子に接続さ
れ需要家に電力を供給する配電線、F2は配電用しゃ断器
CB2のもう一方の端子に接続され需要家に電力を供給す
る配電線F2は配電用しゃ断器CB3のもう一方の端子に接
続され需要家に電力を供給する配電線、SS11,SS12は配
電線F1を所定間隔毎に区分するための区分開閉器、SS2
1,SS22,SS31は夫々区分開閉器、SS20,SS30はループ点開
閉器、S13,S21,S22,S23,S31、及びS32は夫々区分開閉器
によって区分された区間、11,12,21,22,31は区分開閉器
SS11,SS12,SS21,SS22,SS23用の子局で、実横流予知手段
をもっている。
Fig. 2 is a distribution system diagram in which the distribution lines from the three distribution substations that are connected by the same system (not shown) are connected by loop point switches.
AS / S, BS / S and CS / S are distribution substations A, B and C, respectively.
1 is a bus of distribution substation AS / S, 2 is a bus of distribution substation BS / S, 3 is a bus of distribution substation CS / S, CB1 is a circuit breaker connected to bus 1, CB2 Is a circuit breaker connected to the bus 2, CB3 is a circuit breaker connected to the bus 3, F1 is a circuit breaker connected to the other terminal of the circuit breaker CB1 to supply power to the customer, F2 is a circuit breaker
The distribution line F2 connected to the other terminal of CB2 to supply power to the customer is the distribution line F2 connected to the other terminal of the circuit breaker CB3 to supply power to the customer, and SS11 and SS12 are distribution lines F1. SS2, a sorting switch for sorting at regular intervals
1, SS22, SS31 are respectively section switches, SS20, SS30 are loop point switches, S13, S21, S22, S23, S31, and S32 are sections sectioned by section switches, 11, 12, 21, 22 , 31 is a switch
It is a slave station for SS11, SS12, SS21, SS22, SS23, and has actual cross current prediction means.

20,30はループ点開閉器SS20,SS30用の子局で、実横流予
知手段をもっている。11−1,11−2は区分開閉器SS11の
両端電圧を子局11に引込むための引込み線、11−3は子
局11から区分開閉器SS11を開閉制御するとともにその状
態を検出するための制御線、12−1,12−2,21−1,21−2,
22−1,22−2,31−1,31−2は区分開閉器SS12,SS21,SS2
2,SS31の両端電圧を子局12,21,22,31に引込むための引
込み線、12−3,21−3,22−3,31−3は子局12,21,22,31
から区分開閉器SS12,SS22,SS21,SS31を開閉制御すると
ともにその状態を検出するための制御線、20−1,20−2,
30−1,30−2はループ点開閉器SS20,SS30の両端電圧を
子局20,30に引込むための引込み線、20−3,30−3は子
局20,30からループ点開閉器SS20,SS30を開閉制御すると
ともにその状態を検出するための制御線、40は親局で、
実横流が配電系統に与える影響が最も小さいケースを選
択する選択手段であり、内部に計算機40A及び表示手段4
0Bを備えている。50は親局40と子局11,12,20,21,22,30,
31とデータ伝送するための通信線である。
20 and 30 are slave stations for loop point switches SS20 and SS30, and have actual cross current prediction means. 11-1 and 11-2 are service lines for pulling the voltage across the divisional switch SS11 to the slave station 11, and 11-3 is for controlling the switching of the divisional switch SS11 from the slave station 11 and detecting its state. Control line, 12-1, 12-2, 21-1, 21-2,
22-1, 22-2, 31-1, 31-2 are sectional switches SS12, SS21, SS2
2, Drop-in wire for pulling the voltage across SS31 to slave stations 12, 21, 22, 31; 12-3, 21-3, 22-3, 31-3 are slave stations 12, 21, 22, 31
Control switches for controlling the opening and closing of the sectional switches SS12, SS22, SS21, SS31 and detecting the state of the switches, 20-1, 20-2,
30-1 and 30-2 are drop lines for pulling the voltage across loop point switches SS20 and SS30 to slave stations 20 and 30, and 20-3 and 30-3 are loop points from switch stations 20 and 30 to SS20. , A control line for controlling the opening and closing of SS30 and detecting its state, 40 is a master station,
It is a selection means for selecting the case where the actual cross current has the smallest effect on the distribution system.
It has 0B. 50 is the parent station 40 and the child stations 11, 12, 20, 21, 22, 30,
It is a communication line for data transmission with 31.

第3図は第2図の子局の構成を示すブロック図であり、
図において第2図と同一番号は同一部分又は相当部分を
示し、20−4はスイッチ、20−5はスイッチ20−4を開
閉制御する制御線、20−6はループ点開閉器SS20の両側
電圧間の電圧差を検出する差電圧検出用変圧器、20−7
はスイッチ、20−8はスイッチ20−7を開閉制御する制
御線、20−9は横流検出用変流器、20−10は横流検出す
るための制御回路、Zcは横流検出用インピーダンスであ
る。第4図は横流検出の原理を示すブロック図であり、
図において第3図の同一番号は同一部分又は相当部分を
示し、Zaはループ点開閉器SS20から配電用変電所AS/Sを
見た背後インピーダンス、Zbはループ点開閉器SS20から
配電用変電所BS/Sを見た背後インピーダンスである。
FIG. 3 is a block diagram showing the configuration of the slave station shown in FIG.
In the figure, the same numbers as those in FIG. 2 indicate the same or corresponding portions, 20-4 is a switch, 20-5 is a control line for controlling the opening and closing of the switch 20-4, and 20-6 is the voltage on both sides of the loop point switch SS20. Transformer for detecting voltage difference, 20-7
Is a switch, 20-8 is a control line for controlling the opening and closing of the switch 20-7, 20-9 is a current transformer for detecting the cross current, 20-10 is a control circuit for detecting the cross current, and Zc is an impedance for detecting the cross current. FIG. 4 is a block diagram showing the principle of cross current detection,
In the figure, the same numbers in Fig. 3 indicate the same or equivalent parts, Za is the impedance for the distribution substation AS / S seen from the loop switch SS20, and Zb is the distribution substation for the loop switch SS20. This is the back impedance as seen by BS / S.

次に第2図、第3図の構成を示すブロック図及び第4図
の横流検出原理を示すブロック図に従って動作を具体的
に説明する。
Next, the operation will be specifically described with reference to the block diagrams showing the configurations of FIGS. 2 and 3 and the block diagram showing the principle of the cross current detection of FIG.

まず、区分開閉器SS11,SS12,SS21,SS22,SS31及びループ
点開閉器SS20,SS30毎にそれぞれ横流検出機能をもった
子局11,12,21,22,31,20,30を設置しこれ等の子局はデー
タ授受を行うための通信線50で親局40と接続している。
親局40は各子局で検出した横流検出値をポーリング方式
により収集する。このとき配電用変電所AS/Sの配電線F1
の第2区間S12で停電工事が必要となりこの区間を停電
させる。即ち停電区間にする必要が生じたと仮定する
と、先ず配電線F1の第3区間S13を停電させないため
に、ループ点開閉器SS20又はSS30を投入しループ化した
後で区分開閉器SS12,SS11を開放する必要がある。
First, the slave stations 11,12,21,22,31,20,30 with cross current detection function are installed for each of the segment switches SS11, SS12, SS21, SS22, SS31 and the loop point switches SS20, SS30. The slave stations such as are connected to the master station 40 by a communication line 50 for exchanging data.
The master station 40 collects the cross current detection value detected by each slave station by the polling method. At this time, the distribution line F1 of the distribution substation AS / S
Power outage work is required in the second section S12, and this section will be cut off. That is, assuming that it is necessary to switch to the power outage section, first, in order to prevent the power outage of the third section S13 of the distribution line F1, the loop point switch SS20 or SS30 is turned on to form a loop, and then the section switches SS12 and SS11 are opened. There is a need to.

ループ点開閉器SS20又はSS30を投入するまえに親局で収
集した子局20,30からの横流検出値をチェックし、いず
れのループ開閉器を投入した方が配電系統に与える影響
が少ないかを判断し、最適のループ点開閉器を選択す
る。
Before turning on the loop switch SW20 or SS30, check the cross current detection value from the slave stations 20 and 30 collected by the master station, and check which loop switch has the smaller effect on the distribution system. Judge and select the optimum loop point switch.

このチェックとしては、横流と負荷電流の合計値が配
電用変電所の配電線用過電流保護継電器の動作値以下で
あること、即ち配電用しゃ断器をしゃ断させないこと。
区分開閉器のしゃ断容量以下であること、配電線の
電圧が、規定値以内であること、などの最低必要な条件
をもとに横流ができるだけ小さくかつ、電力融通容量マ
ージンの大きいループ点開閉器を選択する。
For this check, the total value of the cross current and the load current should be less than the operating value of the overcurrent protection relay for the distribution line of the distribution substation, that is, the distribution breaker should not be cut off.
Based on the minimum required conditions, such as being less than the breaking capacity of the division switch, and the voltage of the distribution line being within the specified value, the cross current is as small as possible and the loop point switch with a large power interchange capacity margin. Select.

尚配電線の負荷電流、電力融通容量マージンの算出等は
親局40にデータベースして予め登録しておいた区間毎の
負荷容量及び配電用変電所のバンク容量から必要に応じ
て算出するか、或いはデータ伝送系を通してオンライン
で収集した配電線の電流データを前記データベースと組
合わせて必要に応じ算出する。
Incidentally, the load current of the distribution line, the calculation of the power interchange capacity margin, etc. are calculated as necessary from the load capacity for each section registered in advance in the database in the master station 40 and the bank capacity of the distribution substation, Alternatively, the current data of the distribution line collected online through the data transmission system is combined with the above-mentioned database and calculated as necessary.

以上のチェックで選択された最適のループ点開閉器は、
親局40から当該子局に対し投入指令が送出され、当該の
ループ点開閉器を投入しループ化する。その後、子局1
2,11に対し順次開放指令が親局40から送出され、区分開
閉器12、11を開放し、配電線F1の第2区間を停電区間に
し、切換操作を終了する。
The optimum loop point switch selected by the above check is
A closing command is sent from the master station 40 to the slave station, and the loop point switch is closed to form a loop. Then child station 1
The master station 40 sequentially sends an opening command to 2, 11 to open the section switches 12, 11 to set the second section of the distribution line F1 as a power failure section and complete the switching operation.

次に子局の動作を第3図で示す。Next, the operation of the slave station is shown in FIG.

子局20には常開のループ点開閉器SS20の両側の電圧、即
ち配電用変電所AS/Sの配電線F1の電圧と配電用変電所BS
/Sの配電線F2の電圧を引込み線20−1,20−2で引込んで
いる。この両側間へ差電圧を△Vとするとこの両側間電
圧△Vはスイッチ20−4の投入によって差電圧検出用変
圧器20−6で検出し、制御回路20−10に送られ記憶され
る。
In the slave station 20, the voltage on both sides of the normally open loop point switch SS20, that is, the voltage of the distribution line F1 of the distribution substation AS / S and the distribution substation BS
The voltage of the distribution line F2 of / S is drawn in by the lead lines 20-1 and 20-2. Assuming that the differential voltage between both sides is ΔV, the voltage between both sides ΔV is detected by the differential voltage detecting transformer 20-6 by turning on the switch 20-4, and is sent to the control circuit 20-10 and stored therein.

次にスイッチ20−4を開放した後、スイッチ20−7を投
入し、ループ点開閉器SS20の両側間に横流検出用インピ
ーダンスZcを挿入する。この時に流れる横流をIcとする
と横流Icは横流検出用変流器20−9で検出し、制御回路
20−10に送られ記憶される。その後、スイッチ20−7を
開放する。
Next, after opening the switch 20-4, the switch 20-7 is turned on, and the cross current detection impedance Zc is inserted between both sides of the loop point switch SS20. Assuming that the cross current flowing at this time is Ic, the cross current Ic is detected by the cross current detecting current transformer 20-9, and the control circuit
It is sent to 20-10 and stored. After that, the switch 20-7 is opened.

以上の子局内の一連の動作により制御回路20−10にはル
ープ点開閉器SS20の両側間差電圧△Vと横流検出用イン
ピーダンスZcを挿入した時の横流Icが記憶されている。
これ等の値を用いて、ループ点開閉器SS20が実際に閉じ
た時の横流値(実横流値)の算出を第4図を用いて説明
する。
Through the above series of operations in the slave station, the control circuit 20-10 stores the differential voltage ΔV across the loop point switch SS20 and the cross current Ic when the cross current detection impedance Zc is inserted.
Calculation of the cross current value (actual cross current value) when the loop point switch SS20 is actually closed will be described using these values with reference to FIG.

ループ点開閉器SS20の両側から各々配電用変電所を見た
時のインピーダンスを背後インピーダンスと呼び、配電
用変電所AS/S側を見た背後インピーダンスをZA、配電用
変電所BS/S側を見た背後インピーダンスをZBとすると横
流Icは次式の関係にある。
The impedance when looking at the distribution substation from both sides of the loop switch SW20 is called the back impedance, and the back impedance when looking at the distribution substation AS / S side is Z A , and the distribution substation BS / S side If we assume that the back impedance is Z B , the cross current Ic has the following relationship.

上記関係から背後インピーダンスZA,ZBの和は次式にな
る。
From the above relation, the sum of the background impedances Z A and Z B is

従って、ループ点開閉器SS20を実際に投入した時に横流
値Iは次式によって求められ、予知することが出来る。
Therefore, when the loop point switch SS20 is actually turned on, the cross current value I is obtained by the following equation and can be predicted.

以上の演算を制御回路20−10で行うことによりループ点
開閉器SS20を実際に投入した時の実横流値を、背後イン
ピーダンスをデータベースとして予め持つことなく、予
知することが出来る。
By performing the above calculation by the control circuit 20-10, it is possible to predict the actual cross current value when the loop point switch SS20 is actually turned on without having the back impedance as a database in advance.

横流検出用インピーダンスZCの大きさは、その挿入時
(スイッチ20−7の閉成時)に配電系統に影響を与えな
い(例えば線路電圧変化が生じない)程度の大きな、例
えば背後インピーダンスZA,ZBの数10倍〜数100倍の大き
さに設定する。
The magnitude of the cross current detection impedance Z C is large enough not to affect the distribution system (for example, the line voltage does not change) when it is inserted (when the switch 20-7 is closed), for example, the back impedance Z A. , Z B to several tens to several hundreds of times.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

従来のループ切換装置は以上のように構成されているの
で、ループ点開閉器及び区分開閉器の少なくとも一方に
横流検出器を設け、ループ点開閉器又は区分開閉器を閉
じた時に流れる横流値を予めこの横流検出器で検出する
とともに、親局でデータ伝送系を介してこれ等の横流値
を収集し、ループ化した時、系統に与える影響の小さい
最適のループ点開閉器又は区分開閉器を選択し、選択し
たループ点開閉器又は区分開閉器をデータ伝送系を介し
て遠隔制御により投入した後、停電区間とするための当
該の区分開閉器又はループ点開閉器を遠隔制御で開放
し、無停電で切換操作、或いは切換操作の逆手順となる
切戻操作を行うものである。
Since the conventional loop switching device is configured as described above, a cross current detector is provided on at least one of the loop point switch and the section switch, and the cross current value flowing when the loop point switch or the section switch is closed is set. In addition to detecting this cross current detector in advance, the master station collects these cross current values via the data transmission system, and when it is looped, the optimum loop point switch or section switch with little influence on the system is selected. After selecting and turning on the selected loop point switch or section switch via remote control via the data transmission system, open the relevant section switch or loop point switch for a power failure section by remote control, The switching operation is performed without a power failure, or the switchback operation is performed in reverse of the switching operation.

しかし、ループ切換実施時点で横流検出値が過大である
場合には配電用変電所のしゃ断器のトリップにより不要
な停電が生じるか又は区分開閉器或はループ点開閉器の
しゃ断能力オーバによりしゃ断できないという課題があ
った。
However, if the cross current detection value is too large at the time of loop switching, an unnecessary power failure will occur due to the trip of the circuit breaker of the distribution substation, or the circuit breaker or loop point switch will not be able to cut off. There was a problem.

この発明は上記のような課題を解消するためになされた
もので、実横流値が過大な場合でも過去の蓄積データを
もとに横流値が小さくなる時間帯を予測するループ切換
装置を得ることを目的とする。
The present invention has been made to solve the above problems, and provides a loop switching device that predicts a time zone in which a cross current value becomes small based on past accumulated data even when the actual cross current value is excessive. With the goal.

〔課題を解決するための手段〕[Means for Solving the Problems]

この発明に係るループ切換装置は、区分開閉器及びルー
プ点開閉器で区分された複数の配電線に接続された実横
流予知手段をもつ複数の子局と、その実横流予知手段が
定時刻に計測した横流検出データを月、日、平日、祭日
別及びループ点別に保存する親局内の計算機と、その横
流検出データをもとに実横流予測データを作成し、電力
融通時に当日のループ点における実横流予測データから
ループ化可能な時間帯をビジュアルに表現しループ化可
否の判断を可能にした親局内の表示手段とをもって構成
され、ループ化可能な時間帯を選べるようにしたもので
ある。
The loop switching device according to the present invention includes a plurality of slave stations having actual cross-flow predicting means connected to a plurality of distribution lines divided by the division switch and the loop point switch, and the actual cross-flow predicting means measures the constant time. The computer in the master station that saves the detected cross current detection data by month, day, weekday, holiday, and loop point, and the actual cross current prediction data is created based on the cross current detection data. This is composed of a display means in the master station that visually represents a loopable time zone from the cross current prediction data and makes it possible to determine whether or not looping is possible, and the loopable time zone can be selected.

〔作用〕[Action]

この発明における親局内の計算機は、ループ点開閉器要
素の横流検出データを蓄積し、横流値が区分開閉器要素
のしゃ断容量以下で、かつ配電系統への影響の小さい時
間帯を予測してループ切換えを行うので、しゃ断器のし
ゃ断容量を超えることはない。またそのしゃ断器の操作
時期を適確に予測できるようになる。
The computer in the master station according to the present invention accumulates the cross current detection data of the loop point switch element, predicts the time zone when the cross current value is equal to or less than the cutoff capacity of the segment switch element, and has a small influence on the distribution system. Since switching is performed, the breaking capacity of the breaker will not be exceeded. Also, it becomes possible to accurately predict the operation timing of the circuit breaker.

〔発明の実施例〕Example of Invention

以下、この発明の一実施例を図について説明する。図
中、第2図と同一の部分は同一の符号をもって図示した
第1図において、図は配電線のループ点における横流デ
ータの説明図、同図(b)は前記(a)図をグラフ化し
た説明図である。
An embodiment of the present invention will be described below with reference to the drawings. In the figure, the same parts as those in FIG. 2 are shown with the same reference numerals in FIG. 1, the figure is an illustration of the cross current data at the loop point of the distribution line, and the figure (b) is a graph of the figure (a). FIG.

第2図における子局はループ点開閉器SS20,SS30の横流
検出を毎正時行い、その計測したデータを自局に一時格
納し、親局40は子局の記憶データを一定時間毎に取込む
ことによって第1図に示すように月、日別、平日、日
曜、祭日別、及びループ点別にトレンド・データとして
整理し格納する。毎正時に計測した横流検出データは前
年度の同一月、日、時のデータとの平均値を求め、親規
データとして保存する。
The slave station in Fig. 2 detects the cross currents of the loop point switches SS20 and SS30 on an hourly basis, temporarily stores the measured data in its own station, and the master station 40 acquires the stored data of the slave station at regular intervals. As shown in FIG. 1, the trend data is organized and stored as month, day, weekdays, Sundays, holidays, and loop points. For the cross current detection data measured at each hour, the average value with the data of the same month, day and hour of the previous year is calculated and saved as master data.

そして、電力融通が必要となった時に横流のトレンド
(傾向)を調べ当日のループ点における横流データの中
から横流値が停電、電圧低下、区分開閉器、ループ点開
閉器のしゃ断容量オーバ等の需要家及び配電系統への影
響の少ない時間帯を選び、その時間帯に電力融通を行
う。そして、例えば第1図(b)に示すように横流のト
レンドが一目でわかるように親局40の表示手段40B等に
1日のデータとしてビジュアルに作図し、必要に応じて
随時ディスプレィできるようにする。
Then, when the power interchange becomes necessary, the trend of the cross current is checked, and the cross current value in the cross point data at the loop point on the day indicates that the cross current value is a power failure, a voltage drop, a break switch, a breakage capacity of the loop switch, etc. Select a time zone that has less impact on consumers and distribution systems, and exchange power during that time zone. Then, for example, as shown in FIG. 1 (b), the trend of the cross current can be seen at a glance and visually drawn as the data of one day on the display means 40B of the master station 40 so that it can be displayed at any time as needed. To do.

これらの作業は全て親局40内の既設の計算機40Aによっ
て行われる。なお、上記実施例では、ループ点における
横流データの年度別区分、月日時区分、平日、日曜別区
分等の保存例について説明したが、横流のトレンド即ち
実横流予測値を知ることが狙いであり、特に保存の区分
についてこだわるものではない。
All of these operations are performed by the existing computer 40A in the master station 40. In the above embodiment, the example of storing the lateral flow data at the loop point by year, month / day, weekday, Sunday, etc. is explained, but the aim is to know the trend of cross current, that is, the actual cross current predicted value. , It doesn't particularly care about the preservation category.

〔発明の効果〕〔The invention's effect〕

以上のようにこの発明によれば、ループ点の横流検出デ
ータを親局の計算機に蓄積し、横流値が区分開閉器のし
ゃ断容量以下で、かつ配電系統への影響を小さい時間帯
を表示手段にビジュアルに表示して予測可能にし、ルー
プ切換えを行うようにしたので、ループ切換え実施時に
横流検出値が過大で実施不可能となった場合でも、過去
の蓄積データをもとに横流値が小さくなる時間帯の予測
が可能となる効果がある。
As described above, according to the present invention, the cross current detection data of the loop point is accumulated in the computer of the master station, the cross current value is equal to or less than the breaking capacity of the switchgear, and the time period during which the influence on the distribution system is small is displayed. Even if the cross current detection value becomes too large when loop switching is performed and it becomes impossible to perform it, the cross current value will be small based on the past accumulated data. There is an effect that it becomes possible to predict the time zone.

また、この横流データをもとに親局でループ化するため
の最適の区分開閉器、あるいはループ点開閉器を選択
し、自動操作できるようにしているため、配電系統への
影響を最小に抑えることができ、需要家へ影響を与える
ことがなく、かつ現地操作を減らした最小限の人員でル
ープ切換操作、ループ切戻操作を高信頼度で行える効果
がある。
In addition, based on this cross current data, the optimum switch or loop point switch for looping in the master station is selected and automatically operated, so the influence on the distribution system is minimized. Therefore, the loop switching operation and the loop reverting operation can be performed with high reliability without affecting the customer and with a minimum number of personnel who have reduced the number of local operations.

【図面の簡単な説明】[Brief description of drawings]

第1図(a)(b)はこの発明の一実施例を示したルー
プ点横流データのトレンドを示す表示の説明図、第2図
はこの発明及び従来の配電線ループ切換装置を示す構成
図、第3図は第2図に示す子局の構成を示すブロック
図、第4図は横流検出の原理を示すブロック図である。 図において、 1はAS/Sの母線、2はBS/Sの母線、3はCS/Sの母線、1
1,12,20,21,22,30,31は子局、40Aは計算機、40Bは表示
手段、40は親局、50は通信線、CB1〜CB3は配電用しゃ断
器、F1〜F3は配電線、SS11,SS12,SS21,SS22,SS31は区分
開閉器、SS20,SS30はループ点開閉器。 なお、図中、同一符号は同一、又は相当部分を示す。
1 (a) and 1 (b) are explanatory views of a display showing a trend of loop point cross current data showing an embodiment of the present invention, and FIG. 2 is a configuration diagram showing the present invention and a conventional distribution line loop switching device. 3, FIG. 3 is a block diagram showing the configuration of the slave station shown in FIG. 2, and FIG. 4 is a block diagram showing the principle of cross current detection. In the figure, 1 is an AS / S busbar, 2 is a BS / S busbar, 3 is a CS / S busbar, 1
1,12,20,21,22,30,31 are slave stations, 40A is a computer, 40B is a display means, 40 is a master station, 50 is a communication line, CB1 to CB3 are distribution breakers, and F1 to F3 are distributions. Electric wire, SS11, SS12, SS21, SS22, SS31 are section switches, SS20, SS30 are loop point switches. In the drawings, the same reference numerals indicate the same or corresponding parts.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 海老坂 敏信 兵庫県神戸市兵庫区和田崎町1丁目1番2 号 三菱電機株式会社制御製作所内 (72)発明者 諫早 啓司 兵庫県神戸市兵庫区和田崎町1丁目1番2 号 三菱電機株式会社制御製作所内 (56)参考文献 特開 昭63−287324(JP,A) 特開 昭63−287321(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toshinobu Ebisaka 1-2-2 Wadazaki-cho, Hyogo-ku, Kobe-shi, Hyogo Mitsubishi Electric Corporation Control Works (72) Inventor Keiji Isahaya Kazu, Hyogo-ku, Kobe-shi, Hyogo Tazaki-cho 1-2-1 Mitsubishi Electric Co., Ltd. Control Factory (56) Reference JP-A-63-287324 (JP, A) JP-A-63-287321 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】配電用変電所に繋がれた区分開閉器及びル
ープ点開閉器で区分された複数の配電線に接続された実
横流予知手段をもつ複数の子局と、前記ループ点開閉器
要素の実横流予知手段が定時刻に計測した横流検出デー
タを通信回線を介して定期的に受信すると、月、日、平
日、祝祭日別及びループ点別に保存する親局内の計算機
と、前記横流検出データをもとに実横流予測データを算
出し、この実横流予測データを新規データとして格納
し、電力融通時に当日のループ点における実横流予測デ
ータを用いて配電系統への影響の少ないループ化可能な
時間帯を傾向的に表現しループ化可否判断を可能にした
親局内の表示手段とを備えたループ切換装置。
1. A plurality of slave stations having actual cross-current predicting means connected to a plurality of distribution lines divided by a division switch and a loop point switch connected to a distribution substation, and the loop point switch. When the actual cross current predictor of the element receives the cross current detection data measured at a fixed time periodically through the communication line, it stores the data in the master station by month, day, weekday, holiday and loop point, and the cross current detection. Calculate the actual cross-current prediction data based on the data, store this actual cross-current prediction data as new data, and use the actual cross-current prediction data at the loop point of the day at the time of power interchange to create a loop with little effect on the distribution system. A loop switching device provided with a display means in the master station capable of proposing a proper time zone in a tendency to judge whether or not to make a loop.
JP2047481A 1990-02-28 1990-02-28 Loop switching device Expired - Fee Related JPH0773408B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2047481A JPH0773408B2 (en) 1990-02-28 1990-02-28 Loop switching device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2047481A JPH0773408B2 (en) 1990-02-28 1990-02-28 Loop switching device

Publications (2)

Publication Number Publication Date
JPH03251047A JPH03251047A (en) 1991-11-08
JPH0773408B2 true JPH0773408B2 (en) 1995-08-02

Family

ID=12776323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2047481A Expired - Fee Related JPH0773408B2 (en) 1990-02-28 1990-02-28 Loop switching device

Country Status (1)

Country Link
JP (1) JPH0773408B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5475060B2 (en) * 2012-06-13 2014-04-16 中国電力株式会社 Optimal execution time prediction system for system change
CN116780726B (en) * 2023-08-22 2024-01-23 深圳海辰储能控制技术有限公司 Circulation control method and system, energy storage device and electric equipment

Also Published As

Publication number Publication date
JPH03251047A (en) 1991-11-08

Similar Documents

Publication Publication Date Title
Vinogradov et al. А System for Monitoring the Number and Duration of Power Outages and Power Quality in 0.38 kV Electrical Networks
KR0176245B1 (en) Electric power system with remote monitoring and control of protective relays
CN102187540B (en) Short-term load forecasting based capacity check for automated power restoration of electric distribution networks
JPS62118716A (en) Control for preventing misoperation of switchgear of distribution equipment and controller for the same
CN102157931A (en) Method and system for detecting conflict between blackout request and power protection request in power grid
Chow et al. Time of outage restoration analysis in distribution systems
CN107039956A (en) A kind of distribution power automation terminal definite value on-line testing method
Hart et al. Automated solutions for distribution feeders
Deliyannides et al. Design criteria for an integrated microprocessor-based substation protection and control system
JPH0773408B2 (en) Loop switching device
Kleinberg et al. Service restoration of power distribution systems incorporating load curtailment
Liacco et al. Automation of the CEI System for Security
Koaizawa et al. Actual operating experience of on-line transient stability control systems (TSC systems)
JPH0349536A (en) Power interchange system for power distribution system
Park et al. Application of expert system to power system restoration in local control center
JP3846458B2 (en) Power distribution method
JP3141806B2 (en) Automatic distribution line switchgear
JPS6387126A (en) System for detecting and cutting off failured section in distribution system
JP3141807B2 (en) Automatic distribution line switchgear
Lehtonen et al. An automatic fault management model for distribution networks
JPS6016141A (en) Power distributing operation monitoring device
Lehtonen et al. An integrated solution for protection and automation of power systems
JPS6115522A (en) Power distribution line defect zone deciding system
Watson et al. Benefits of distribution automation and performance results from a network trial
Nimrihter Comparative analysis of security concepts for urban medium voltage cable distribution networks

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees