JPH0797940A - Controller of engine - Google Patents

Controller of engine

Info

Publication number
JPH0797940A
JPH0797940A JP26823693A JP26823693A JPH0797940A JP H0797940 A JPH0797940 A JP H0797940A JP 26823693 A JP26823693 A JP 26823693A JP 26823693 A JP26823693 A JP 26823693A JP H0797940 A JPH0797940 A JP H0797940A
Authority
JP
Japan
Prior art keywords
signal
sensor
drive control
engine
advance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26823693A
Other languages
Japanese (ja)
Other versions
JP3297890B2 (en
Inventor
Makoto Shimizu
良 清水
Kunikimi Minamitani
邦公 南谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP26823693A priority Critical patent/JP3297890B2/en
Publication of JPH0797940A publication Critical patent/JPH0797940A/en
Application granted granted Critical
Publication of JP3297890B2 publication Critical patent/JP3297890B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)
  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To prevent extension of a signal minute fluctuation component by the advance compensation when the detected signal by a sensor or the drive control signal to a driving means are processed by advance compensation so as to compensate for the response delay of the sensor in an engine control system or the response delay of a control system driving means such as an actuator. CONSTITUTION:Annealing treatments are performed in order to eliminate a minute fluctuation component mingled in the detected signal prior to the advance compensation processing for compensating for the response delay of an air flow sensor 7. And the fuel injection amount is determined by applying various kinds of corrections to the basic injection amount based on an intake air amount signal after being advance-compensated and an engine speed signal of an engine 1. Moreover, when the advance compensation is performed to the drive control signal in order to compensate for the response delay of an actuator 11 in the control of a bypass valve 12 of the boost pressure control, annealing treatments are similarly performed prior to the advance conpensation processing.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、エンジンの制御装置、
特に、エンジン制御系におけるセンサからの検出信号若
しくは駆動手段への駆動制御信号に対し応答遅れを補償
する進み補償を加えるようにしたエンジンの制御装置に
関する。
BACKGROUND OF THE INVENTION The present invention relates to an engine control device,
In particular, the present invention relates to an engine control device in which advance compensation for compensating a response delay is added to a detection signal from a sensor in an engine control system or a drive control signal to a drive means.

【0002】[0002]

【従来の技術】エンジンの燃料噴射量制御とか点火時期
制御において、エンジンの運転状態を検出するエアフロ
ーセンサ等のセンサの応答遅れを補償するため、センサ
の有する応答特性に対応する関数を記憶設定し、その記
憶された関数に基づきセンサ出力を逆変換して応答遅れ
を補償した検出信号を形成する進み補償処理を行うよう
にしたものが、例えば特開昭59−176450号公報
に記載されているように従来から知られている。
2. Description of the Related Art In a fuel injection amount control or an ignition timing control of an engine, in order to compensate a response delay of a sensor such as an air flow sensor for detecting an operating state of the engine, a function corresponding to a response characteristic of the sensor is stored and set. Japanese Patent Laid-Open No. 59-176450 discloses, for example, Japanese Patent Laid-Open No. 59-176450, in which a sensor output is inversely converted based on the stored function to perform a lead compensation process for forming a detection signal in which a response delay is compensated. It has been known so far.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、エンジ
ンの運転状態を検出するセンサの応答遅れ、例えば熱線
式エアフローセンサの場合の熱線等の熱容量に起因する
応答遅れを補償するため上記のような進み補償処理を行
うと、進み補償処理を行う前のセンサ出力にはノイズ等
による微変動成分が混入していて、その微変動成分に対
しても進み補償がかかり、データの履歴を反映する平均
成分(低周波成分)に対し微変動成分(高周波成分)が
拡大されてしまって、進み補償後の信号が変動の大きな
ものとなり、安定した制御を行うことができなくなって
しまう。そのため、対策として、進み補償後のセンサ出
力にハード的にフィルタをかけた後でコントロールユニ
ットに入力するとか、サンプリングしたデータを平均処
理するなどの後処理を施すことが必要となり、制御系が
繁雑でコストの高いものとなる。
However, in order to compensate for the response delay of the sensor for detecting the operating state of the engine, for example, the response delay due to the heat capacity of the heat wire in the case of the hot wire type air flow sensor, the advance compensation as described above is performed. When the processing is performed, the sensor output before the advance compensation processing contains a minute fluctuation component due to noise or the like, and the slight fluctuation component is also subjected to the lead compensation, and the average component (that reflects the history of data) ( Since the fine fluctuation component (high frequency component) is expanded with respect to the low frequency component, the signal after advance compensation has large fluctuation, and stable control cannot be performed. Therefore, as a countermeasure, it is necessary to perform post-processing such as filtering the sensor output after advance compensation by hardware and then inputting it to the control unit, or averaging the sampled data, resulting in a complicated control system. It will be expensive.

【0004】また、同様の問題は、例えば過給機付エン
ジンにおける過給機バイパス通路のバイパス弁を駆動す
る負圧式アクチュエータのようなエンジン制御系駆動手
段を駆動制御する駆動制御信号に進み補償をかける場合
にも発生する。例えば、アクチュエータに印加する作動
負圧をデューティソレノイド弁によって制御する場合
に、スロットル弁が閉じてバイパス弁が開いた状態か
ら、スロットル弁が大きく開くと、スロットル弁の開動
作に伴って作動負圧を低下させるようデューテイソレノ
イド弁に駆動制御信号が印加されるが、アクチュエータ
の作動負圧室やパイプにボリュームがあるため、実際に
作動負圧が目標値まで下がるまでに遅れが生ずる。そこ
で、このようなアクチュエータ等の応答遅れを補償する
ように駆動制御信号に進み補償をかけることが考えられ
る。しかしながら、このアクチュエータ等を制御する駆
動制御信号には、やはりセンサ出力に混在するノイズ等
の微変動成分による変動があるため、進み補償処理を行
うと、やはり変動成分が拡大されてしまい、例えば駆動
手段が過給機バイパス通路のバイパス弁である場合、ス
ロットル弁開動作時にバイパス弁が振動してしまって、
正確な開度制御ができなくなり、また、バルブの耐久性
が悪化してしまう。
A similar problem is caused by a drive control signal for driving and controlling an engine control system drive means such as a negative pressure type actuator for driving a bypass valve in a supercharger bypass passage in an engine with a supercharger. It also occurs when you call. For example, when the operating negative pressure applied to the actuator is controlled by the duty solenoid valve, if the throttle valve is wide open from the state where the throttle valve is closed and the bypass valve is open, the operating negative pressure is accompanied by the opening operation of the throttle valve. Although a drive control signal is applied to the duty solenoid valve so as to reduce the pressure, there is a volume in the operating negative pressure chamber and the pipe of the actuator, so that there is a delay until the operating negative pressure actually drops to the target value. Therefore, it is considered that the drive control signal is advanced and compensated so as to compensate for the response delay of such an actuator. However, since the drive control signal for controlling the actuator and the like also varies due to a minute variation component such as noise mixed in the sensor output, the advance compensation process also causes the variation component to be enlarged, and for example, driving When the means is the bypass valve of the turbocharger bypass passage, the bypass valve vibrates during the opening operation of the throttle valve,
Accurate opening control cannot be performed and the durability of the valve deteriorates.

【0005】本発明は上記問題点に鑑みてなされたもの
であって、エンジン制御系におけるセンサの応答遅れ若
しくはアクチュエータ等制御系駆動手段の応答遅れを補
償するようセンサからの検出信号若しくは駆動手段への
駆動制御信号に進み補償処理を行うに際しての進み補償
による信号微変動成分の拡大を防止することを目的とす
る。
The present invention has been made in view of the above problems, and a detection signal from a sensor or a drive means is provided so as to compensate for a response delay of a sensor in an engine control system or a response delay of a drive means of a control system such as an actuator. It is an object of the present invention to prevent the signal fine fluctuation component from expanding due to the advance compensation when the advance compensation processing is performed on the drive control signal.

【0006】[0006]

【課題を解決するための手段】本発明は進み補償を行う
前の信号になましをかける手段を設けることによって上
記課題を解決したものである。すなわち、本発明に係る
エンジンの制御装置は、図1に示すように、エンジンの
運転状態を検出するセンサと、センサからの検出信号を
入力しエンジン制御系駆動手段の駆動制御量を決定して
該駆動制御量を達成するよう駆動制御信号を駆動手段に
印加する駆動制御手段と、センサからの検出信号若しく
は駆動制御手段からの駆動制御信号に対しセンサ若しく
は駆動手段の応答遅れを補償する進み補償処理を行う進
み補償手段を備えたエンジンの制御装置において、進み
補償処理に先立ってセンサからの検出信号若しくは駆動
手段への駆動制御信号に対し信号微変動成分除去の処理
(なまし処理)を行う信号微変動成分除去手段を設けた
ことを特徴とするものである。
SUMMARY OF THE INVENTION The present invention has solved the above-mentioned problems by providing means for smoothing signals before lead compensation. That is, as shown in FIG. 1, the engine control device according to the present invention inputs a sensor for detecting the operating state of the engine and a detection signal from the sensor to determine the drive control amount of the engine control system drive means. Drive control means for applying a drive control signal to the drive means so as to achieve the drive control amount, and advance compensation for compensating the response delay of the sensor or the drive means with respect to the detection signal from the sensor or the drive control signal from the drive control means. In an engine control device equipped with a lead compensation means for performing processing, a signal fine fluctuation component removal processing (annealing processing) is performed on a detection signal from a sensor or a drive control signal to a driving means prior to lead compensation processing. It is characterized in that a signal fine fluctuation component removing means is provided.

【0007】前記センサがエンジン吸入空気量を検出す
るエアフローセンサである場合に、前記進み補償手段は
エアフローセンサからの検出信号に対し進み補償処理を
行うものとし、前記信号微変動成分除去手段は進み補償
処理に先立ってエアフローセンサからの検出信号に対し
信号微変動成分除去の処理を行うものとする。
When the sensor is an air flow sensor for detecting the engine intake air amount, the advance compensating means performs advance compensation processing on the detection signal from the air flow sensor, and the signal slight fluctuation component removing means advances. Prior to the compensation process, the signal fine fluctuation component removal process is performed on the detection signal from the air flow sensor.

【0008】また、前記駆動手段が吸気通路のスロット
ル弁下流において過給機バイパス空気量を制御するバイ
パス弁の負圧作動式アクチュエータで、前記駆動制御手
段がアクチュエータの作動負圧を制御する作動負圧制御
手段である場合に、前記進み補償手段は作動負圧制御手
段への駆動制御信号に対し進み補償を行うものとし、前
記信号微変動成分除去手段はスロットル弁の開動作に伴
ってバイパス弁を閉動作させる際に、進み補償処理に先
立って前記駆動制御信号に対し信号微変動成分除去の処
理を行うものとする。
Further, the drive means is a negative pressure actuated actuator of the bypass valve for controlling the supercharger bypass air amount downstream of the throttle valve in the intake passage, and the drive control means controls the operation negative pressure of the actuator. In the case of pressure control means, the advance compensating means performs advance compensation with respect to the drive control signal to the operating negative pressure control means, and the signal fine fluctuation component removing means is provided with the bypass valve along with the opening operation of the throttle valve. When the closing operation is performed, the signal fine fluctuation component removal process is performed on the drive control signal prior to the advance compensation process.

【0009】[0009]

【作用】本発明によれば、エンジンの運転状態を検出す
るエアフローセンサ等のセンサからの検出信号に混在し
た微変動成分が除去された上で該検出信号に進み補償処
理が加えられ、あるいは、過給機バイパス空気量を制御
するバイパス弁の負圧式アクチュエータへの作動負圧等
を制御する駆動制御信号の微変動成分が除去された上で
該駆動制御信号に進み補償処理が加えられる。その結
果、進み補償処理による信号微変動成分の拡大が防止さ
れる。
According to the present invention, the minute fluctuation component mixed in the detection signal from the sensor such as the air flow sensor for detecting the operating state of the engine is removed, and then the detection signal is subjected to the compensation processing, or The minute fluctuation component of the drive control signal for controlling the negative pressure of the operation of the bypass valve for controlling the supercharger bypass air amount to the negative pressure type actuator is removed, and then the drive control signal is subjected to compensation processing. As a result, it is possible to prevent the signal fine fluctuation component from expanding due to the advance compensation processing.

【0010】[0010]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0011】実施例1.図2は本発明の一実施例(実施
例1)の全体システム図である。この実施例のエンジン
1はV型多気筒であって、左右バンクの気筒の各独立吸
気通路2a,2bはバンク毎に独立したサージタンク3
a,3bから分岐するよう形成されている。また、各サ
ージタンク3a,3bの入口側はエアクリーナ4に接続
された1本の上流側吸気通路5にそれぞれ分岐通路6
a,6bに接続されている。そして、上流側吸気通路5
にはエアクリーナ4の下流に吸入空気量検出のための熱
線式のエアフローセンサ7が配置され、その下流にスロ
ットル弁8が、また、スロットル弁8の下流には機械式
過給機9が設置されている。また、上流側吸気通路5に
対し機械式過給機9を迂回して該上流側吸気通路5の過
給機上流側と過給機下流側を連通する過給機バイパス通
路10が設けられ、その通路途中にはダイアフラム式の
アクチュエータ11を備えたポペットタイプのバイパス
弁(ABV)12が設置されている。
Embodiment 1. FIG. 2 is an overall system diagram of an embodiment (Embodiment 1) of the present invention. The engine 1 of this embodiment is a V-type multi-cylinder, and the independent intake passages 2a and 2b of the cylinders of the left and right banks are independent surge tanks 3 for each bank.
It is formed to branch from a and 3b. Further, the inlet side of each surge tank 3a, 3b is connected to one upstream side intake passage 5 connected to the air cleaner 4, and a branch passage 6 is provided.
It is connected to a and 6b. Then, the upstream intake passage 5
Is provided with a hot-wire air flow sensor 7 for detecting the intake air amount downstream of the air cleaner 4, a throttle valve 8 is provided downstream thereof, and a mechanical supercharger 9 is provided downstream of the throttle valve 8. ing. Further, a supercharger bypass passage 10 is provided which bypasses the mechanical supercharger 9 with respect to the upstream intake passage 5 and connects the upstream intake passage 5 to the upstream side and the downstream side of the supercharger. A poppet type bypass valve (ABV) 12 having a diaphragm type actuator 11 is installed in the middle of the passage.

【0012】上記アクチュエータ11は、ダイアフラム
11aによって大気室11bと作動負圧室11cとを区
画したものであって、ダイアフラム11aには大気室1
1b側にバイパス弁12の弁軸が連結され、作動負圧室
11c側にはダイアフラム11aを常時閉弁方向に付勢
するようスプリング13が配設されている。また、上記
アクチュエータ11の作動負圧室11cに作動負圧を導
入する作動負圧導入通路14が設けられ、該作動負圧導
入通路14は上流が2系統に分岐し、一方の分岐通路1
4Aは図示しない負圧源(バキュームポンプ)に接続さ
れて、その通路途中に該分岐通路14Aを開閉する第1
のデューティソレノイド弁15Aが配置され、他方の分
岐通路14Bは大気圧側に接続されて、その通路途中に
は第2のデューティソレノイド弁15Bが配置されてい
る。
The actuator 11 has an atmosphere chamber 11b and an operating negative pressure chamber 11c partitioned by a diaphragm 11a, and the diaphragm 11a has an atmosphere chamber 1
A valve shaft of the bypass valve 12 is connected to the 1b side, and a spring 13 is arranged on the operating negative pressure chamber 11c side so as to always urge the diaphragm 11a in the valve closing direction. Further, an operating negative pressure introducing passage 14 for introducing an operating negative pressure is provided in the operating negative pressure chamber 11c of the actuator 11, and the operating negative pressure introducing passage 14 is branched into two systems on the upstream side, and one branch passage 1
4A is connected to a negative pressure source (vacuum pump) (not shown) and opens and closes the branch passage 14A in the middle of the passage.
Is connected to the atmospheric pressure side, and the second duty solenoid valve 15B is arranged in the middle of the passage.

【0013】また、各サージタンク3a,3bの入口側
に接続された分岐通路6a,6bにはそれぞれインター
クーラ16A,16Bが設置されている。そして、機械
式過給機9を迂回する上記過給機バイパス通路10のバ
イパス弁12下流側から分岐して各分岐通路6a,6b
のインタークーラ16A,16B下流側に連通するイン
タークーラバイパス通路17A,17Bが設けられ、過
給機バイパス通路10が過給機下流側で上流側吸気通路
5と合流する下流側合流点の近傍にはバイパス空気の流
れをインタークーラ16A,16B側とインタークーラ
バイパス通路17A,17B側とに切り換えるインター
クーラバイパス弁18が設置されている。上記インター
クーラバイパス弁18はダイアフラム式アクチュエータ
19により開閉駆動されるものであって、常時は開き、
三方ソレノイド弁20を介してアクチュエータ19に負
圧が導入された時には閉じるよう構成されている。
Intercoolers 16A and 16B are installed in the branch passages 6a and 6b connected to the inlet sides of the surge tanks 3a and 3b, respectively. The branch passages 6a and 6b are branched from the bypass valve 12 downstream side of the supercharger bypass passage 10 bypassing the mechanical supercharger 9.
The intercooler bypass passages 17A, 17B communicating with the downstream sides of the intercoolers 16A, 16B are provided, and the supercharger bypass passage 10 is located in the vicinity of the downstream confluence point where the supercharger bypass passage 10 joins the upstream intake passage 5 on the downstream side of the supercharger. Is provided with an intercooler bypass valve 18 that switches the flow of bypass air between the intercooler 16A, 16B side and the intercooler bypass passage 17A, 17B side. The intercooler bypass valve 18 is opened and closed by a diaphragm type actuator 19 and is normally opened.
It is configured to close when a negative pressure is introduced to the actuator 19 via the three-way solenoid valve 20.

【0014】エンジン低負荷時には、過給機バイパス通
路10に設けられたバイパス弁12は開かれ、また、イ
ンタークーラバイパス弁18が開かれる。この時、エア
クリーナ4から入った空気は機械式過給機9を迂回し、
さらにインタークーラ16A,16Bを迂回して各バン
クのサージタンク3a,3bに送られる。また、エンジ
ン高負荷時にはバイパス弁12は閉じられ、また、イン
タークーラバイパス弁18が閉じられる。この時、エア
クリーナ4から入った空気は機械式過給機9に流れて加
圧され、インタークーラ16A,16Bを通って各バン
クのサージタンク3a,3bに送られる。
When the engine load is low, the bypass valve 12 provided in the supercharger bypass passage 10 is opened and the intercooler bypass valve 18 is opened. At this time, the air entering from the air cleaner 4 bypasses the mechanical supercharger 9,
Further, it bypasses the intercoolers 16A and 16B and is sent to the surge tanks 3a and 3b of each bank. When the engine load is high, the bypass valve 12 is closed and the intercooler bypass valve 18 is closed. At this time, the air that has entered from the air cleaner 4 flows into the mechanical supercharger 9 and is pressurized, and is sent to the surge tanks 3a and 3b of each bank through the intercoolers 16A and 16B.

【0015】各気筒にはそれぞれの独立吸気通路2a,
2bに燃料噴射弁21が設けられ、また、点火装置22
が設けられている。これら燃料噴射弁21および点火装
置22はマイクロコンピュータによって構成されたエン
ジンコントロールユニット23により制御される。ま
た、このエンジンコントロールユニット23にって、上
記第1および第2のデューティソレノイド弁15A,1
5Bが制御され、上記三方ソレノイド弁20が制御され
る。
Each cylinder has its own independent intake passage 2a,
2b is provided with a fuel injection valve 21 and an ignition device 22
Is provided. The fuel injection valve 21 and the ignition device 22 are controlled by an engine control unit 23 composed of a microcomputer. In addition, in the engine control unit 23, the first and second duty solenoid valves 15A, 1
5B is controlled, and the three-way solenoid valve 20 is controlled.

【0016】エンジンコントロールユニット23には、
エアフローセンサ7からの吸入空気量信号のほか、エン
ジン回転数信号,エンジン水温信号が入力され、その
他、スロットル開度信号,ギヤ段信号,シフト位置信
号,車速信号,スリップ信号,アイドルスイッチ信号,
大気圧信号,過給圧信号,エアクリーナ側吸気温度信
号,サージタンク側吸気温度信号,過給機吐出温信号等
が入力される。
The engine control unit 23 includes
In addition to the intake air amount signal from the air flow sensor 7, an engine speed signal and an engine water temperature signal are input. In addition, a throttle opening signal, a gear stage signal, a shift position signal, a vehicle speed signal, a slip signal, an idle switch signal,
An atmospheric pressure signal, a boost pressure signal, an air cleaner side intake temperature signal, a surge tank side intake temperature signal, a turbocharger discharge temperature signal, etc. are input.

【0017】この実施例において、燃料噴射弁21には
エアフローセンサ7からの吸入空気量信号,エンジン回
転数信号,エンジン水温信号等に基づいて設定された燃
料噴射量に応じたパルス幅の噴射パルスが印加され、燃
料噴射弁21が駆動されて、各気筒の独立吸気通路2
a,2bに燃料が噴射される。その際、エンジンコント
ロールユニット23では、エアフローセンサ7の応答遅
れを補償する一次進み補償処理が行われる。また、この
一次進み補償処理に先立って、エアフローセンサ7の検
出信号に混在する微変動成分を除去するためのなまし処
理が行われる。そして、上記進み補償後の吸入空気量信
号とエンジン回転数信号に基づいて燃料噴射量が設定さ
れ、それに水温等の各種補正が加えられ、こうして算出
された燃料噴射量に相当するパルス幅の噴射パルスが燃
料噴射弁21の駆動用デューティソレノイドに出力され
る。図3はこの燃料噴射量制御の制御ブロック図であ
る。図において、24はインターフェース、25はデュ
ーティソレノイドを示す。
In this embodiment, the fuel injection valve 21 has an injection pulse having a pulse width corresponding to the fuel injection amount set based on the intake air amount signal from the air flow sensor 7, the engine speed signal, the engine water temperature signal and the like. Is applied, the fuel injection valve 21 is driven, and the independent intake passage 2 of each cylinder is
Fuel is injected into a and 2b. At that time, the engine control unit 23 performs a first-order advance compensation process for compensating the response delay of the air flow sensor 7. Further, prior to the first-order advance compensation process, a smoothing process for removing a minute fluctuation component mixed in the detection signal of the air flow sensor 7 is performed. Then, the fuel injection amount is set on the basis of the intake air amount signal after the advance compensation and the engine speed signal, and various corrections such as the water temperature are added to the fuel injection amount, and the injection of the pulse width corresponding to the fuel injection amount thus calculated is performed. The pulse is output to the driving duty solenoid of the fuel injection valve 21. FIG. 3 is a control block diagram of this fuel injection amount control. In the figure, 24 is an interface and 25 is a duty solenoid.

【0018】上記なまし処理は、進み補償処理部の入力
(エアフローセンサ出力)Ginを次式によりGin*
に変換することによって行う。 Gin*=b×Gin+(1−b)Gin*(n−1) ここで、bは定数、Gin*(n−1)はGin*の前
回値である。
In the smoothing process, the input (air flow sensor output) Gin of the advance compensation processing unit is calculated by the following equation as Gin *.
By converting to. Gin * = b * Gin + (1-b) Gin * (n-1) where b is a constant and Gin * (n-1) is the previous value of Gin *.

【0019】また、処理系の入力Ginと出力Gout
とは、伝達関数をaとしたとき、 Gin=a×Gin(n−1)+(1−a)Gout となる。ここで、Gin(n−1)はGinの前回値で
ある。一次進み補償処理ではこれを逆変換し、次式によ
ってセンサ出力Goutを形成する。 Gout={Gin*−a×Gin*(n−1)}/
(1−a)
The input Gin and output Gout of the processing system
Is Gin = a * Gin (n-1) + (1-a) Gout, where a is a transfer function. Here, Gin (n-1) is the previous value of Gin. In the first-order lead compensation processing, this is inversely converted, and the sensor output Gout is formed by the following equation. Gout = {Gin * -a * Gin * (n-1)} /
(1-a)

【0020】図4は上記なまし処理の効果を示すもの
で、(a)は、なまし処理を行わない従来装置の吸入空
気量信号の波形図、(b)は、なまし処理を行ったこの
実施例の場合の吸入空気量信号の波形図である。いずれ
も、破線がエアフローセンサ計測値そのものの波形で、
実線が一次進み補償後の信号波形である。(a)と
(b)の比較で判るように、なまし処理を行うことによ
り、進み補償後の信号は平均成分の履歴に関係のないよ
うなノイズ等による変動に影響されないものとなり、し
たがって、応答性のよい安定した制御が行える。
4A and 4B show the effect of the above-described smoothing treatment. FIG. 4A is a waveform diagram of an intake air amount signal of a conventional apparatus in which the smoothing treatment is not performed, and FIG. 4B is the smoothing treatment. It is a waveform diagram of the intake air amount signal in the case of this embodiment. In each case, the broken line is the waveform of the air flow sensor measurement value itself,
The solid line is the signal waveform after first-order advance compensation. As can be seen from the comparison between (a) and (b), by performing the smoothing process, the signal after advance compensation becomes unaffected by fluctuations due to noise or the like that is not related to the history of the average component, and therefore, Stable control with good responsiveness can be performed.

【0021】図5は上記実施例の燃料噴射制御のフロー
を示すフローチャートである。このフローはS101〜
S106のステップからなり、スタートすると、S10
1で初期化を行い、S102でエアフローセンサ出力値
(G0)その他のセンサ出力値を読み込む。そして、S
103でエアフローセンサ出力値(G0)をなまし処理
し、S104で上記なまし処理した値(G(F))に一
次進み補償処理を加え、一次進み補償処理後の値(G
(P))を吸入空気量検出値(G)と決定する。そし
て、S105で上記検出値(G)とエンジン回転数等の
他の検出値とに基づいて燃料噴射量を算出し、S106
で燃料噴射量に応じた噴射パルスを燃料噴射弁に出力す
る。
FIG. 5 is a flow chart showing the flow of the fuel injection control of the above embodiment. This flow is from S101
It consists of the steps of S106, and when started, S10
Initialization is performed in step 1, and the air flow sensor output value (G 0 ) and other sensor output values are read in step S102. And S
In step 103, the airflow sensor output value (G 0 ) is smoothed, and in step S104, the smoothed value (G (F)) is subjected to the first-order advance compensation process.
(P)) is determined as the intake air amount detection value (G). Then, in S105, the fuel injection amount is calculated based on the detected value (G) and other detected values such as the engine speed, and S106.
Then, an injection pulse corresponding to the fuel injection amount is output to the fuel injection valve.

【0022】実施例2.過給機バイパス通路のバイパス
弁の制御においてアクチュエータの応答遅れを補償する
ため作動負圧制御用のデューティソレノイド弁に印加す
る駆動制御信号に進み補償をかける場合に適用した本発
明の他の実施例(実施例2)をつぎに説明する。
Example 2. Another embodiment of the present invention applied to the case where the drive control signal applied to the duty solenoid valve for operating negative pressure control is advanced in order to compensate the response delay of the actuator in the control of the bypass valve of the supercharger bypass passage (Example 2) will be described below.

【0023】この実施例は、全体システムは図2に示す
先の実施例1のものと同様である。また、この実施例で
は、ABV制御によって過給圧を目標過給圧に制御す
る。この場合のABV制御の基本ロジックを図6を参照
して説明する。
The entire system of this embodiment is similar to that of the first embodiment shown in FIG. Further, in this embodiment, the boost pressure is controlled to the target boost pressure by the ABV control. The basic logic of ABV control in this case will be described with reference to FIG.

【0024】Pmtは目標過給圧である。目標過給圧
Pmtは、通常はエンジン回転数NEとスロットル開度
TVOのマップで設定する。過給機下流のサージタンク
において検出される過給圧Pnがこの目標過給圧Pmt
になるよう制御するのがAVB制御の目的である。
Pmt is a target supercharging pressure. The target supercharging pressure Pmt is usually set by a map of the engine speed N E and the throttle opening TVO. The supercharging pressure Pn detected in the surge tank downstream of the supercharger is the target supercharging pressure Pmt.
The purpose of the AVB control is to control such that

【0025】目標過給圧Pmtが設定されると、つぎ
にエンジン吸入空気量QEを算出する。エンジン吸入空
気量QEは、目標過給圧Pmtとエンジン回転数NEのテ
ーブルから標準状態でのエンジン吸入空気量QE0を求
め、それにサージタンク側吸気温度thaeに応じた温
度補正を加えることによって求める。
When the target boost pressure Pmt is set, the engine intake air amount Q E is then calculated. For the engine intake air amount Q E , obtain the engine intake air amount Q E0 in the standard state from the table of the target supercharging pressure Pmt and the engine speed N E , and add the temperature correction according to the surge tank side intake air temperature thae. Ask by.

【0026】エンジン吸入空気量QEが求まると、つ
ぎに、過給機上流側圧力(スロットル下流圧力)P1
算出する。過給機上流側圧力P1は、大気圧からスロッ
トル開度TVOとエンジン吸入空気量QEとで一義的に
定まる圧力降下代を差し引くことによって求まる。
When the engine intake air amount Q E is obtained, the supercharger upstream pressure (throttle downstream pressure) P 1 is then calculated. The supercharger upstream side pressure P 1 is obtained by subtracting a pressure drop margin that is uniquely determined by the throttle opening TVO and the engine intake air amount Q E from the atmospheric pressure.

【0027】つぎに、過給機吐出量QSCOUTを推定す
る。過給機吐出量QSCOUTは、目標過給圧Pmtを達成
する時の過給機下流側と上流側の圧力差(Pmt−
1)とエンジン回転数NEをパラメータとする吐出量特
性マップによって基本吐出量QSCOUT0を推定し、それに
過給機上流側圧力P1(mmHg)に応じた密度補正を
加えることによって求める。ここで、QSCOUT=Q
SCOUT0*P1/760である。
Next, the supercharger discharge amount Q SCOUT is estimated. The supercharger discharge amount Q SCOUT is a pressure difference (Pmt−) between the downstream side and the upstream side of the supercharger when the target supercharging pressure Pmt is achieved.
P 1) and the engine speed N E to estimate the basic discharge amount Q SCOUT0 by discharge amount characteristic map as a parameter, it determined by adding the density correction in accordance with the supercharger upstream pressure P 1 (mmHg). Where Q SCOUT = Q
SCOUT0 * is a P 1/760.

【0028】過給機吐出量QSCOUTが求まると、つぎ
に、目標過給圧達成時に過給機バイパス通路10を逆流
するバイパス空気量QABVを求める。このバイパス空気
量QABVは、過給機吐出量QSCOUTからエンジン吸入空気
量QEを差し引いくことによって求まる。
When the supercharger discharge amount Q SCOUT is obtained, the bypass air amount Q ABV flowing back through the supercharger bypass passage 10 when the target supercharging pressure is achieved is then obtained. This bypass air amount Q ABV is obtained by subtracting the engine intake air amount Q E from the supercharger discharge amount Q SCOUT .

【0029】こうして過給機上流側圧力P1が求まっ
て、これよりバイパス弁前後の圧力差(過給機下流側と
上流側の圧力差)であるPmt−P1が求まり、また、
バイパス空気量QABVが求まると、これらPmt−P1
ABVに基づき、アクチュエータ11の作動負圧室に印
加すべき目標作動負圧PCをバルブ特性マップで決定す
る。そして、この目標作動負圧PCとなるよう負圧側と
大気側の二つのデューティソレノイド弁15A,15B
に出力する駆動制御信号を決定する。
In this way, the supercharger upstream side pressure P 1 is obtained, and from this, the pressure difference before and after the bypass valve (the pressure difference between the downstream side and the upstream side of the supercharger), Pmt-P 1, is obtained, and
When the bypass air amount Q ABV is obtained, the target operating negative pressure P C to be applied to the operating negative pressure chamber of the actuator 11 is determined by the valve characteristic map based on these Pmt-P 1 and Q ABV . Then, the two duty solenoid valves 15A and 15B on the negative pressure side and the atmosphere side are set so that the target operating negative pressure P C is obtained.
The drive control signal to be output to is determined.

【0030】この実施例では、デューティソレノイド弁
15A,15Bに出力される駆動制御信号にアクチュエ
ータ11の応答遅れを補償するための一次進み補償処理
が加えらえる。また、一次進み補償処理に先だって駆動
制御信号に微変動成分を除去するためのなまし処理が行
われる。図7は上記ABV制御の制御ブロック図であ
る。
In this embodiment, the drive control signal output to the duty solenoid valves 15A and 15B can be added with a first-order lead compensation process for compensating the response delay of the actuator 11. Further, prior to the first-order advance compensation process, a smoothing process for removing a fine fluctuation component in the drive control signal is performed. FIG. 7 is a control block diagram of the ABV control.

【0031】この実施例において、上記なまし処理は、
一次進み補償処理部の入力(駆動制御信号決定部の出
力)Ginをやはり次式によってGin*に変換するこ
とにより行う。 Gin*=b×Gin+(1−b)Gin*(n−1) bは定数、Gin*(n−1)はGin*の前回値であ
る。
In this embodiment, the annealing process is
This is performed by converting the input (output of the drive control signal determination unit) Gin of the first-order lead compensation processing unit into Gin * by the following equation. Gin * = b * Gin + (1-b) Gin * (n-1) b is a constant, and Gin * (n-1) is the previous value of Gin *.

【0032】また、一次進み補償処理では、次式によ
り、出力(デューティソレノイド弁15A,15Bへの
駆動制御信号)Goutを形成する。 Gout={Gin*−a×Gin*(n−1)}/
(1−a) Gin(n−1)はGinの前回値である。
In the first-order advance compensation process, the output (drive control signal to the duty solenoid valves 15A and 15B) Gout is formed by the following equation. Gout = {Gin * -a * Gin * (n-1)} /
(1-a) Gin (n-1) is the previous value of Gin.

【0033】図8は上記なまし処理の効果を示すもの
で、(a)は、なまし処理を行わない従来の制御による
目標作動負圧の変化、(b)は、なまし処理を行ったこ
の実施例の制御による目標作動負圧の変化である。いず
れも、破線が一次補償前の目標作動負圧Pcで、実線が
一次進み補償後の目標作動負圧PCNである。この場合
も、なまし処理を行うことによって進み補償後の信号は
平均成分の履歴に関係のないようなノイズ等による変動
に影響されず安定したものとなっている。
FIG. 8 shows the effect of the above-mentioned smoothing treatment. (A) shows the change of the target operating negative pressure by the conventional control without performing the smoothing treatment, and (b) shows the smoothing treatment. It is a change in the target operating negative pressure by the control of this embodiment. In both cases, the broken line is the target operating negative pressure Pc before the primary compensation, and the solid line is the target operating negative pressure P CN after the primary advance compensation. Also in this case, the signal after advance compensation is stable by being subjected to the smoothing process without being influenced by the fluctuation due to noise or the like which is not related to the history of the average component.

【0034】デューティソレノイド弁15A,15Bに
印加される駆動制御信号に一次進み補償処理が加えられ
るとともに、一次進み補償処理に先だって駆動制御信号
がなまし処理されることにより、駆動制御信号は上記の
ようにノイズ等に影響されず安定したものとなり、した
がって、バイパス弁12の振動が少なくなり、応答性の
よい、正確な制御が可能となる。
The drive control signal applied to the duty solenoid valves 15A and 15B is subjected to the first-order lead compensation process, and the drive control signal is annealed prior to the first-order lead compensation process. As described above, it becomes stable without being affected by noise and the like, and therefore, the vibration of the bypass valve 12 is reduced, and accurate and highly responsive control is possible.

【0035】図9は上記実施例のABV制御実行のフロ
ーを示すフローチャートである。このフローはS201
〜S207のステップからなり、スタートすると、S2
01で初期化を行い、S202でエンジン回転数,スロ
ットル開度等のセンサ出力値を読み込む。そして、S2
03で目標過給圧を設定し、S204で目標過給圧を基
に目標作動負圧Pcを決定し、S205でPcになまし
処理を行う。そして、S206でなまし処理したPcの
値(PCN(F))に一次進み補償処理を加え、S207
で一次進み補償処理後の目標過給圧(PCN(P))に応
じたデューティ比の駆動制御信号をデューティソレノイ
ド弁に出力する。
FIG. 9 is a flow chart showing the flow of the ABV control execution of the above embodiment. This flow is S201
~ It consists of steps from S207, and when it starts, S2
Initialization is performed at 01, and sensor output values such as engine speed and throttle opening are read at S202. And S2
The target supercharging pressure is set in 03, the target operating negative pressure Pc is determined based on the target supercharging pressure in S204, and the smoothing process is performed to Pc in S205. Then, a first-order advance compensation process is added to the value of Pc ( PCN (F)) that has been subjected to the averaging process in S206, and S207
Then, a drive control signal having a duty ratio according to the target supercharging pressure ( PCN (P)) after the primary advance compensation process is output to the duty solenoid valve.

【0036】なお、本発明は、エアフローセンサからの
検出信号を燃料噴射量制御以外のエンジン制御例えば点
火時期制御に用いる場合にも適用することができる。ま
た、エアフローセンサ以外のセンサからの検出信号に対
し、同様に進み補償処理に先立ってなまし処理を行うよ
うにすることもできる。
The present invention can also be applied to the case where the detection signal from the air flow sensor is used for engine control other than fuel injection amount control, for example, ignition timing control. Further, it is also possible to similarly perform the smoothing process on the detection signal from the sensor other than the air flow sensor prior to the advance compensation process.

【0037】また、本発明は、上記ABV制御以外の駆
動制御信号に対して適用することができる。その場合に
も、エンジン制御系の駆動手段に印加する駆動制御信号
に対し同様に進み補償処理に先立ってなまし処理を行
う。
The present invention can be applied to drive control signals other than the ABV control. In that case, too, the drive control signal applied to the drive means of the engine control system is similarly subjected to the smoothing process prior to the advance compensation process.

【0038】[0038]

【発明の効果】本発明は以上のように構成されているの
で、エンジン制御系におけるセンサからの検出信号若し
くは駆動手段への駆動制御信号に対して応答遅れを補償
するための進み補償処理を行うに際しての信号微変動成
分の拡大を防止し、応答性がよく正確で、かつ、安定し
た制御が行えるようにすることができる。また、過給圧
制御のためのバイパス弁のアクチュエータ作動負圧を制
御する駆動制御信号の処理に本発明を適用した場合に、
バイパス弁の振動による耐久性の悪化を防止できる。ま
た、本発明においては、進み補償手段による進み補償処
理の前に信号微変動成分除去処理を行うため、信号が定
常状態である場合でも制御精度の悪化を防止できる。
Since the present invention is configured as described above, the lead compensation processing for compensating the response delay is performed with respect to the detection signal from the sensor in the engine control system or the drive control signal to the drive means. In this case, it is possible to prevent the signal slight fluctuation component from expanding, and to perform accurate and stable control with good responsiveness. Further, when the present invention is applied to the processing of the drive control signal for controlling the actuator operating negative pressure of the bypass valve for supercharging pressure control,
It is possible to prevent deterioration of durability due to vibration of the bypass valve. Further, in the present invention, since the signal fine fluctuation component removal processing is performed before the advance compensation processing by the advance compensation means, it is possible to prevent deterioration of control accuracy even when the signal is in a steady state.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の全体構成図FIG. 1 is an overall configuration diagram of the present invention.

【図2】本発明の実施例1の全体システム図FIG. 2 is an overall system diagram of Embodiment 1 of the present invention.

【図3】本発明の実施例1の燃料噴射量制御の制御ブロ
ック図
FIG. 3 is a control block diagram of fuel injection amount control according to the first embodiment of the present invention.

【図4】本発明の実施例1のなまし処理の効果を示す吸
入空気量信号波形図
FIG. 4 is an intake air amount signal waveform diagram showing the effect of the smoothing process according to the first embodiment of the present invention.

【図5】本発明の実施例1の燃料噴射制御のフローチャ
ート
FIG. 5 is a flowchart of fuel injection control according to the first embodiment of the present invention.

【図6】本発明の実施例2のABV制御の基本ロジック
の説明図
FIG. 6 is an explanatory diagram of a basic logic of ABV control according to the second embodiment of the present invention.

【図7】本発明の実施例2のABV制御の制御ブロック
FIG. 7 is a control block diagram of ABV control according to the second embodiment of the present invention.

【図8】本発明の実施例2のなまし処理の効果を示す目
標作動負圧特性図
FIG. 8 is a target operating negative pressure characteristic chart showing the effect of the annealing process of the second embodiment of the present invention.

【図9】本発明の実施例2のABV制御のフローチャー
FIG. 9 is a flowchart of ABV control according to the second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 エンジン 7 エアフローセンサ 9 機械式過給機 10 過給機バイパス通路 11 アクチュエータ 11c 作動負圧室 12 バイパス弁(ABV) 15A 第1のデューティソレノイド弁(負圧側) 15B 第2のデューティソレノイド弁(大気側) 21 燃料噴射弁 23 エンジンコントロールユニット 1 Engine 7 Air Flow Sensor 9 Mechanical Supercharger 10 Supercharger Bypass Passage 11 Actuator 11c Operating Negative Pressure Chamber 12 Bypass Valve (ABV) 15A First Duty Solenoid Valve (Negative Pressure Side) 15B Second Duty Solenoid Valve (Atmosphere) Side) 21 fuel injection valve 23 engine control unit

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 エンジンの運転状態を検出するセンサ
と、該センサからの検出信号を入力しエンジン制御系駆
動手段の駆動制御量を決定して該駆動制御量を達成する
よう駆動制御信号を前記駆動手段に印加する駆動制御手
段と、前記センサからの検出信号若しくは前記駆動制御
手段からの駆動制御信号に対し該センサ若しくは前記駆
動手段の応答遅れを補償する進み補償処理を行う進み補
償手段を備えたエンジンの制御装置において、前記進み
補償処理に先立って前記センサからの検出信号若しくは
前記駆動手段への駆動制御信号に対し信号微変動成分除
去の処理を行う信号微変動成分除去手段を設けたことを
特徴とするエンジンの制御装置。
1. A sensor for detecting an operating state of an engine, and a drive control signal for inputting a detection signal from the sensor to determine a drive control amount of an engine control system drive means to achieve the drive control amount. Drive control means for applying to the drive means, and advance compensation means for performing advance compensation processing for compensating the response delay of the sensor or the drive means with respect to the detection signal from the sensor or the drive control signal from the drive control means. In the engine control device, a signal fine fluctuation component removing means for performing signal fine fluctuation component removing processing on the detection signal from the sensor or the drive control signal to the driving means is provided prior to the advance compensation processing. An engine control device characterized by:
【請求項2】 前記センサはエンジン吸入空気量を検出
するエアフローセンサであり、前記進み補償手段は前記
エアフローセンサからの検出信号に対し進み補償処理を
行うものであり、前記信号微変動成分除去手段は進み補
償処理に先立って前記エアフローセンサからの検出信号
に対し信号微変動成分除去の処理を行うものである請求
項1記載のエンジンの制御装置。
2. The sensor is an air flow sensor for detecting an engine intake air amount, the advance compensating means performs advance compensating processing on a detection signal from the air flow sensor, and the signal slight fluctuation component removing means. 2. The engine control apparatus according to claim 1, wherein the signal fine fluctuation component removal processing is performed on the detection signal from the air flow sensor prior to the advance compensation processing.
【請求項3】 前記駆動手段は吸気通路のスロットル弁
下流において過給機バイパス空気量を制御するバイパス
弁の負圧作動式アクチュエータであり、前記駆動制御手
段は前記アクチュエータの作動負圧を制御する作動負圧
制御手段であり、前記進み補償手段は前記作動負圧制御
手段への駆動制御信号に対し進み補償を行うものであ
り、前記信号微変動成分除去手段は前記スロットル弁の
開動作に伴って前記バイパス弁を閉動作させる際に、進
み補償処理に先立って前記駆動制御信号に対し信号微変
動成分除去の処理を行うものである請求項1記載のエン
ジンの制御装置。
3. The drive means is a negative pressure actuated actuator of a bypass valve for controlling the supercharger bypass air amount downstream of the throttle valve in the intake passage, and the drive control means controls the actuation negative pressure of the actuator. Operating negative pressure control means, the advance compensating means performs advance compensation for a drive control signal to the operating negative pressure control means, and the signal slight fluctuation component removing means is associated with the opening operation of the throttle valve. 2. The engine control device according to claim 1, wherein when the bypass valve is closed by means of a closing operation, the signal fine fluctuation component removal processing is performed on the drive control signal prior to the advance compensation processing.
JP26823693A 1993-09-29 1993-09-29 Engine control device Expired - Fee Related JP3297890B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26823693A JP3297890B2 (en) 1993-09-29 1993-09-29 Engine control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26823693A JP3297890B2 (en) 1993-09-29 1993-09-29 Engine control device

Publications (2)

Publication Number Publication Date
JPH0797940A true JPH0797940A (en) 1995-04-11
JP3297890B2 JP3297890B2 (en) 2002-07-02

Family

ID=17455802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26823693A Expired - Fee Related JP3297890B2 (en) 1993-09-29 1993-09-29 Engine control device

Country Status (1)

Country Link
JP (1) JP3297890B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003314347A (en) * 2002-04-18 2003-11-06 Denso Corp Device for detecting cylinder filling air amount of internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003314347A (en) * 2002-04-18 2003-11-06 Denso Corp Device for detecting cylinder filling air amount of internal combustion engine

Also Published As

Publication number Publication date
JP3297890B2 (en) 2002-07-02

Similar Documents

Publication Publication Date Title
US6532935B2 (en) Method of operating an internal combustion engine
JP3366399B2 (en) Supercharging pressure control device for turbocharged engine
JPH04228845A (en) Controller and controlling method for internal combustion engine
JPH07180615A (en) Exhaust recycle control device for internal combustion engine
JPS6350623A (en) Supercharging pressure controller for internal combustion engine
JP3297890B2 (en) Engine control device
JP3942556B2 (en) Wastegate valve control device for an internal combustion engine with a supercharger
JPH06257449A (en) Controller of engine with mechanical supercharger
JPS5970846A (en) Divided-operation control type internal-combustion engine
JPS62113828A (en) Control device for supercharge pressure in engine with turbosupercharger
JP2595659Y2 (en) Engine with turbocharger
JP2595660Y2 (en) Engine with turbocharger
JP2705271B2 (en) Control method of supercharged engine
JP2504021B2 (en) Fuel supply control method for internal combustion engine equipped with mechanical supercharger
JP2002089347A (en) Control device for internal combustion engine with mechanical supercharger
JPS59120771A (en) Exhaust gas recirculation control method of diesel engine
JP3032002B2 (en) Exhaust gas recirculation system for internal combustion engine
JPH08109854A (en) Exhaust reflux control device for internal combustion engine
JPH06272601A (en) Control of engine
JPH07180597A (en) Atmospheric pressure detecting device of engine with supercharger
JPH0932650A (en) Exhaust gas recirculation control device for internal combustion engine
JP2600853Y2 (en) Connection structure of differential pressure sensor in supercharged engine
JPS6258041A (en) Suction pressure detector for internal combustion engine
JPH04175457A (en) Intake system for engine with supercharger
JPS6067734A (en) Internal-combustion engine with supercharger

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees