JPH0798818A - Magneto-resistance effect type head - Google Patents

Magneto-resistance effect type head

Info

Publication number
JPH0798818A
JPH0798818A JP24093893A JP24093893A JPH0798818A JP H0798818 A JPH0798818 A JP H0798818A JP 24093893 A JP24093893 A JP 24093893A JP 24093893 A JP24093893 A JP 24093893A JP H0798818 A JPH0798818 A JP H0798818A
Authority
JP
Japan
Prior art keywords
thin film
film
magnetic field
magnetic
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24093893A
Other languages
Japanese (ja)
Inventor
Katsuro Watanabe
克朗 渡辺
Shigeru Tadokoro
茂 田所
Takao Imagawa
尊雄 今川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP24093893A priority Critical patent/JPH0798818A/en
Publication of JPH0798818A publication Critical patent/JPH0798818A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)

Abstract

PURPOSE:To provide the low-noise MR head by using quaternary soft magnetic thin films of Ni-Fe-Nb-Co which have the saturation magnetic flux density, anisotropic magnetic field, magneto-striction and specific resistance satisfying the conditions relating to the soft magnetic thin films of the MR head and can be made larger in the anisotropic magnetic field than an Fi-Fe alloy. CONSTITUTION:The soft magnetic thin films to be used for a a soft bias method is required to have the saturation magnetic flux density of 0.5 to 1.0T, the anisotropic magnetic field of 10 to 10Oe and the magneto-striction of -1X10<-6> to +1X10<-6>. The thin films are further required to have the specific resistance of >=60mumOMEGA.cm in a composite bias method. Alloy thin films consisting, by weight, of 30 to 90% Ni, 5 to 65% Fe, 5 to 15% Nb and 0 to 15% Co are used in order to form the alloy satisfying the magnetic and electric characteristics required for the soft magnetic thin films for impression of bias magnetic fields and having excellent corrosion resistance. The anisotropic magnetic field is made smaller than the anisotropic magnetic field of the films consisting of Nb and the magneto-resistriction moves to consisting of Nb and the magneto-resistriction moves to positive. The ferromagnetic element makes the saturation magnetic flux density and the anisotropic magnetic field larger. Since the magneto-resistriction changes as well, the addition of the ferromagnetic element smaller in the change of the specific resistance is more preferable and the adequate element is Co. The soft magnetic thin films adequate for the MR head are easily formed and the characteristics are easily adjusted by adding the Nb and the Co to the alloy thin films of the Ni-Fe system.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、Ni−Fe−Nb−C
o系合金薄膜を用いた磁気抵抗効果型ヘッドに関するも
のである。
FIELD OF THE INVENTION The present invention relates to Ni-Fe-Nb-C.
The present invention relates to a magnetoresistive head using an o-based alloy thin film.

【0002】[0002]

【従来の技術】一般に、磁気抵抗効果型ヘッド(MRヘ
ッド)は、磁気記録媒体からの漏洩磁束に対する応答を
線形にするため、記録媒体と対抗する面に垂直な方向
(以下素子高さ方向と呼ぶ)にバイアス磁界を印加して
用いる。このバイアス磁界は、磁気抵抗効果素子の磁区
構造を安定にするためのバイアス磁界と対比させるため
に、しばしば横方向バイアス磁界と呼ばれる。代表的な
横方向バイアス磁界の印加方法の一つとして、特開昭50
−65213 号記載のソフト膜バイアス法がある。これは、
磁気抵抗効果膜の近傍に磁気分離膜を介して軟磁性薄膜
(ソフト膜)を設け、磁気抵抗効果膜に流れるセンス電
流が作る磁界によって軟磁性薄膜を磁化し、磁化された
軟磁性薄膜から発生する磁界によって磁気抵抗効果膜に
バイアス磁界を印加するものである。磁気分離膜として
導電性薄膜を用いる場合は、特開昭52−62417 号記載の
ように、センス電流が作る磁界と軟磁性薄膜から発生す
る磁界を効率良く磁気抵抗効果膜に印加することができ
る。この方法を以下において複合バイアス法と呼ぶ。
2. Description of the Related Art Generally, a magnetoresistive head (MR head) has a direction perpendicular to a surface opposing a recording medium (hereinafter referred to as an element height direction) in order to make a response to a leakage magnetic flux from a magnetic recording medium linear. It is used by applying a bias magnetic field. This bias magnetic field is often called a lateral bias magnetic field in order to compare it with the bias magnetic field for stabilizing the magnetic domain structure of the magnetoresistive effect element. As one of typical methods of applying a lateral bias magnetic field, Japanese Patent Laid-Open No.
There is a soft film bias method described in −65213. this is,
A soft magnetic thin film (soft film) is provided near the magnetoresistive film via a magnetic separation film, and the soft magnetic thin film is magnetized by the magnetic field created by the sense current flowing in the magnetoresistive film, and is generated from the magnetized soft magnetic thin film. A bias magnetic field is applied to the magnetoresistive film by the magnetic field. When a conductive thin film is used as the magnetic separation film, the magnetic field created by the sense current and the magnetic field generated from the soft magnetic thin film can be efficiently applied to the magnetoresistive film as described in JP-A-52-62417. . This method is referred to below as the composite bias method.

【0003】これらの方法で、軟磁性薄膜の磁気的,電
気的特性が再生特性に大きく影響する。要求される特性
としては、適当な大きさの飽和磁束密度を有すること、
異方性磁界および磁歪が小さいこと、複合バイアス法に
おいてはこれらに加えて比抵抗が高いこと等が挙げられ
る。これらの特性を満足する軟磁性薄膜として、ジャー
ナル オブ アプライド フィジックス、69(199
1年)5631頁から5633頁(J. Appl. Phys., 69
(1991)5631−5633)に記載されているように、Ni−F
e系合金に種々の非磁性の第3元素を添加した薄膜が検
討されている。
With these methods, the magnetic and electrical characteristics of the soft magnetic thin film have a great influence on the reproduction characteristics. The required characteristics are to have an appropriate size of saturation magnetic flux density,
The anisotropic magnetic field and the magnetostriction are small, and the composite bias method has a high specific resistance in addition to these. As a soft magnetic thin film satisfying these characteristics, Journal of Applied Physics, 69 (199)
1st year) Pages 5631 to 5633 (J. Appl. Phys., 69
(1991) 5631-5633), Ni-F
Thin films prepared by adding various non-magnetic third elements to an e-based alloy have been studied.

【0004】[0004]

【発明が解決しようとする課題】一般にNi−Fe系合
金に非磁性第3元素を添加すると、飽和磁束密度及び異
方性磁界は小さくなり、比抵抗は大きくなる。しかし、
磁歪に関しては添加する元素によって増加する場合と減
少する場合があり単純ではない。さらに、同一の添加元
素であっても各特性における改善の効果が異なるので、
1種類の添加元素により全ての特性について最適な値を
実現することは困難である。また、MRヘッドの構造に
よって前述の特性の最適な値も異なってくるので、添加
する元素の種類及び量について検討し直して最適特性を
実現することは、非常に困難であるとともに大変な労力
を要する。
Generally, when a non-magnetic third element is added to a Ni-Fe alloy, the saturation magnetic flux density and the anisotropic magnetic field become small and the specific resistance becomes large. But,
Magnetostriction is not simple because it may increase or decrease depending on the added element. Furthermore, even with the same additive element, the effect of improvement in each characteristic is different,
It is difficult to achieve optimum values for all characteristics with one type of additive element. Also, since the optimum values of the above-mentioned characteristics differ depending on the structure of the MR head, it is very difficult and labor-intensive to re-examine the type and amount of the element to be added to realize the optimum characteristics. It costs.

【0005】また、前述したようにNi−Fe系合金に
非磁性第3元素を添加するとその異方性磁界は小さくな
るが、MRヘッドの構造によっては軟磁性薄膜の磁区構
造が不安定になりバルクハウゼンノイズが発生すること
がある。その場合、磁区構造を安定にするためには、異
方性磁界の大きい軟磁性薄膜を用いた方が有利である。
Further, as described above, when the non-magnetic third element is added to the Ni-Fe alloy, the anisotropic magnetic field becomes small, but the magnetic domain structure of the soft magnetic thin film becomes unstable depending on the structure of the MR head. Barkhausen noise may occur. In that case, in order to stabilize the magnetic domain structure, it is advantageous to use a soft magnetic thin film having a large anisotropic magnetic field.

【0006】本発明の目的は、飽和磁束密度,異方性磁
界,磁歪及び比抵抗がMRヘッドの軟磁性薄膜に関する
条件を満足することができ、しかも異方性磁界をNi−
Fe系合金よりも大きくすることができる材料であるN
i−Fe−Nb−Co4元系軟磁性薄膜を提供し、この
Ni−Fe−Nb−Co系軟磁性薄膜をMRヘッドに適
用しバルクハウゼンノイズの少ないMRヘッドを実現す
ることにある。
An object of the present invention is that the saturation magnetic flux density, anisotropic magnetic field, magnetostriction and specific resistance can satisfy the conditions relating to the soft magnetic thin film of the MR head, and the anisotropic magnetic field is Ni-
N, which is a material that can be made larger than the Fe-based alloy
An object of the present invention is to provide an i-Fe-Nb-Co quaternary soft magnetic thin film, and apply the Ni-Fe-Nb-Co soft magnetic thin film to an MR head to realize an MR head with less Barkhausen noise.

【0007】[0007]

【課題を解決するための手段】Ni−Fe系合金薄膜に
非磁性元素であるNbと磁性元素であるCoを添加する
ことにより、ソフト膜バイアス法あるいは複合バイアス
法に用いる軟磁性薄膜として要求される磁気的,電気的
特性を満足する薄膜を得る。ソフト膜バイアス法の軟磁
性薄膜としては、Ni−Fe系合金薄膜に5.0wt%
以上のNbと15.0wt% 以下のCoを添加したNi
−Fe−Nb−Co系合金薄膜である。具体的な組成
は、重量で30〜90%Ni,5〜65%のFe,5〜
15%のNb及び0〜15%のCoからなる合金であ
る。このとき、飽和磁束密度が0.5T以上1.0T 以下
の範囲にあり、異方性磁界が1Oe以上10Oe以下の
範囲にあることが必要である。また、磁歪に関しては、
−1×10-6から+1×10-6の範囲にあることが望まし
い。複合バイアス法における軟磁性薄膜の場合には、前
記の磁気特性を有し、かつ60μΩ・cm以上の比抵抗
を有するNi−Fe−Nb−Co系合金薄膜を用いる。
Means for Solving the Problems By adding Nb, which is a non-magnetic element, and Co, which is a magnetic element, to a Ni-Fe alloy thin film, it is required as a soft magnetic thin film used in a soft film bias method or a composite bias method. A thin film that satisfies the magnetic and electrical characteristics is obtained. As a soft magnetic thin film for the soft film bias method, Ni-Fe alloy thin film is 5.0 wt%
Ni containing the above Nb and 15.0 wt% or less Co
It is a -Fe-Nb-Co alloy thin film. The specific composition is 30 to 90% Ni, 5 to 65% Fe, 5 to 5% by weight.
It is an alloy composed of 15% Nb and 0 to 15% Co. At this time, it is necessary that the saturation magnetic flux density is in the range of 0.5 T or more and 1.0 T or less and the anisotropic magnetic field is in the range of 1 Oe or more and 10 Oe or less. Regarding magnetostriction,
It is desirable to be in the range of -1 × 10 -6 to + 1 × 10 -6 . In the case of the soft magnetic thin film in the composite bias method, a Ni-Fe-Nb-Co based alloy thin film having the above-mentioned magnetic properties and having a specific resistance of 60 μΩ · cm or more is used.

【0008】[0008]

【作用】ソフト膜バイアス法に用いる軟磁性薄膜には、
0.5T以上1.0T以下の飽和磁束密度と、1Oe以
上10Oe以下の異方性磁界と、小さな磁歪を有するこ
と、複合バイアス法においては、さらに高い比抵抗を有
することが要求される。Ni−Fe系合金に非磁性第3
元素を添加すると飽和磁束密度および異方性磁界が減少
し、比抵抗が増大することから、前述の軟磁性薄膜の特
性を満足させるためにNi−Fe系合金薄膜に非磁性第
3元素の添加を行う。ここで、バイアス磁界印加のため
の軟磁性薄膜に要求される磁気特性,電気特性の各特性
を満たすことができ、かつ耐食性に優れた合金を形成す
る元素の一つがNbである。なお、Nbの添加により異
方性磁界は小さくなり、磁歪は正方向へ動く。
[Function] The soft magnetic thin film used in the soft film bias method is
It is required to have a saturation magnetic flux density of 0.5 T or more and 1.0 T or less, an anisotropic magnetic field of 1 Oe or more and 10 Oe or less, a small magnetostriction, and a higher specific resistance in the composite bias method. Ni-Fe based alloy with non-magnetic third
When an element is added, the saturation magnetic flux density and the anisotropic magnetic field are decreased, and the specific resistance is increased. Therefore, in order to satisfy the characteristics of the soft magnetic thin film described above, the addition of the non-magnetic third element to the Ni-Fe alloy thin film I do. Here, Nb is one of the elements capable of satisfying the magnetic properties and electrical properties required for the soft magnetic thin film for applying a bias magnetic field and forming an alloy excellent in corrosion resistance. The addition of Nb reduces the anisotropic magnetic field, and the magnetostriction moves in the positive direction.

【0009】上記の特性を調整して最適な値とするため
には、元素の添加を行っても何れか一つの特性はほとん
ど変化せず、他の3つの特性はNb添加による特性の変
化とは逆の効果を示す元素を添加する必要がある。飽和
磁束密度及び異方性磁界を大きくすることができる元素
は強磁性元素に限られる。強磁性元素の添加により当然
磁歪も変化するので、比抵抗の変化の小さい強磁性元素
を添加することが望ましい。添加により比抵抗がほとん
ど変化せずに磁歪が負の方向へ動き、しかも良好な耐食
性を示す合金を形成する元素は、Coである。先述の飽
和磁束密度と異方性磁界に関する要求特性を満たし、磁
歪,比抵抗に関する望ましい値である−1×10-6から
+1×10-6の範囲の値、65μΩ・cm以上の値を満
足するNbおよびCoの添加量はそれぞれ5.0重量%
以上および15.0重量%以下である。
In order to adjust the above-mentioned characteristics to the optimum value, any one of the characteristics hardly changes even when the element is added, and the other three characteristics are changed by the addition of Nb. It is necessary to add an element having the opposite effect. The elements that can increase the saturation magnetic flux density and the anisotropic magnetic field are limited to ferromagnetic elements. Magnetostriction naturally changes with the addition of a ferromagnetic element, so it is desirable to add a ferromagnetic element with a small change in resistivity. Co is an element that forms an alloy that moves in the negative direction of magnetostriction with almost no change in specific resistance due to addition and that exhibits good corrosion resistance. Satisfies the above-mentioned required characteristics regarding the saturation magnetic flux density and anisotropic magnetic field, and satisfies the desirable values for magnetostriction and specific resistance in the range of -1 × 10 -6 to + 1 × 10 -6 , and 65 μΩ · cm or more. The amount of Nb and Co added is 5.0% by weight, respectively
And 15.0% by weight or less.

【0010】[0010]

【実施例】以下、実施例により本発明を詳述する。EXAMPLES The present invention will be described in detail below with reference to examples.

【0011】実施例1 図2に本発明の一実施例による磁気抵抗効果型ヘッドの
斜視図を示す。アルミナなどの絶縁層を薄膜形成し精密
研磨を施した非磁性基板10の上に、下部シールド膜1
1としてスパッタリングによりセンダストを形成し、フ
ォトリソグラフィー技術により所定の形状にパターン化
し、その上にアルミナ絶縁膜13を成膜した。磁区制御
層としてNiFe 15及びFeMn 16を積層し、所
定の形状にパターン化した。このとき、磁気抵抗効果素
子の中央部分の磁区制御層を取り去り、磁区制御層を残
してある部分と磁気抵抗効果膜17の交換結合とNiF
e15が発生する磁界により磁気抵抗効果膜17の磁区
構造を制御する構造とした。次に、複合バイアス法を用
いた磁気抵抗効果素子部として、磁気抵抗効果膜17で
あるパーマロイ、非磁性導電性薄膜18であるTa及び
軟磁性薄膜19であるNi−Fe−Nb−Co系合金を
スパッタリングにより形成した。なお、Ni−Fe−N
b−Co系合金薄膜の飽和磁束密度は0.59T 、異方
性磁界は4.8Oe、磁歪は−3.3×10-7及び比抵
抗は77.5μΩ・cmである。保護膜20としてCr
を被覆した後、フォトリソグラフィー技術を用いて、C
r保護膜,磁気抵抗効果素子部,磁区制御膜及びアルミ
ナ絶縁膜をそれぞれ所定の形状にパターン化した。さら
に、電極21をドライエッチング法によって作製し、そ
の上にアルミナ絶縁膜14を成膜し、パターン化した。
保護膜22としてレジストを形成した後、パーマロイか
らなる上部シ−ルド膜12を成膜、パターン化した。ア
ルミナ絶縁膜14及び上部シールド膜12のパターン化
には、フォトリソグラフィー技術を用いた。磁区制御層
を着磁するため、トラック幅方向に3kOeの直流磁界を印
加しながら275℃で30分間熱処理を行った後、所定
の大きさの磁気抵抗効果型ヘッドに加工した。
Embodiment 1 FIG. 2 is a perspective view of a magnetoresistive head according to an embodiment of the present invention. The lower shield film 1 is formed on the non-magnetic substrate 10 on which an insulating layer such as alumina is formed into a thin film and precision-polished.
As No. 1, sendust was formed by sputtering, patterned into a predetermined shape by a photolithography technique, and an alumina insulating film 13 was formed thereon. NiFe 15 and FeMn 16 were laminated as a magnetic domain control layer and patterned into a predetermined shape. At this time, the magnetic domain control layer in the central portion of the magnetoresistive effect element is removed, and the exchange coupling between the portion where the magnetic domain control layer remains and the magnetoresistive effect film 17 and NiF.
The magnetic domain structure of the magnetoresistive effect film 17 is controlled by the magnetic field generated by e15. Next, as a magnetoresistive effect element portion using the composite bias method, permalloy as the magnetoresistive effect film 17, Ta as the nonmagnetic conductive thin film 18 and Ni-Fe-Nb-Co based alloy as the soft magnetic thin film 19 are used. Was formed by sputtering. In addition, Ni-Fe-N
The b-Co alloy thin film has a saturation magnetic flux density of 0.59 T, an anisotropic magnetic field of 4.8 Oe, a magnetostriction of -3.3 × 10 -7, and a specific resistance of 77.5 μΩ · cm. Cr as the protective film 20
After coating with C, using photolithography technology,
The r protective film, the magnetoresistive effect element portion, the magnetic domain control film, and the alumina insulating film were patterned into predetermined shapes. Further, the electrode 21 was formed by the dry etching method, and the alumina insulating film 14 was formed thereon and patterned.
After forming a resist as the protective film 22, an upper shield film 12 made of permalloy was formed and patterned. A photolithography technique was used for patterning the alumina insulating film 14 and the upper shield film 12. In order to magnetize the magnetic domain control layer, a heat treatment was performed at 275 ° C. for 30 minutes while applying a DC magnetic field of 3 kOe in the track width direction, and then processed into a magnetoresistive head of a predetermined size.

【0012】本実施例では、分解能の高いヘッドを得る
ために上部及び下部シールド膜を設けたが、高分解能を
要求しない場合には設けなくとも良い。また、磁気抵抗
効果膜が平坦に形成できるようにすれば、必ずしも磁区
制御膜から作製する必要はなく、電極から作製しても良
い。さらに、磁区制御膜には、FeMnの他、FeMnにR
u,Rh,Ti,Cr等を添加したFe−Mn系合金や
NiOなどの反強磁性材料、或いはCo−Pt系合金や
Co−Cr系合金などの永久磁石材料を用いることがで
きる。
In this embodiment, the upper and lower shield films are provided in order to obtain a head with high resolution, but they may not be provided if high resolution is not required. Further, if the magnetoresistive film can be formed flat, it is not always necessary to form it from the magnetic domain control film, and it may be formed from the electrode. Furthermore, in the magnetic domain control film, in addition to FeMn, R is added to FeMn.
An antiferromagnetic material such as Fe—Mn-based alloy or NiO added with u, Rh, Ti, Cr or the like, or a permanent magnet material such as Co—Pt-based alloy or Co—Cr-based alloy can be used.

【0013】以上のように作製した磁気抵抗効果型ヘッ
ドについて、磁気抵抗変化曲線を測定し磁気抵抗効果膜
の磁化のセンス電流が流れる方向からの回転角(以下バ
イアス角度と呼ぶ)を測定した。比較のため、軟磁性薄
膜として飽和磁束密度,磁歪及び比抵抗はほぼ本実施例
と同等で、異方性磁界が1.5Oe であるNi−Fe−
Nb系合金を用いたヘッドについても同様の測定を行っ
た。測定結果を図1に示す。Ni−Fe−Nb−Co系
合金を用いたヘッドの方が、Ni−Fe−Nb系合金を
用いた場合に比べてバイアス角度が大きくなっている。
また、保磁力1600Oe、磁性体膜厚tmag=20n
m、残留磁束密度Brと磁性体膜厚の積Br・tmag=1
80G・μmのCo−Ta−Cr系スパッタ媒体にオー
バーライト特性32dBを有する誘導型薄膜磁気ヘッド
を用いて5kFCIで記録した記録パターンを、浮上量
0.15μm 、センス電流10mAで再生し、その再生
出力を評価した。Ni−Fe−Nb−Co系合金を用い
たヘッドの再生出力は305μVであるのに対し、Ni−
Fe−Nb系合金を用いたヘッドにおいては270μV
であった。これらの特性の違いは、磁区制御層のNiF
eからの磁界によって、異方性磁界の小さいNi−Fe
−Nb系合金薄膜の磁化の方向が磁気抵抗効果膜と同方
向になっているが、異方性磁界の大きいNi−Fe−N
b−Co系合金薄膜では逆方向を向いていることによる
と思われる。尚、どちらのヘッドにおいてもバルクハウ
ゼンノイズは観測されなかった。従って、図2の構造に
おいては軟磁性薄膜としてNi−Fe−Nb−Co系合
金を用いた方が優れたヘッド特性を示すと言える。
With respect to the magnetoresistive head manufactured as described above, the magnetoresistive change curve was measured, and the rotation angle (hereinafter referred to as the bias angle) from the direction in which the sense current of the magnetization of the magnetoresistive film flows. For comparison, as a soft magnetic thin film, the saturation magnetic flux density, the magnetostriction and the specific resistance are almost the same as those of the present embodiment, and the anisotropic magnetic field is Ni-Fe-, which is 1.5 Oe.
The same measurement was performed for the head using the Nb-based alloy. The measurement results are shown in FIG. The head using the Ni-Fe-Nb-Co alloy has a larger bias angle than the head using the Ni-Fe-Nb alloy.
Further, the coercive force is 1600 Oe, the magnetic film thickness t mag = 20n.
m, product of residual magnetic flux density B r and magnetic film thickness B r · t mag = 1
A recording pattern recorded at 5 kFCI using an induction type thin film magnetic head having an overwrite characteristic of 32 dB on an 80 G · μm Co-Ta-Cr sputter medium was reproduced at a flying height of 0.15 μm and a sense current of 10 mA, and then reproduced. Evaluated the output. The reproducing output of the head using the Ni-Fe-Nb-Co alloy is 305 μV, whereas the reproducing output of Ni-
270 μV in the head using the Fe-Nb alloy
Met. The difference between these characteristics is that NiF of the magnetic domain control layer
Ni-Fe having a small anisotropic magnetic field due to the magnetic field from e
The magnetization direction of the -Nb alloy thin film is the same as that of the magnetoresistive effect film, but Ni-Fe-N having a large anisotropic magnetic field is used.
This is probably because the b-Co alloy thin film faces in the opposite direction. Barkhausen noise was not observed in either head. Therefore, in the structure of FIG. 2, it can be said that the Ni--Fe--Nb--Co based alloy used as the soft magnetic thin film exhibits superior head characteristics.

【0014】実施例2 図3に本発明の別の実施例による磁気抵抗効果型ヘッド
の斜視図を示す。アルミナなどの絶縁層を薄膜形成し精
密研磨を施した非磁性基板10の上に、下部シールド膜
11としてスパッタリングによりパーマロイを形成し、
フォトリソグラフィー技術により所定の形状にパターン
化し、その上にアルミナ絶縁膜13を成膜した。磁区制
御層としてNiO 23 を積層し所定の形状にパターン
化した後、リフトオフ法により高抵抗薄膜24であるア
ルミナを所定の形状に作成した。その上に、磁気抵抗効
果膜17であるパーマロイ、非磁性導電性薄膜18であ
るTa及び軟磁性薄膜19であるNi−Fe−Nb−C
o系合金をスパッタリングにより形成した。このとき、
磁気抵抗効果膜17の磁区構造の制御は、磁区制御層で
あるNiO 23と磁気抵抗効果膜17の交換結合を利
用して行っている。なお、Ni−Fe−Nb−Co系合
金薄膜については表1に示す特性を有する2種類の薄膜
を用いた。電極21をリフトオフ法によって作製し、そ
の上にアルミナ絶縁膜14を成膜し、パターン化した。
保護膜22としてレジストを形成した後、パーマロイか
らなる上部シールド膜12を成膜,パターン化した。ア
ルミナ絶縁膜14及び上部シールド膜12のパターン化
には、フォトリソグラフィー技術を用いた。磁区制御層
を着磁するため、トラック幅方向に3kOeの直流磁界
を印加しながら275℃で30分間熱処理を行った後、
所定の大きさの磁気抵抗効果型ヘッドに加工した。
Embodiment 2 FIG. 3 is a perspective view of a magnetoresistive head according to another embodiment of the present invention. Permalloy is formed as a lower shield film 11 by sputtering on the non-magnetic substrate 10 on which an insulating layer such as alumina is formed into a thin film and precision-polished.
It was patterned into a predetermined shape by a photolithography technique, and an alumina insulating film 13 was formed thereon. After NiO 23 was laminated as a magnetic domain control layer and patterned into a predetermined shape, alumina which was the high resistance thin film 24 was formed into a predetermined shape by a lift-off method. On top of that, permalloy which is the magnetoresistive film 17, Ta which is the non-magnetic conductive thin film 18 and Ni-Fe-Nb-C which is the soft magnetic thin film 19 are formed.
The o-based alloy was formed by sputtering. At this time,
The control of the magnetic domain structure of the magnetoresistive effect film 17 is performed by utilizing the exchange coupling between the magnetic domain effect control film NiO 23 and the magnetoresistive effect film 17. As the Ni-Fe-Nb-Co alloy thin film, two types of thin films having the characteristics shown in Table 1 were used. The electrode 21 was formed by the lift-off method, and the alumina insulating film 14 was formed thereon and patterned.
After forming a resist as the protective film 22, the upper shield film 12 made of permalloy was formed and patterned. A photolithography technique was used for patterning the alumina insulating film 14 and the upper shield film 12. In order to magnetize the magnetic domain control layer, heat treatment was performed at 275 ° C. for 30 minutes while applying a DC magnetic field of 3 kOe in the track width direction,
A magnetoresistive head having a predetermined size was processed.

【0015】本実施例では高抵抗薄膜24としてアルミ
ナを用いたが、Ta,酸化タンタル或いは窒化タンタル
なども用いることができる。
Although alumina is used as the high-resistance thin film 24 in this embodiment, Ta, tantalum oxide, tantalum nitride, or the like can also be used.

【0016】以上のように作製した磁気抵抗効果型ヘッ
ドについて、実施例1と同様の方法で、バイアス角度及
び再生出力について評価を行った。センス電流10mA
における評価結果を表1に示す。バルクハウゼンノイズ
については、10個のヘッドを測定しバルクハウゼンノ
イズが観測されたヘッドの数を示した。Ni−Fe−N
b系合金はバルクハウゼンノイズが観測され、高抵抗薄
膜24であるアルミナによる段差が高くなるとその出現
確率は大きくなっている。一方で、Ni−Fe−Nb−
Co系合金においてバルクハウゼンノイズが観測されて
いないことから、Ni−Fe−Nb系合金の場合は異方
性磁界が小さいために段差によって磁化の方向が乱され
て、その結果バルクハウゼンノイズが発生し易くなって
いるものと思われる。Ni−Fe−Nb−Co系合金
は、磁歪が正で異方性磁界が5Oe程度のもの(NiFeNb
Co 1)と、磁歪が負で異方性磁界が7Oe程度のもの
(NiFeNbCo 2)を使用した。高抵抗薄膜24であるアル
ミナの厚さが10nmの場合はNiFeNbCo 1の方が良い
ヘッド特性を示し、30nmの場合にはNiFeNbCo2の方
が良い特性を示している。アルミナの厚さが小さいとき
には、異方性磁界が大き過ぎると軟磁性薄膜の磁化が回
転し難いため、十分なバイアス磁界が磁気抵抗効果膜に
掛からないものと思われる。一方、アルミナの厚さが大
きいときには、段差によって応力が生じ、磁歪の効果に
よってNiFeNbCo 2の方が磁化が回転し易くなっていると
考えられる。
With respect to the magnetoresistive head manufactured as described above, the bias angle and the reproduction output were evaluated in the same manner as in Example 1. Sense current 10mA
Table 1 shows the evaluation results of the above. Regarding Barkhausen noise, 10 heads were measured and the number of heads where Barkhausen noise was observed is shown. Ni-Fe-N
Barkhausen noise is observed in the b-based alloy, and the higher the step due to the alumina, which is the high-resistance thin film 24, the higher the probability of its appearance. On the other hand, Ni-Fe-Nb-
Since no Barkhausen noise was observed in the Co-based alloy, in the case of the Ni-Fe-Nb-based alloy, the anisotropic magnetic field was small, so the direction of the magnetization was disturbed by the step, and as a result, Barkhausen noise was generated. It seems that it is easier to do. Ni-Fe-Nb-Co based alloys have a positive magnetostriction and an anisotropic magnetic field of about 5 Oe (NiFeNb
Co 1) and one having a negative magnetostriction and an anisotropic magnetic field of about 7 Oe (NiFeNbCo 2) were used. When the thickness of the high resistance thin film 24 of alumina is 10 nm, NiFeNbCo 1 exhibits better head characteristics, and when it is 30 nm, NiFeNbCo 2 exhibits better characteristics. When the thickness of alumina is small, the magnetization of the soft magnetic thin film is hard to rotate when the anisotropic magnetic field is too large, and it is considered that a sufficient bias magnetic field cannot be applied to the magnetoresistive film. On the other hand, when the thickness of alumina is large, it is considered that the stress is generated by the step and the magnetization of NiFeNbCo 2 is easier to rotate due to the effect of magnetostriction.

【0017】[0017]

【表1】 [Table 1]

【0018】実施例3 軟磁性薄膜以外は実施例2と同様の膜構成で、軟磁性薄
膜として比抵抗の大きいNi−Fe−Nb−Co系合金
薄膜を用いた。これは、比抵抗の大きい軟磁性薄膜を用
いることにより、磁気抵抗効果膜に流れる電流が増えて
再生出力が向上することを期待したものである。適用し
たNi−Fe−Nb−Co系合金薄膜の特性は、飽和磁
束密度が0.54T,異方性磁界が6.2Oe,磁歪が−
4.2×10-7、比抵抗は110μΩ・cmである。所定
の大きさに加工した磁気抵抗効果型ヘッドについて、実
施例1と同様の方法でバイアス角度及び再生出力につい
て評価を行った。比較のために、軟磁性薄膜としてCo
を添加していないNi−Fe−Nb系合金薄膜を用いた
磁気抵抗効果型ヘッドについても同様の測定を行った。
なお、Ni−Fe−Nb系合金薄膜の特性は、飽和磁束
密度が0.41T、異方性磁界が1.0Oe、磁歪が+
3.7×10-7、比抵抗は本実施例とほぼ等しい108
μΩ・cmである。センス電流10mAにおけるバイアス
角度及び再生出力は、Ni−Fe−Nb−Co系合金薄
膜を用いた磁気抵抗効果型ヘッドではそれぞれ45度及
び450μVであったのに対し、Ni−Fe−Nb系合
金薄膜を用いたヘッドではそれぞれ36度及び350μ
Vであった。これらの特性の違いは、Ni−Fe−Nb
−Co系合金薄膜の方が飽和磁束密度が大きいために、
磁気抵抗効果膜にかかるバイアス磁界が大きいことによ
ると考えられる。
Example 3 A Ni—Fe—Nb—Co alloy thin film having a large specific resistance was used as the soft magnetic thin film with the same film structure as in Example 2 except for the soft magnetic thin film. It is expected that the use of the soft magnetic thin film having a large specific resistance will increase the current flowing through the magnetoresistive film and improve the reproduction output. The applied Ni—Fe—Nb—Co alloy thin film has the following characteristics: saturation magnetic flux density of 0.54 T, anisotropic magnetic field of 6.2 Oe, and magnetostriction of −.
The specific resistance is 4.2 × 10 −7 and 110 μΩ · cm. The bias angle and the reproduction output of the magnetoresistive head processed into a predetermined size were evaluated in the same manner as in Example 1. For comparison, Co is used as a soft magnetic thin film.
The same measurement was performed for a magnetoresistive head using a Ni-Fe-Nb alloy thin film to which no was added.
The characteristics of the Ni-Fe-Nb alloy thin film are that the saturation magnetic flux density is 0.41 T, the anisotropic magnetic field is 1.0 Oe, and the magnetostriction is +.
3.7 × 10 −7 , the specific resistance is almost the same as that of the present embodiment 108
It is μΩ · cm. The bias angle and the read output at a sense current of 10 mA were 45 degrees and 450 μV, respectively, in the magnetoresistive head using the Ni—Fe—Nb—Co alloy thin film, while the Ni—Fe—Nb alloy thin film was used. The head using the
It was V. The difference between these characteristics is that Ni-Fe-Nb
-Since the saturation magnetic flux density is higher in the Co-based alloy thin film,
It is considered that this is because the bias magnetic field applied to the magnetoresistive film is large.

【0019】実施例4 実施例3と同様に、軟磁性薄膜以外は実施例2と同じ構
成で、軟磁性薄膜のみ異なる組成のNi−Fe−Nb−
Co系合金薄膜を用いた。具体的には、飽和磁束密度,
異方性磁界,磁歪の特性を満たす範囲で、大きな比抵抗
を有するNi−Fe−Nb−Co系合金薄膜を適用した
もので、その特性は、飽和磁束密度が0.50T ,異方
性磁界が8.5Oe,磁歪が−5.2×10-7,比抵抗は
125μΩ・cmである。所定の大きさに加工した磁気抵
抗効果型ヘッドについて、実施例1と同様の方法でバイ
アス角度及び再生出力について評価を行った。比較のた
めに、軟磁性薄膜として本実施例とほぼ等しい飽和磁束
密度を有するNi−Fe−Nb系合金薄膜を用いた磁気
抵抗効果型ヘッドについても同様の測定を行った。な
お、Ni−Fe−Nb系合金薄膜の特性は、飽和磁束密
度が0.50T 、異方性磁界が1.7Oe 、磁歪が+
4.4×10-7、比抵抗は82.0μΩ・cmである。セン
ス電流10mAにおけるバイアス角度及び再生出力は、
Ni−Fe−Nb−Co系合金薄膜を用いた磁気抵抗効
果型ヘッドではそれぞれ40度及び480μVであった
のに対し、Ni−Fe−Nb系合金薄膜を用いたヘッド
ではそれぞれ38度及び400μVであった。これらの
特性の違いは、Ni−Fe−Nb−Co系合金薄膜の方
が比抵抗が大きいために、磁気抵抗効果膜に流れる電流
が多くなることによると考えられる。
Example 4 Similar to Example 3, Ni-Fe-Nb- having the same structure as Example 2 except for the soft magnetic thin film and having a different composition only in the soft magnetic thin film.
A Co-based alloy thin film was used. Specifically, the saturation magnetic flux density,
An Ni-Fe-Nb-Co alloy thin film having a large specific resistance is applied in a range satisfying the characteristics of anisotropic magnetic field and magnetostriction. The characteristics are that the saturation magnetic flux density is 0.50T, the anisotropic magnetic field is Is 8.5 Oe, magnetostriction is −5.2 × 10 −7 , and specific resistance is 125 μΩ · cm. The bias angle and the reproduction output of the magnetoresistive head processed into a predetermined size were evaluated in the same manner as in Example 1. For comparison, the same measurement was performed for a magnetoresistive head using a Ni—Fe—Nb alloy thin film having a saturation magnetic flux density almost equal to that of this embodiment as a soft magnetic thin film. The characteristics of the Ni-Fe-Nb alloy thin film are that the saturation magnetic flux density is 0.50 T, the anisotropic magnetic field is 1.7 Oe, and the magnetostriction is +.
The specific resistance is 4.4 × 10 −7 and 82.0 μΩ · cm. The bias angle and reproduction output at a sense current of 10 mA are
The magnetoresistive head using the Ni-Fe-Nb-Co alloy thin film has a temperature of 40 degrees and 480 μV, respectively, whereas the head using the Ni-Fe-Nb alloy thin film has a temperature of 38 degrees and 400 μV, respectively. there were. It is considered that the difference in these characteristics is due to the fact that the Ni—Fe—Nb—Co alloy thin film has a larger specific resistance, so that the current flowing through the magnetoresistive effect film increases.

【0020】[0020]

【発明の効果】本発明によれば、Ni−Fe系合金薄膜
にNb及びCoを添加することにより飽和磁束密度,異
方性磁界,磁歪及び比抵抗がMRヘッドに用いる軟磁性
薄膜の要求特性を満足する薄膜を容易に作成することが
でき、しかもこれらの特性を比較的容易に調整すること
ができる。従って、MRヘッドの構造によって最適な特
性のNi−Fe−Nb−Co系合金薄膜を用いることに
より、バルクハウゼンノイズがなく再生出力が大きいM
Rヘッドが得られる。
According to the present invention, the saturation magnetic flux density, anisotropic magnetic field, magnetostriction and specific resistance of Nd-Fe alloy thin film added with Nb and Co are required characteristics of the soft magnetic thin film used in the MR head. It is possible to easily form a thin film satisfying the above conditions, and it is possible to adjust these characteristics relatively easily. Therefore, by using a Ni-Fe-Nb-Co alloy thin film having optimum characteristics depending on the structure of the MR head, M with a large reproduction output without Barkhausen noise.
An R head is obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】バイアス角度のセンス電流依存性。FIG. 1 shows the sense current dependence of the bias angle.

【図2】本発明の一実施例の磁気抵抗効果型ヘッドの斜
視図。
FIG. 2 is a perspective view of a magnetoresistive head according to an embodiment of the present invention.

【図3】本発明の他の実施例の磁気抵抗効果型ヘッドの
斜視図。
FIG. 3 is a perspective view of a magnetoresistive head according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10…非磁性基板、11…下部シールド膜、12…上部
シールド膜、13,14…アルミナ絶縁膜、15…Ni
Fe膜、16…FeMn膜、17…磁気抵抗効果膜、1
8…非磁性導電性膜、19…軟磁性薄膜、20…保護
膜、21…電極、22…レジスト保護膜、23…NiO
膜、24…高抵抗薄膜。
10 ... Non-magnetic substrate, 11 ... Lower shield film, 12 ... Upper shield film, 13, 14 ... Alumina insulating film, 15 ... Ni
Fe film, 16 ... FeMn film, 17 ... Magnetoresistive film, 1
8 ... Nonmagnetic conductive film, 19 ... Soft magnetic thin film, 20 ... Protective film, 21 ... Electrode, 22 ... Resist protective film, 23 ... NiO
Membrane, 24 ... High resistance thin film.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】少なくとも磁気抵抗効果膜と、前記磁気抵
抗効果膜の近傍に位置し磁気分離膜によって前記磁気抵
抗効果膜と磁気的に分離された軟磁性薄膜と、前記磁気
抵抗効果膜に電流を流す電極を有する磁気抵抗効果型ヘ
ッドにおいて、前記軟磁性薄膜が重量で30〜90%の
Ni,5〜65%のFe,5〜15%のNb,0〜15
%のCoからなる合金薄膜であることを特徴とする磁気
抵抗効果型ヘッド。
1. A magnetoresistive effect film, a soft magnetic thin film located near the magnetoresistive effect film and magnetically separated from the magnetoresistive effect film by a magnetic separation film, and a current flowing through the magnetoresistive effect film. In a magnetoresistive head having an electrode for flowing, the soft magnetic thin film comprises 30 to 90% by weight of Ni, 5 to 65% of Fe, 5 to 15% of Nb, and 0 to 15 by weight.
% Magnetoresistive head, which is an alloy thin film made of Co.
【請求項2】請求項1において、前記合金薄膜はスパッ
タリング法あるいは蒸着法により作製した薄膜であるこ
とを特徴とする磁気抵抗効果型ヘッド。
2. The magnetoresistive head according to claim 1, wherein the alloy thin film is a thin film formed by a sputtering method or a vapor deposition method.
【請求項3】請求項1において、前記合金薄膜が0.5
T以上1.0T以下の飽和磁束密度を有することを特徴
とする磁気抵抗効果型ヘッド。
3. The alloy thin film according to claim 1, wherein the alloy thin film is 0.5.
A magnetoresistive head having a saturation magnetic flux density of T or more and 1.0 T or less.
【請求項4】請求項1において、前記合金薄膜が1Oe
以上10Oe以下の異方性磁界を有することを特徴とす
る磁気抵抗効果型ヘッド。
4. The alloy thin film according to claim 1, wherein the alloy thin film is 1 Oe.
A magnetoresistive head having an anisotropic magnetic field of 10 Oe or less.
【請求項5】請求項1において、前記合金薄膜が−1×
10-6から+1×10-6の範囲内の磁歪を有することを
特徴とする磁気抵抗効果型ヘッド。
5. The alloy thin film according to claim 1, wherein the alloy thin film is -1 ×.
A magnetoresistive head having a magnetostriction within the range of 10 -6 to + 1 × 10 -6 .
【請求項6】請求項1において、前記合金薄膜が0.5
T以上1.0T以下の飽和磁束密度を有し、1Oe以上
10Oe以下の異方性磁界を有し、−1×10-6から+
1×10-6の範囲内の磁歪を有することを特徴とする磁
気抵抗効果型ヘッド。
6. The alloy thin film according to claim 1, wherein the alloy thin film is 0.5.
It has a saturation magnetic flux density of T or more and 1.0 T or less, an anisotropic magnetic field of 1 Oe or more and 10 Oe or less, and from -1 × 10 -6 to +
A magnetoresistive head having a magnetostriction within the range of 1 × 10 −6 .
【請求項7】請求項1において、前記磁気分離膜が導電
性薄膜であり、前記合金薄膜が60μΩ・cm以上の比抵
抗を有することを特徴とする磁気抵抗効果型ヘッド。
7. The magnetoresistive head according to claim 1, wherein the magnetic separation film is a conductive thin film, and the alloy thin film has a specific resistance of 60 μΩ · cm or more.
JP24093893A 1993-09-28 1993-09-28 Magneto-resistance effect type head Pending JPH0798818A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24093893A JPH0798818A (en) 1993-09-28 1993-09-28 Magneto-resistance effect type head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24093893A JPH0798818A (en) 1993-09-28 1993-09-28 Magneto-resistance effect type head

Publications (1)

Publication Number Publication Date
JPH0798818A true JPH0798818A (en) 1995-04-11

Family

ID=17066883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24093893A Pending JPH0798818A (en) 1993-09-28 1993-09-28 Magneto-resistance effect type head

Country Status (1)

Country Link
JP (1) JPH0798818A (en)

Similar Documents

Publication Publication Date Title
US8149548B2 (en) Magnetic head and manufacturing method thereof
US6721147B2 (en) Longitudinally biased magnetoresistance effect magnetic head and magnetic reproducing apparatus
JPH10341048A (en) Spin valve type thin-film device
JPH0950613A (en) Magnetoresistive effect element and magnetic field detecting device
JP2001143223A (en) Spin valve thin film magnetic element and thin film magnetic head
US6867952B2 (en) Magnetic sensing element with ESD resistance improved by adjusting the lengths of antiferromagnetic layers and free layer in the height direction
JP3625336B2 (en) Magnetoresistive head
JP3734716B2 (en) Method for manufacturing magnetic sensing element
JPH0877519A (en) Magneto-resistive transducer
US6635366B2 (en) Spin valve thin film magnetic element and thin film magnetic head
JP2000215421A (en) Spin valve thin film magnetic element, thin film magnetic head, and production of spin valve thin film magnetic element
US6120920A (en) Magneto-resistive effect magnetic head
US6477020B1 (en) Magneto-resistive head and magnetic recording and reproducing apparatus
JP3730976B2 (en) Thin film magnetic head, head gimbal assembly, and hard disk drive
JPH0798818A (en) Magneto-resistance effect type head
JPH07182629A (en) Magnetic sensor
JP3096589B2 (en) Magnetoresistive head
JP2861714B2 (en) Magnetoresistive head and magnetic disk drive
JPH0774022A (en) Multilayer magnetoresistance-effect film and magnetic head
JP3764361B2 (en) Method for manufacturing magnetoresistive element
JPH07320235A (en) Magneto-resistance effect type head and its production
JP3083090B2 (en) Magnetoresistive sensor
JPH07118061B2 (en) Magnetoresistive head
JP2867416B2 (en) Magnetoresistive head
JP3384494B2 (en) Magnetoresistive material and magnetic field sensor using the same