JPH0798684B2 - Method for manufacturing high density SiC sintered body - Google Patents

Method for manufacturing high density SiC sintered body

Info

Publication number
JPH0798684B2
JPH0798684B2 JP1005871A JP587189A JPH0798684B2 JP H0798684 B2 JPH0798684 B2 JP H0798684B2 JP 1005871 A JP1005871 A JP 1005871A JP 587189 A JP587189 A JP 587189A JP H0798684 B2 JPH0798684 B2 JP H0798684B2
Authority
JP
Japan
Prior art keywords
sic
sintered body
powder
density
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1005871A
Other languages
Japanese (ja)
Other versions
JPH01308876A (en
Inventor
真司 川崎
雅晴 梶田
啓治 松廣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP1005871A priority Critical patent/JPH0798684B2/en
Publication of JPH01308876A publication Critical patent/JPH01308876A/en
Priority to DE1990614142 priority patent/DE69014142T2/en
Priority to EP90300461A priority patent/EP0383431B1/en
Priority to US07/899,159 priority patent/US5182059A/en
Publication of JPH0798684B2 publication Critical patent/JPH0798684B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は高強度かつ高密度のSiC焼結体を得るための製
造方法に関するものである。
TECHNICAL FIELD The present invention relates to a manufacturing method for obtaining a high-strength and high-density SiC sintered body.

(従来の技術) B,C添加物β−SiCからなる成形体を一次焼成した後HIP
処理により高密度SiC焼結体を得る方法において、一次
焼成温度が高いとSiC粒子が焼成終期に気孔を取り込ん
で数百ミクロンにわたって異常粒成長するため特性が劣
化するとともに、異常成長粒子内に取り込まれた気孔が
HIP処理により除去できず密度向上が困難になるという
問題があり、またこの異常粒成長を回避するため一次焼
成温度を下げると密度が十分に上がらず、開気孔が残存
し、HIP処理しても高密度化しないといった問題があっ
た。即ちHIP処理による高密度化のためには、一次焼成
温度範囲を狭い幅で厳密に制御し、一次焼成体の開気孔
を無くし、かつ残存する閉気孔を粒界に存在させる必要
があった。
(Prior art) HIP after primary firing of a compact made of B-C additive β-SiC
In the method of obtaining a high-density SiC sintered body by treatment, if the primary firing temperature is high, the SiC particles will take in pores at the end of firing and grow abnormally over several hundreds of microns, resulting in deterioration of properties and incorporation into abnormally grown particles. The pores
There is a problem that it is difficult to remove by HIP treatment and it is difficult to improve the density, and if the primary firing temperature is lowered to avoid this abnormal grain growth, the density does not rise sufficiently, open pores remain, and even after HIP treatment There was a problem that the density was not increased. That is, in order to increase the density by HIP treatment, it was necessary to strictly control the primary firing temperature range within a narrow width, eliminate open pores in the primary fired body, and allow the remaining closed pores to exist at the grain boundaries.

以上のような観点から、従来、B,C添加のSiCにおいて添
加剤組成範囲B:0.2〜0.5wt%、C:0.5〜8wt%、一次焼成
条件1950〜2150℃、HIP処理条件1850〜1980℃、100気圧
以上と厳しく限定することにより、99.3%以上の高密度
かつ70kg/mm2以上の高強度を有するSiC焼結体を得る方
法が、特開昭60−255672号公報において知られている。
From the above viewpoints, conventionally, in B, C-added SiC, additive composition range B: 0.2 to 0.5 wt%, C: 0.5 to 8 wt%, primary firing conditions 1950 to 2150 ° C., HIP treatment conditions 1850 to 1980 ° C. A method for obtaining a SiC sintered body having a high density of 99.3% or more and a high strength of 70 kg / mm 2 or more by strictly limiting the pressure to 100 atm or more is known in JP-A-60-255672. .

また、B,C添加β−SiCにβ−SiCの2倍以上の粒径から
なるα−SiCを0.05〜5wt%添加することにより、異常粒
成長を効果的に抑制し、添加剤組成及び焼成条件の比較
的広い範囲内で板状α−SiCおよびそれより細かい粒状
β−SiC粒子との複合構造を有し、かつ気孔が粒界に存
在するSiC焼結体を常圧で得る方法が、特開昭52−6716
号公報において知られている。
Further, by adding 0.05 to 5 wt% of α-SiC having a grain size more than twice that of β-SiC to B, C-added β-SiC, the abnormal grain growth is effectively suppressed, the additive composition and firing are performed. A method of obtaining a SiC sintered body having a composite structure with plate-like α-SiC and finer granular β-SiC particles within a relatively wide range of conditions and having pores at grain boundaries under normal pressure, JP-A-52-6716
Known from the publication.

(発明が解決しようとする課題) しかしながら、特開昭60−255672号公報で開示された技
術では、組成範囲、一次焼成条件、HIP処理条件が狭い
ため制御が困難であり、特に大型寸法製品等を工業的に
量産する場合、均質な焼結体を得ることが困難であるこ
と及び99.3%以上と高密度のわりに強度70kg/mm2とあま
り高くないといった問題があった。
(Problems to be solved by the invention) However, in the technique disclosed in Japanese Patent Laid-Open No. 60-255672, control is difficult because the composition range, primary firing conditions, and HIP treatment conditions are narrow, and particularly large-sized products, etc. In the case of industrial mass production, there were problems that it was difficult to obtain a homogenous sintered body and that the strength was not as high as 70 kg / mm 2 despite the high density of 99.3% or more.

また、特開昭52−6716号公報で開示された技術では、各
種製造条件の範囲は広く、かつ高強度化高靭性化におい
て好ましいと考えられるアスペクト比の大きい板状α−
SiC粒子およびそれより細かい粒状β−SiC粒子との複合
構造を有しているが、β−SiC粉末を単独で使用したも
のよりも密度が低く、近年要望が高くなっている高密
度、高強度、高靭性の焼結体を得ることができなかっ
た。また、この常圧焼結体は密度か低く、存在する気孔
が開気孔であるためHIP処理による高密度化には適して
いなかった。
Further, in the technique disclosed in Japanese Patent Laid-Open No. 52-6716, a wide range of various manufacturing conditions and a large aspect ratio α-like plate considered to be preferable for high strength and high toughness
It has a composite structure with SiC particles and finer β-SiC particles, but its density is lower than that of β-SiC powder used alone, and the demand for high density and high strength in recent years is high. However, it was not possible to obtain a high toughness sintered body. Further, this atmospheric pressure sintered body has a low density, and the existing pores are open pores, so that it was not suitable for densification by HIP treatment.

本発明の目的は上述した課題を解決し、各種製造条件の
制御範囲が広く、容易かつ安定して高密度かつ高強度Si
C焼結体を得ることができる製造方法を提供しようとす
るものである。
The object of the present invention is to solve the above-mentioned problems, to provide a wide control range of various manufacturing conditions, to easily and stably provide high density and high strength Si.
An object of the present invention is to provide a manufacturing method capable of obtaining a C sintered body.

(課題を解決するための手段) 本発明の高密度SiC焼結体の製造方法は、SiC粉末と焼結
助剤からなる成形体を焼成後、熱間静水圧プレス法によ
り高密度SiC焼結体を得る方法において、3C,2Hポリタイ
プのうち少なくとも一種類からなるSiC粉末95.0〜99.9w
t%および6H,4H,15Rポリタイプのうち少なくとも一種類
からなり、平均粒径が3C,2Hポリタイプのものの2倍未
満であるSiC粉末5.0〜0.1wt%とのSiC混合粉末90.0〜9
9.8wt%、硼素または硼素を含有する化合物を硼素に換
算して0.1〜5.0wt%、炭素または炭素を生成する有機化
合物を炭素に換算して0.1〜5.0wt%からなる調合粉末を
混合成形し、次いで真空中または不活性雰囲気中1900〜
2300℃の温度下で焼成した後、不活性雰囲気中1800〜22
00℃の温度、100気圧以上の圧力下で熱間静水圧プレス
することを特徴とするものである。
(Means for Solving the Problem) The method for producing a high-density SiC sintered body of the present invention is a method for producing a high-density SiC sintered body by hot isostatic pressing after firing a compact made of SiC powder and a sintering aid. In the method of obtaining a body, SiC powder consisting of at least one of 3C, 2H polytype 95.0-99.9w
5% to 6%, 6H, 4H, 15R polytype, and an average particle size of less than twice that of 3C, 2H polytype SiC powder 5.0-0.1wt% and SiC mixed powder 90.0-9
9.8 wt%, boron or a compound containing boron is converted to boron 0.1 to 5.0 wt%, carbon or an organic compound that produces carbon is converted to carbon 0.1 to 5.0 wt% to prepare a mixed powder. , Then in vacuum or in inert atmosphere 1900 ~
1800 ~ 22 in an inert atmosphere after firing at a temperature of 2300 ℃
It is characterized by hot isostatic pressing at a temperature of 00 ° C and a pressure of 100 atm or more.

また、上記の工程によって製造されるSiC焼結体をより
高密度化するために、調合粉末中にさらにMgOを0.1〜5.
0wt%添加することを特徴とするものである。
Further, in order to further densify the SiC sintered body produced by the above process, 0.1 to 5.
The feature is that 0 wt% is added.

(作 用) 上述した構成において、限定した組成及び粒度のSiC粉
末を使用することにより、アスペクト比の大きい板状α
−SiC粒子およびそれより細かい粒状β−SiCとの複合構
造を有し、かつ開気孔が無く、残存した閉気孔が粒界に
存在する比較的密度の高い一次焼成体を得ることができ
るため、HIP処理により上記複合構造を維持し、かつ98
%以上の高密度、高強度SiC焼結体を容易かつ安定に得
ることができる。すなわち、本発明によれば、従来HIP
処理による高密度化が不可能と考えられていたアスペク
ト比の大きい板状のα−SiC粒子およびそれより細かい
粒状β−SiC粒子との複合構造を有する高密度SiC焼結体
をHIP処理により得ることが可能となった。また、所定
組成および粒度のSiC粉末の使用とHIP処理を組合せた相
乗効果を発現でき得る本発明の製造方法によれば、上記
の焼結体を得るための組成範囲、一次焼成条件、HIP処
理条件を広くすることができ工業的に極めて利用価値が
高い。
(Operation) In the above-mentioned configuration, by using SiC powder with a limited composition and grain size, a plate-shaped α with a large aspect ratio can be obtained.
-SiC particles and a finer granular β-SiC has a composite structure, and there is no open pores, it is possible to obtain a relatively dense primary fired body having residual closed pores at the grain boundaries, HIP treatment maintains the above composite structure and
%, High density, high strength SiC sintered body can be easily and stably obtained. That is, according to the present invention, the conventional HIP
Obtained by HIP treatment a high-density SiC sinter having a composite structure of plate-like α-SiC particles with a large aspect ratio and finer granular β-SiC particles, which was considered impossible to densify by treatment It has become possible. Further, according to the production method of the present invention, which can express the synergistic effect of combining the use of SiC powder having a predetermined composition and particle size and HIP treatment, the composition range for obtaining the above-mentioned sintered body, the primary firing condition, the HIP treatment The conditions can be widened and the value is extremely high industrially.

さらに、調合粉末中にMgOを添加すると、一次焼結体に
残存する気孔の分布および形状が制御され、ほぼ理論密
度(3.21g/cm3)まで緻密化が可能となる。MgOは上述し
た構成において限定した組成および粒度のSiC粉末を使
用することにより、その効果を生じる。MgOは板状α−S
iC粒子の成長を促進するため、成形体内に均一に分散さ
れた6H,4H,15Rポリタイプのうち少なくとも一種類のSiC
粒子が核となって形成される板状α−SiC粒子は一次焼
結体内で均一に成長する。その結果、MgOを添加した一
次焼結体の気孔は粒界に均一に分散され、板状粒子に囲
まれた気孔の形状は鋭いものとなる。MgOは焼結体の微
構造制御に作用するが、焼成中に蒸発するため一次焼結
体中にはほとんど残らない。この一次焼結体の微構造が
SiCのHIP処理による緻密化の効果を向上させ、ほぼ理論
密度を有する高密度SiC焼結体が得られることを見出し
た。
Furthermore, when MgO is added to the compounded powder, the distribution and shape of the pores remaining in the primary sintered body are controlled, and it becomes possible to densify to almost the theoretical density (3.21 g / cm 3 ). MgO produces its effect by using a SiC powder with a limited composition and particle size in the configuration described above. MgO is a plate α-S
SiC of at least one of 6H, 4H, 15R polytypes evenly dispersed in the compact to promote iC particle growth.
The plate-shaped α-SiC particles formed by the particles serving as nuclei grow uniformly in the primary sintered body. As a result, the pores of the MgO-added primary sintered body are uniformly dispersed in the grain boundaries, and the shape of the pores surrounded by the plate-like particles becomes sharp. MgO acts to control the microstructure of the sintered body, but since it evaporates during firing, it hardly remains in the primary sintered body. The microstructure of this primary sintered body
It was found that the effect of densification of SiC by HIP treatment is improved and a high density SiC sintered body having almost the theoretical density can be obtained.

3C,2Hポリタイプのうち少なくとも一種からなるSiC粉末
は実質的に2000℃以下の温度で合成される低温型粉末で
あり、製造方法として、シリカ還元炭化法等が知られて
いる。6H,4H,15Rポリタイプのうち少なくとも一種類か
らなるSiC粉末は実質的に2000℃以上の温度で合成され
る高温型粉末であり、製造方法としてアチソン法が一般
的である。また、3C,2Hポリタイプのものを2000℃以上
の高温で処理することにより、合成することもできる。
The SiC powder consisting of at least one of the 3C and 2H polytypes is a low temperature type powder that is synthesized substantially at a temperature of 2000 ° C. or lower, and a silica reduction carbonization method or the like is known as a manufacturing method. The SiC powder consisting of at least one of the 6H, 4H, and 15R polytypes is a high-temperature type powder that is substantially synthesized at a temperature of 2000 ° C. or higher, and the Acheson method is generally used as a manufacturing method. It can also be synthesized by treating a 3C, 2H polytype at a high temperature of 2000 ° C. or higher.

ここで、添加すべき6H,4H,15Rポリタイプのうち少なく
とも一種類からなるSiC粉末の添加量を5.0〜0.1wt%と
限定したのは、5.0wt%を越えると板状α−SiC粒子のア
スペクト比が小さくなり特性が低下するとともに、0.1w
t%未満では添加効果がなくなるためである。
Here, the addition amount of the SiC powder consisting of at least one of 6H, 4H, and 15R polytypes to be added is limited to 5.0 to 0.1 wt%, because the plate-shaped α-SiC particles are more than 5.0 wt%. As the aspect ratio becomes smaller and the characteristics deteriorate, 0.1w
This is because if it is less than t%, the effect of addition is lost.

また、6H,4H,15Rポリタイプのうち少なくとも一種類か
らなるSiC粉末の粒径を、3C,2Hポリタイプのものの2倍
未満と限定したのは、2倍以上になると一次焼成中に開
気孔が多量に残存するためHIP処理しても高密度化しな
いからである。
Moreover, the particle size of the SiC powder consisting of at least one of the 6H, 4H, 15R polytypes was limited to less than twice that of the 3C, 2H polytypes because the open porosity during the primary firing was doubled or more. Because a large amount remains, it does not densify even after HIP treatment.

添加剤としての硼素の量を0.1〜5.0wt%と限定したの
は、0.1wt%未満では添加する効果が認められず緻密化
が不十分となるとともに、5.0wt%を越えると硼素が粒
界に多量に残り高温特性が劣化するためである。また、
添加剤としての炭素の量を0.1〜5.0wt%と限定したの
は、0.1wt%未満ではSiC表面のSiO2膜を除去できず緻密
化が不十分であるとともに、5.0wt%を越えると焼成体
中にfree−Cが多量に残り特性が劣化するためである。
The amount of boron as an additive is limited to 0.1 to 5.0 wt% because if it is less than 0.1 wt%, the effect of the addition is not recognized and the densification becomes insufficient. This is because a large amount remains and the high temperature characteristics deteriorate. Also,
The amount of carbon as an additive is limited to 0.1 to 5.0 wt% because if it is less than 0.1 wt%, the SiO 2 film on the SiC surface cannot be removed and the densification is insufficient. This is because a large amount of free-C remains in the body and the characteristics deteriorate.

MgOの量を0.1〜5.0wt%と限定したのは0.1wt%未満では
添加する効果が認められず、MgOを添加しない場合と比
べてHIP処理後の焼結体特性に変化を生じない。一方、
5.0wt%を越えると一次焼結体が十分に緻密化せず、閉
気孔化しないため、HIP処理の効果が得られない。
The reason for limiting the amount of MgO to 0.1-5.0 wt% is that the effect of addition is not observed below 0.1 wt%, and there is no change in the properties of the sintered body after HIP treatment as compared with the case where MgO is not added. on the other hand,
If it exceeds 5.0 wt%, the primary sintered body will not be sufficiently densified and will not be closed porosity, so that the effect of HIP treatment cannot be obtained.

さらに、HIP処理前の一次焼成温度を1900〜2300℃と限
定したのは、1900℃未満だと開気孔が残存しHIP処理し
ても高密度化しないとともに、2300℃を越えるとSiCの
分解により表面が粗になるためである。また、HIP処理
における温度を1800〜2200℃、100気圧以上と限定した
のは、1800℃未満だと高密度化が不十分であるととも
に、2200℃を越えるとコストがかかりすぎて無意味にな
り、さらに100気圧未満では高密度化不十分であるため
である。さらにまた、添加する6H,4H,15Rポリタイプか
らなるSiC粉末の粒径が3C,2HポリタイプからなるSiC粉
末の粒径が同程度であると、各SiC粉末相互間の混合が
均一にできるためより好ましい。
Furthermore, the primary firing temperature before HIP treatment was limited to 1900 to 2300 ° C because open pores remained below 1900 ° C and densification did not occur even after HIP treatment, and when it exceeded 2300 ° C due to the decomposition of SiC. This is because the surface becomes rough. In addition, the temperature in the HIP treatment was limited to 1800 to 2200 ° C and 100 atm or more. If the temperature is less than 1800 ° C, the densification is insufficient, and if it exceeds 2200 ° C, it becomes too costly and meaningless. This is because if the pressure is less than 100 atm, the densification is insufficient. Furthermore, if the particle size of the 6H, 4H, 15R polytype SiC powder to be added is about the same as the particle size of the 3C, 2H polytype SiC powder, the mixing among the SiC powders can be made uniform. Therefore, it is more preferable.

(実施例) 第1図は本発明製造方法の製造工程の一例を示すフロー
チャートである。まず、アチソン法により作製した平均
粒径5μm以下の6H,4H,15Rポリタイプのうち少なくと
も一種類からなる高温型のSiC粉末と、シリカ還元炭化
法により作製した同じく平均粒径5μm以下の3C,2Hポ
リタイプのうち少なくとも一種類からなる低温型のSiC
粉末とを準備するとともに、添加剤としてB,CおよびMgO
を準備する。各SiC粉末の化学組成を第1表に示す。
(Example) FIG. 1 is a flow chart showing an example of a manufacturing process of the manufacturing method of the present invention. First, a high temperature type SiC powder made of at least one of 6H, 4H, 15R polytypes having an average particle size of 5 μm or less produced by the Acheson method and 3C having an average particle size of 5 μm or less produced by a silica reduction carbonization method, Low temperature type SiC consisting of at least one of 2H polytypes
Prepare powder and B, C and MgO as additives
To prepare. Table 1 shows the chemical composition of each SiC powder.

次に、準備した各SiC原料粉末およびB4C,CおよびMgO添
加剤の所定量を、イソプロピルアルコールを使用した湿
式ボールミルにより粉砕・混合する。粉砕・混合後の原
料は一旦乾燥した後、造粒する。その後、造粒した粉末
を予備成形し、さらに静水圧プレスにより所定形状に成
形する。次に、1900〜2300℃の温度下の真空中または不
活性雰囲気中で一次焼成した後、不活性雰囲気中1800〜
2200℃の温度、100気圧以上の圧力下で熱間静水圧プレ
ス(HIP)処理を実施して、SiC焼結体を得ている。
Next, the prepared SiC raw material powders and predetermined amounts of B 4 C, C and MgO additives are pulverized and mixed by a wet ball mill using isopropyl alcohol. The raw materials after crushing and mixing are once dried and then granulated. Then, the granulated powder is preformed, and is further formed into a predetermined shape by isostatic pressing. Next, after primary baking in a vacuum or an inert atmosphere at a temperature of 1900 to 2300 ° C, in an inert atmosphere of 1800 to
A hot isostatic pressing (HIP) process is performed at a temperature of 2200 ° C and a pressure of 100 atm or more to obtain a SiC sintered body.

以下、実際の例について説明する。Hereinafter, an actual example will be described.

実施例 平均粒径0.42μmの6H,4H,15Rポリタイプのうち少なく
とも一種類からなるSiC原料粉末、平均粒径0.45μmの3
C,2Hポリタイプのうち少なくとも一種類からなるSiC原
料粉末、添加剤としてB4C(炭化硼素)、C(カーボン
ブラック)およびMgO(酸化マグネシウム)を第2表に
示す割合でイソプロピルアルコールを使用した湿式ボー
ルミルで混合・乾燥後造粒し、さらに予備成形後3ton/c
m2の静水圧プレスにより60×60×6mmの角板を作製し
た。次に、作製した角板を真空中第2表に示す条件で一
次焼成した。一次焼成後の角板に対して、さらに第2表
に示す条件でHIP処理を行って、それぞれ本発明実施例
および比較例の焼結体を得た。比較例5,6では6H,4H,15R
のポリタイプのSiC原料粉末として、平均粒径1.5μmの
ものを用いた。
Example SiC raw material powder consisting of at least one of 6H, 4H, 15R polytype having an average particle size of 0.42 μm, 3 having an average particle size of 0.45 μm
SiC raw material powder consisting of at least one of C and 2H polytypes, and B 4 C (boron carbide), C (carbon black) and MgO (magnesium oxide) as additives in isopropyl alcohol at the ratio shown in Table 2. 3 ton / c after pre-molding after mixing and drying in a wet ball mill
A square plate of 60 × 60 × 6 mm was prepared by a hydrostatic press of m 2 . Next, the produced square plate was primarily fired in vacuum under the conditions shown in Table 2. The square plate after the primary firing was further subjected to HIP treatment under the conditions shown in Table 2 to obtain sintered bodies of Examples of the present invention and Comparative Examples, respectively. 6H, 4H, 15R in Comparative Examples 5 and 6
As the poly-type SiC raw material powder, a powder having an average particle size of 1.5 μm was used.

得られたそれぞれHIP処理前後の焼結体に対して、アル
キメデス法により密度及び開気孔率を測定して緻密性を
評価するとともに、室温でJISR−1601(ファインセラミ
ックスの曲げ強さ試験法)に従った四点曲げ試験を実施
して室温強度を評価した。さらに、室温におけるシュブ
ロンノッチ法によりそれぞれのKICを求めて靭性を評価
するとともに、研磨−エッチング面の顕微鏡観察により
異常粒成長の有無を調べた。結果を第2表に示す。
For each of the obtained sintered bodies before and after HIP treatment, the density and open porosity were measured by the Archimedes method to evaluate the denseness, and JIS R-1601 (bending strength test method for fine ceramics) was used at room temperature. A four-point bending test was followed to evaluate room temperature strength. Furthermore, the toughness was evaluated by obtaining each K IC by the chevron notch method at room temperature, and the presence or absence of abnormal grain growth was examined by microscopic observation of the polished-etched surface. The results are shown in Table 2.

第2表の結果から明らかなとおり、6H,4H,15RからなるS
iC粉末の量が0.05wt%未満の場合(比較例1,2)、一次
焼成体中にSiCの異常粒成長が生じ、HIPによる高密度化
が不十分となるとともに強度、KICが低下する。6H,4H,1
5RからなるSiC粉末の量が5.0wt%を越える場合(比較例
3,4)、一次焼成体中の異常粒成長は生じないが、α−S
iC粒子のアスペクト比が小さくなり、強度、KICが低い
値となる。6H,4H,15RからなるSiC粉末の平均粒径が3C,2
HからなるSiC粉末のものの2倍以上の場合(比較例5,
6)、一次焼成体の密度が小さく、かつ開気孔が多量に
残存するため、HIP処理しても高密度化しない。B4Cの添
加量が0.1wt%未満(比較例7)、Cの添加量が0.1wt%
未満(比較例8)、一次焼成温度が1900℃未満(比較例
9)の場合、一次焼成体の密度が低く、かつ開気孔が多
量に残存するため、HIP処理しても高密度化しない。HIP
処理温度が1800℃未満(比較例10)、HIP処理圧力が100
気圧未満(比較例11)の場合、HIP処理による高密度化
が不十分となり、強度、KICが低い値となる。以上よ
り、本発明の範囲を満足する実施例1〜9は本発明の範
囲を満足しない比較例1〜11と比べて高密度かつ高強度
であるとともに、高いKIC値を示し靭性も向上している
ことがわかる。
As is clear from the results in Table 2, S consisting of 6H, 4H, 15R
When the amount of iC powder is less than 0.05 wt% (Comparative Examples 1 and 2), abnormal grain growth of SiC occurs in the primary fired body, the densification by HIP becomes insufficient, and the strength and K IC decrease. . 6H, 4H, 1
When the amount of 5R SiC powder exceeds 5.0wt% (Comparative example
3,4), abnormal grain growth does not occur in the primary fired body, but α-S
The aspect ratio of iC particles becomes small, and the strength and K IC become low. The average particle size of SiC powder consisting of 6H, 4H, 15R is 3C, 2
When the amount is more than twice that of SiC powder made of H (Comparative Example 5,
6), the density of the primary fired body is small and a large number of open pores remain, so the density does not increase even after HIP treatment. B 4 C addition amount is less than 0.1 wt% (Comparative Example 7), C addition amount is 0.1 wt%
When the temperature is less than (Comparative Example 8) and the primary firing temperature is less than 1900 ° C. (Comparative Example 9), the density of the primary fired body is low, and a large number of open pores remain, so that the HIP treatment does not increase the density. HIP
Treatment temperature is less than 1800 ℃ (Comparative example 10), HIP treatment pressure is 100
When the pressure is lower than the atmospheric pressure (Comparative Example 11), the densification by HIP treatment is insufficient, and the strength and K IC are low. From the above, Examples 1 to 9 satisfying the range of the present invention have higher density and higher strength than Comparative Examples 1 to 11 not satisfying the range of the present invention, and exhibit a high K IC value to improve toughness. You can see that

また、MgOを添加した場合、HIP処理後の焼結体MgOを添
加しない場合に比べ、高密度化、高強度化していること
がわかる(実施例10〜13)。しかし、MgOの添加が5.0wt
%を越えると一次焼結体の密度が低く、かつ開気孔が多
量に残存するため、HIP処理しても高密度化しない(比
較例12)。
Further, it is understood that when MgO is added, the density and strength are increased as compared with the case where the sintered body MgO after HIP treatment is not added (Examples 10 to 13). However, the addition of MgO was 5.0wt
If it exceeds%, the density of the primary sintered body is low and a large amount of open pores remain, so that the density does not increase even after HIP treatment (Comparative Example 12).

(発明の効果) 以上詳細に説明したところから明らかなように、本発明
の高密度SiC焼結体の製造方法によれば、所定のSiC混合
粉末を一次焼成後HIP処理することにより、広い組成範
囲、一次焼成条件、HIP処理条件で容易かつ安定して高
密度SiC焼結体を得ることができる。また、本発明によ
り得られたSiC焼結体はα−SiC,β−SiC単独のものより
も高密度化し、かつアスペクト比の大きい板状α−SiC
およびそれより細かい粒状β−SiC粒子との複合構造を
有するため機械的特性も高い。
(Effect of the Invention) As is clear from the above description in detail, according to the method for producing a high-density SiC sintered body of the present invention, a predetermined composition of SiC mixed powder is subjected to HIP treatment after primary firing to obtain a wide composition. It is possible to easily and stably obtain a high-density SiC sintered body under the range, primary firing conditions, and HIP treatment conditions. Further, the SiC sintered body obtained by the present invention has a higher density than that of α-SiC, β-SiC alone, and has a large aspect ratio of plate-shaped α-SiC.
Since it has a composite structure with finer β-SiC particles, the mechanical properties are also high.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明製造方法の製造工程の一例を示すフロー
チャートである。
FIG. 1 is a flow chart showing an example of the manufacturing process of the manufacturing method of the present invention.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】SiC粉末と焼結助剤からなる成形体を焼成
後、熱間静水圧プレス法により高密度SiC焼結体を得る
方法において、3C,2Hポリタイプのうち少なくとも一種
類からなるSiC粉末95.0〜99.9wt%および6H,4H,15Rポリ
タイプのうち少なくとも一種類からなり、平均粒径が3
C,2Hポリタイプのものの2倍未満であるSiC粉末5.0〜0.
1wt%とのSiC混合粉末90.0〜99.8wt%、硼素または硼素
を含有する化合物を硼素に換算して0.1〜5.0wt%、炭素
または炭素を生成する有機化合物を炭素に換算して0.1
〜5.0wt%からなる調合粉末を混合成形し、次いで真空
中または不活性雰囲気中1900〜2300℃の温度下で焼成し
た後、不活性雰囲気中1800〜2200℃の温度、100気圧以
上の圧力下で熱間静水圧プレスすることを特徴とする高
密度SiC焼結体の製造方法。
1. A method for obtaining a high-density SiC sintered body by hot isostatic pressing after firing a compact made of SiC powder and a sintering aid, which comprises at least one of 3C and 2H polytypes. Made of at least one of SiC powder 95.0-99.9wt% and 6H, 4H, 15R polytype with an average particle size of 3
SiC powder 5.0 to 0, which is less than twice that of C, 2H polytype.
SiC mixed powder with 1wt% 90.0-99.8wt%, boron or a compound containing boron is converted to boron 0.1-5.0wt%, carbon or an organic compound that produces carbon is converted to carbon 0.1.
~ 5.0wt% compounded powder is mixed and molded, then fired in vacuum or in inert atmosphere at temperature of 1900 ~ 2300 ℃, then in inert atmosphere at temperature of 1800 ~ 2200 ℃, under pressure of 100 atm or more. A method for producing a high-density SiC sintered body, which comprises hot isostatic pressing at.
【請求項2】0.1〜5.0wt%のMgOを含有する調合粉末を
用いる請求項1記載の高密度SiC焼結体の製造方法。
2. The method for producing a high-density SiC sintered body according to claim 1, wherein a compounded powder containing 0.1 to 5.0 wt% of MgO is used.
JP1005871A 1988-01-19 1989-01-17 Method for manufacturing high density SiC sintered body Expired - Fee Related JPH0798684B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP1005871A JPH0798684B2 (en) 1988-01-19 1989-01-17 Method for manufacturing high density SiC sintered body
DE1990614142 DE69014142T2 (en) 1989-01-17 1990-01-17 Process for producing high-density silicon carbide sintered bodies.
EP90300461A EP0383431B1 (en) 1989-01-17 1990-01-17 Process for producing high density silicon carbide sintered bodies
US07/899,159 US5182059A (en) 1989-01-17 1992-06-15 Process for producing high density SiC sintered bodies

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP758188 1988-01-19
JP63-7581 1988-01-19
JP1005871A JPH0798684B2 (en) 1988-01-19 1989-01-17 Method for manufacturing high density SiC sintered body

Publications (2)

Publication Number Publication Date
JPH01308876A JPH01308876A (en) 1989-12-13
JPH0798684B2 true JPH0798684B2 (en) 1995-10-25

Family

ID=26339887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1005871A Expired - Fee Related JPH0798684B2 (en) 1988-01-19 1989-01-17 Method for manufacturing high density SiC sintered body

Country Status (1)

Country Link
JP (1) JPH0798684B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5270554A (en) * 1991-06-14 1993-12-14 Cree Research, Inc. High power high frequency metal-semiconductor field-effect transistor formed in silicon carbide
JP2001247367A (en) * 2000-03-03 2001-09-11 Tokai Konetsu Kogyo Co Ltd Silicon carbide sintered compact and method for producing the same
US6686616B1 (en) 2000-05-10 2004-02-03 Cree, Inc. Silicon carbide metal-semiconductor field effect transistors
US6906350B2 (en) 2001-10-24 2005-06-14 Cree, Inc. Delta doped silicon carbide metal-semiconductor field effect transistors having a gate disposed in a double recess structure
US6956239B2 (en) 2002-11-26 2005-10-18 Cree, Inc. Transistors having buried p-type layers beneath the source region
US7348612B2 (en) 2004-10-29 2008-03-25 Cree, Inc. Metal-semiconductor field effect transistors (MESFETs) having drains coupled to the substrate and methods of fabricating the same
US7265399B2 (en) 2004-10-29 2007-09-04 Cree, Inc. Asymetric layout structures for transistors and methods of fabricating the same
US7326962B2 (en) 2004-12-15 2008-02-05 Cree, Inc. Transistors having buried N-type and P-type regions beneath the source region and methods of fabricating the same
US8203185B2 (en) 2005-06-21 2012-06-19 Cree, Inc. Semiconductor devices having varying electrode widths to provide non-uniform gate pitches and related methods
US7402844B2 (en) 2005-11-29 2008-07-22 Cree, Inc. Metal semiconductor field effect transistors (MESFETS) having channels of varying thicknesses and related methods
JP4863904B2 (en) * 2006-03-31 2012-01-25 イビデン株式会社 Honeycomb structure and manufacturing method thereof
US7646043B2 (en) 2006-09-28 2010-01-12 Cree, Inc. Transistors having buried p-type layers coupled to the gate
NO335994B1 (en) * 2011-10-13 2015-04-13 Saint Gobain Ceramic Mat As Process for producing grains useful for the preparation of a silicon carbide-based sintered product, composite grains prepared by the process, and use of the grains.

Also Published As

Publication number Publication date
JPH01308876A (en) 1989-12-13

Similar Documents

Publication Publication Date Title
US4692418A (en) Sintered silicon carbide/carbon composite ceramic body having fine microstructure
EP0572484B1 (en) A dense, self-reinforced silicon nitride ceramic prepared by pressureless or low pressure gas sintering
EP0094591A1 (en) Polycrystalline, virtually pore-free sintered articles of alpha-silicon carbide, boron carbide and free carbon, and process for producting it
US5182059A (en) Process for producing high density SiC sintered bodies
JPH0798684B2 (en) Method for manufacturing high density SiC sintered body
KR910002578B1 (en) Method for producing a high density sintered body of silicon carbide
KR900007840B1 (en) Method for producing silicon carbide sinteringbody
US5326732A (en) Carbon-silicon carbide composite material and method for the preparation thereof
SE438849B (en) PROCEDURES FOR THE PREPARATION OF SILICON NITRIDE BASED MATERIALS
EP0178753B1 (en) Process for producing a sintered silicon carbide/carbon composite ceramic body having ultrafine grain microstructure
US5785922A (en) Method for producing composite sintered body of silicon carbide and silicon nitride
KR900005510B1 (en) Method for producing siliconcarbide-sinteringbody
JP2507480B2 (en) SiC-Al Lower 2 O Lower 3 Composite Sintered Body and Manufacturing Method Thereof
KR102555662B1 (en) Method for Preparing Silicon Nitride Sintered Body and The Silicon Nitride Sintered Body Prepared by The Same
JP2000256066A (en) Silicon nitride-base sintered compact, its production and wear resistant member using same
Rogers et al. Silicon carbide and silicon nitride structural ceramics derived from a preceramic polymer binder
EP0383431B1 (en) Process for producing high density silicon carbide sintered bodies
JPH0867568A (en) Silicon carbide/silicon nitride composite material and production thereof
JP3137405B2 (en) Manufacturing method of silicon nitride based ceramics
JP3112286B2 (en) Manufacturing method of dense machinable ceramics
JP3479656B2 (en) Highly reliable silicon nitride sintered body and method for producing the same
JPH02229767A (en) Process for sintered molding having controlled grain size
JPH0517210A (en) Production of alumina-based composite sintered body and the sintered body
JPH0461828B2 (en)
JP2694368B2 (en) Method for producing silicon nitride based sintered body

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees