JPS59120771A - Exhaust gas recirculation control method of diesel engine - Google Patents

Exhaust gas recirculation control method of diesel engine

Info

Publication number
JPS59120771A
JPS59120771A JP57232649A JP23264982A JPS59120771A JP S59120771 A JPS59120771 A JP S59120771A JP 57232649 A JP57232649 A JP 57232649A JP 23264982 A JP23264982 A JP 23264982A JP S59120771 A JPS59120771 A JP S59120771A
Authority
JP
Japan
Prior art keywords
exhaust gas
intake
negative pressure
gas recirculation
suction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57232649A
Other languages
Japanese (ja)
Inventor
Toshihisa Ogawa
小河 寿久
Hideo Miyagi
宮城 秀夫
Masaomi Nagase
長瀬 昌臣
Kiyotaka Matsuno
松野 清隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP57232649A priority Critical patent/JPS59120771A/en
Publication of JPS59120771A publication Critical patent/JPS59120771A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/005Controlling exhaust gas recirculation [EGR] according to engine operating conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

PURPOSE:To prevent the occurrence of which smoke by increasing the exhaust gas recirculation flow when the suction pressure downstream a suction throttle section becomes a predetermined value or lower in a Diesel engine performing suction throttling during an idle operation. CONSTITUTION:When an engine is in operation, a control device 25 controls to open both negative pressure control valves 21, 22 and fully open an auxiliary suction throttle valve 16 during the warmup operation with the detected temperature of the cooling water by a water temperature sensor 28 at a predetermined value or lower, and to open only the negative pressure control valve 22 and half-open the auxiliary suction throttle valve 16 after the warmup is completed. Furthermore, the control device determines the standard EGR gas flow Qe based on outputs of an acceleration sensor 29 and a rotation speed sensor 26. When the detected value Pi of the suction pipe negative pressure by a suction pressure sensor 26 is predetermined value or lower and there is a fear of the occurrence of white smoke, a pulse signal with a duty ratio in response to the flow with the flow augmentation quantity DELTAQe increasing in response to the reduction of the suction pressure added to the said flow Qe is applied to a negative pressure control valve 43 to control the opening of an EGR valve 34.

Description

【発明の詳細な説明】 本発明は、自動車等の車輌に用いられるfイーゼル機関
の排気ガス再循環制御方法に係り、更に詳細にはアイド
ル運転時に吸気絞りを行われるディーゼル機関の排気ガ
ス再循環制御方法に係る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an exhaust gas recirculation control method for an easel engine used in a vehicle such as an automobile, and more specifically to a method for controlling exhaust gas recirculation in a diesel engine whose intake air is throttled during idle operation. It concerns the control method.

自動車等の車輌に用いられるディーゼル機関に於て、排
気ガス中のNOXの低減のために、排気ガスの一部を機
関吸気系へ還流させる、所謂排気ガス再循環を行うこと
が有効であることが従来より知られており、この排気ガ
ス再循環は機関燃焼室に吸入される吸入空気のうちの過
剰分の一部を排気ガスに置換えるべく機関負荷、換言づ
れば燃料噴則量に応じた流量にて行われる。
In diesel engines used in vehicles such as automobiles, it is effective to perform so-called exhaust gas recirculation, in which a portion of the exhaust gas is returned to the engine intake system, in order to reduce NOx in the exhaust gas. has long been known, and this exhaust gas recirculation is a system that replaces part of the excess intake air drawn into the engine combustion chamber with exhaust gas according to the engine load, or in other words, the amount of fuel injection. It is done in flow rate.

自動車等の車輌に用いられるディーゼル機関に於て、ア
イドル運転時の振動を軒滅するために、アイドル運転時
に機関吸気系の途中に設けられた吸気絞り弁によって吸
気絞りを行い、機関の吸入空気量を制限することが有効
であることが従来より知られており、このことに鑑みア
イドル運転時に吸気絞りを行われるディーぜル機関が既
に提案されている。アイドル運転時に吸気絞りが行われ
れば、機関のアイドル振動は低減するが、吸気圧力が低
下()、燃料の不完全燃焼により白煙が発生し易くなり
、このため高地等にノρでアイドル吸気絞りが行われる
と、大気圧の低下に伴い吸気圧力が許容値を越えて低下
し、白煙か発生することがある。
In diesel engines used in vehicles such as automobiles, in order to eliminate vibrations during idling, an intake throttle valve installed in the middle of the engine intake system throttles the intake air during idling to reduce the amount of air intake into the engine. It has been known for some time that it is effective to limit the engine speed, and in view of this, a diesel engine that throttles the intake air during idling operation has already been proposed. If intake throttling is performed during idling operation, the idling vibration of the engine will be reduced, but the intake pressure will decrease (), and white smoke will be more likely to be generated due to incomplete combustion of fuel. When throttling is performed, the intake pressure may drop beyond the allowable value as the atmospheric pressure drops, and white smoke may be generated.

本発明は上述の如き白煙の発生を防止することができる
排気ガス再循環制御方法を提供することを目的としてお
り、本発明にJ、る排気ガス再循環制御方法は、吸気流
で見て吸気絞り部より下流側の吸気通路に於ける吸気圧
力を検出し、吸気圧力が所定値以下の時には排気ガス再
循環流量の増量を行うことを特徴としている。
The present invention aims to provide an exhaust gas recirculation control method that can prevent the generation of white smoke as described above. It is characterized in that the intake pressure in the intake passage downstream of the intake throttle section is detected, and when the intake pressure is below a predetermined value, the exhaust gas recirculation flow rate is increased.

本発明による排気ガス再循環制御方法によれば、吸気圧
力が所定値以下の時には、即ち白煙が発生する虞れがあ
る時には排気ガス再循環流量の増量が行われることによ
り吸気圧力が上昇し、圧縮時の吸気温度が上昇して白煙
の発生が防止される。
According to the exhaust gas recirculation control method of the present invention, when the intake pressure is below a predetermined value, that is, when there is a risk of white smoke being generated, the intake pressure is increased by increasing the exhaust gas recirculation flow rate. , the intake air temperature during compression increases and white smoke generation is prevented.

以下に添付の図を参照して本発明を実施例について詳細
に説明する。
The invention will now be described in detail by way of example embodiments with reference to the accompanying drawings.

第1図は本発明による排気ガス再循環制御方法を実施す
る排気ガス再循環制御装置を備えたディーゼル機関の一
つの実施例を示している。図に於て、1はディーゼル機
関を示しており、該ディーゼル機関はシリンダボア2を
有し、該シリンダボア内にピストン3を摺動可能に受入
れ、ピストン3の上方に燃焼室4を郭定している。ディ
ーげル機関1は噴口5を経て燃焼室4に連通した渦流室
6を有しており、該渦流室には燃料噴射ノズル7よりデ
ィーゼル機図用の液体燃料が噴射供給されるようになっ
てる。ディーゼル機関1は吸気絞り装置8、吸気マニホ
ールド9を経て図示されていない吸気ポートより燃焼室
4内に空気を吸入し、燃焼室4より排気ポート10を経
て排気マニホールド11へ排気ガスを排出する。吸気ボ
ート及び排気ポート10は各々ポペット弁により開閉さ
れるようになっており1図に於ては符号12によって排
気用のポペット弁のみが示されている。
FIG. 1 shows an embodiment of a diesel engine equipped with an exhaust gas recirculation control device implementing the exhaust gas recirculation control method according to the present invention. In the figure, 1 indicates a diesel engine, which has a cylinder bore 2, a piston 3 is slidably received in the cylinder bore, and a combustion chamber 4 is defined above the piston 3. There is. The Diegel engine 1 has a swirl chamber 6 communicating with the combustion chamber 4 through a nozzle 5, and liquid fuel for diesel engines is injected into the swirl chamber from a fuel injection nozzle 7. Teru. The diesel engine 1 takes air into the combustion chamber 4 through an intake throttle device 8 and an intake manifold 9 through an intake port (not shown), and discharges exhaust gas from the combustion chamber 4 through an exhaust port 10 to an exhaust manifold 11. The intake boat and the exhaust port 10 are each opened and closed by a poppet valve, and in FIG. 1, only the exhaust poppet valve is shown by reference numeral 12.

吸気絞り装置8は、主吸気通路13を開閉する主吸気絞
り弁14と、主吸気通路13をバイパスして設けられた
副吸気通路15を開閉する副吸気絞り弁16とを有して
いる。主吸気絞り弁14はアクセルペダル17に駆動連
結され、アクセルペダル17あ踏込みが解除されている
時には図示されている如き全開位置に位置し、アクセル
ペダル17の踏込み量の増大に応じて開弁するようにな
っている。副吸気絞り弁16はダブルダイヤフラム装置
18に駆動連結され、ダイヤフラム室19と20の何れ
にも大気圧が導入されている時には図示されている如き
全開位置に位置し、ダイヤフラム室19に大気圧が導入
されてダイヤフラム室20に負圧が導入されている時に
は手間位置に位置し、ダイヤフラム室19と20の何れ
にも負圧が導入されている時には全開位置に位置するよ
うになっている。
The intake throttle device 8 includes a main intake throttle valve 14 that opens and closes the main intake passage 13, and a sub-intake throttle valve 16 that opens and closes a sub-intake passage 15 provided to bypass the main intake passage 13. The main intake throttle valve 14 is drivingly connected to the accelerator pedal 17, and is located at the fully open position as shown in the figure when the accelerator pedal 17 is released, and opens as the amount of the accelerator pedal 17 is increased. It looks like this. The auxiliary intake throttle valve 16 is drivingly connected to a double diaphragm device 18, and when atmospheric pressure is introduced into both diaphragm chambers 19 and 20, it is located in the fully open position as shown in the figure, and when atmospheric pressure is introduced into the diaphragm chamber 19. When negative pressure is introduced into the diaphragm chamber 20, it is located at the open position, and when negative pressure is introduced into both the diaphragm chambers 19 and 20, it is located at the fully open position.

ダイヤフラム室19と20には各々負圧制御弁21.2
2より負圧と大気圧が選択的に導入されるようになって
いる。負圧制御弁21と22は共に電磁式の負圧制御弁
であり、通電時には負圧タンク23の負圧をダイヤフラ
ム室19或いは20に導入し、非通電時には大気圧をダ
イヤフラム室19或いは20に導入するようになってい
る。負圧制御弁21及び22の通電制御は後述する制御
装置25により行われるようになっている。
The diaphragm chambers 19 and 20 each have a negative pressure control valve 21.2.
2, negative pressure and atmospheric pressure are selectively introduced. The negative pressure control valves 21 and 22 are both electromagnetic negative pressure control valves, and when energized, the negative pressure of the negative pressure tank 23 is introduced into the diaphragm chamber 19 or 20, and when not energized, atmospheric pressure is introduced into the diaphragm chamber 19 or 20. It is set to be introduced. The negative pressure control valves 21 and 22 are energized and controlled by a control device 25, which will be described later.

排気マニホールド11には排気ガス取入ボート31が、
吸気マニホールド9には排気ガス注入ポート32が各々
設けられており、排気ガス取入ボート31は導管33、
排気ガス再循環制御弁34、導管35を杼てυ1゛気ガ
ス注入ボート32に連通接続されている。
The exhaust manifold 11 includes an exhaust gas intake boat 31.
The intake manifold 9 is provided with an exhaust gas injection port 32, and the exhaust gas intake boat 31 is provided with a conduit 33,
An exhaust gas recirculation control valve 34 and a conduit 35 are connected to the υ1 gas injection boat 32 in communication.

排気ガス再循環制御弁34は弁ポート36を開閉する弁
要素37を含み、該弁要素は弁ロッド38によってダイ
ヘアフラム装置39に連結され、ダイヤフラム40の一
方の側に設けられたダイヤフラム室41に負圧が導入さ
れていない時には圧縮コイルばね42のばね力により押
し下げられて弁ポート36を閉じ、これに対しダイヤフ
ラム室41に負圧が導入されている時には圧縮」イルば
ね42のばね力に抗して持ち上げられ、弁ポー1へ36
をその負圧の大きさに応じて開くようになっている。
The exhaust gas recirculation control valve 34 includes a valve element 37 that opens and closes the valve port 36 and is connected by a valve rod 38 to a die hair phragm device 39 and negatively connected to a diaphragm chamber 41 provided on one side of the diaphragm 40. When no pressure is introduced, the valve port 36 is pushed down by the spring force of the compression coil spring 42, and on the other hand, when negative pressure is introduced into the diaphragm chamber 41, it resists the spring force of the compression coil spring 42. 36 to the valve port 1.
It is designed to open depending on the magnitude of the negative pressure.

ダイヤフラム室41には負圧制御弁43より負圧と大気
圧とが選択的に導入されるようになっている。負圧制御
弁43は電磁式の負圧制御弁であり、通電時にはΩ1f
タンク23の負圧をダイヤフラム室41に導入し、非通
電時には大気圧をダイヤフラム室41に導入づるように
なっており、所定周波数のパルス信号をりえられて通電
状態と非通電状態とを繰り返寸こと←二よりそのパルス
仇号のデユーティ比の増大に応じて増大する負圧をダイ
ヤフラム室41に供給するようになっている。
Negative pressure and atmospheric pressure are selectively introduced into the diaphragm chamber 41 by a negative pressure control valve 43. The negative pressure control valve 43 is an electromagnetic negative pressure control valve, and when energized, Ω1f
Negative pressure in the tank 23 is introduced into the diaphragm chamber 41, and atmospheric pressure is introduced into the diaphragm chamber 41 when not energized, and the energized state and de-energized state are repeated by receiving a pulse signal of a predetermined frequency. Therefore, negative pressure is supplied to the diaphragm chamber 41, which increases as the duty ratio of the pulse increases.

負圧制御弁43の通電制御は制御装置25により行われ
るようになっている。
The control device 25 controls the energization of the negative pressure control valve 43 .

制御装置25はマイクロコンピユータ等の電気式のもの
であり、回転数センサ26より機関回転数に関する情報
を、機関スイッチ27よりその開閉に関する情報を、水
温センサ28より機関冷却水温度に関する情報を、アク
セルセンサ29よりアクセルペダル17の踏込み量に関
する情報を、吸気圧力センサ30より吸気流で見て吸気
絞り装置8より下流側の吸気通路に於ける吸気圧力に関
する情報を各々与えられ、これら情報に従って負圧制御
弁21.22及び43に対する通電を制御するようにな
っている。
The control device 25 is an electric type such as a microcomputer, and receives information about the engine speed from the rotation speed sensor 26, information about opening/closing from the engine switch 27, and information about the engine cooling water temperature from the water temperature sensor 28. The sensor 29 provides information regarding the amount of depression of the accelerator pedal 17, and the intake pressure sensor 30 provides information regarding the intake pressure in the intake passage downstream of the intake throttle device 8, based on the intake flow. The control valves 21, 22 and 43 are configured to control energization.

制御I装置25は機関スイッチ27が閉じられていて水
温センサ28により検出された機関冷却水温度が所定値
、例えば60℃以下である時には負圧制御弁21と22
の何れにも通電を行わず、機関冷却水温度が所定値以上
の時には負圧制御弁22にのみ通電を行い、機関スイッ
チ27が開かれた機関停止時には機関スイッチ27が開
かれた時より所定時間が経過するまで負圧制御弁21と
22の双方に通電を行うようになっている。
The control I device 25 operates the negative pressure control valves 21 and 22 when the engine switch 27 is closed and the engine cooling water temperature detected by the water temperature sensor 28 is below a predetermined value, for example 60°C.
When the engine cooling water temperature is above a predetermined value, only the negative pressure control valve 22 is energized. Both negative pressure control valves 21 and 22 are energized until the time elapses.

上述の如く負圧制御弁21及び22に対する通電が制御
されることにより、副吸気絞り弁16は機関暖機時には
全開位置に゛もたらされ、暖機完了後には半開位置にも
たらされ、機関停止時には全開位置にもたらされる。ア
イドル運転時にはアクセルペダル17の踏込みが解除さ
れて主吸気絞り弁14は全開位置にあり、この時には副
吸気通路15を経てのみ吸気が行われることにより吸気
絞りが行われる。このアイドル吸気絞りは副吸気絞り弁
16の開弁位置が上述の如く制御されることにより暖機
完了後は暖機時に比して大きくなる。
By controlling the energization to the negative pressure control valves 21 and 22 as described above, the auxiliary intake throttle valve 16 is brought to the fully open position when the engine is warmed up, and is brought to the half open position after the engine is warmed up. When stopped, it is brought to the fully open position. During idling, the accelerator pedal 17 is released and the main intake throttle valve 14 is in the fully open position, and at this time, intake air is throttled by taking air only through the auxiliary intake passage 15. By controlling the opening position of the sub-intake throttle valve 16 as described above, the idle intake throttle becomes larger after warm-up is completed than during warm-up.

制御装置25は、第2図に示されている如く、アクセル
センサ29により検出されたアクセルペダル17の踏込
み量と回転数センサ26により検出された機関回転数と
に基いて標準排気ガス再循環流量Qeを求め、吸気圧力
センサ30により検出される吸気圧力Piが白煙の発生
の虞れがない所定値A以上である時には前記標準排気ガ
ス再循環流1MQeに応じたデユーティ比のパルス信号
を負圧制御弁43に与え、吸気管負圧センサ30により
検出される吸気管負圧Piが前記所定値A以下の時、即
ち白煙の発生の虞れがある時には前記標準排気ガス再循
環流路Qeに、第3図に示されでいる如く吸気圧力の低
下に応じて増大する流量増ω量ΔQeを加算した増量排
気ガス再循環@、量(Qe+ΔQe)に応じ/jデユー
ティ比のパルス信号を負圧制御弁43に与えるようにな
っている。
As shown in FIG. 2, the control device 25 determines the standard exhaust gas recirculation flow rate based on the amount of depression of the accelerator pedal 17 detected by the accelerator sensor 29 and the engine speed detected by the rotation speed sensor 26. Qe is calculated, and when the intake pressure Pi detected by the intake pressure sensor 30 is equal to or higher than a predetermined value A without the risk of white smoke generation, a pulse signal with a duty ratio corresponding to the standard exhaust gas recirculation flow 1MQe is negative. When the intake pipe negative pressure Pi applied to the pressure control valve 43 and detected by the intake pipe negative pressure sensor 30 is less than the predetermined value A, that is, when there is a risk of white smoke generation, the standard exhaust gas recirculation flow path is Increased exhaust gas recirculation @, which is obtained by adding the flow rate increase ω amount ΔQe that increases as the intake pressure decreases to Qe, as shown in FIG. It is designed to be applied to a negative pressure control valve 43.

上述の如く負圧制御弁43に与えるパルス信号のデユー
ディ比が制御されることにより、吸気圧力が所定値以上
である時、即ち白煙の発生の虞れがない時には、アクセ
ルペダルの踏込み吊と機関回転数とに応じて決められた
標準排気カス再循環流量による排気ガス再循環が行われ
、これにより排気ガス中のNOxの低減が行われ、これ
に対し高地に於けるアイドル運転時等に於て吸気圧力が
所定値以下になった時、即ち白煙の発生の虞れがある時
には、前記標準排気ガス再循環流量より所定量増量され
た流量により排気ガス再循環が行われる。このように吸
気圧力が所定値より低い時には排気ガス再循環流量が増
量されることにより、吸気圧力が上昇し、また比較的高
温の排気ガスが機関燃焼室内に多量に流入することによ
って圧縮時の吸気温度が上昇し、白煙の発生が回避され
る。
By controlling the duty ratio of the pulse signal given to the negative pressure control valve 43 as described above, when the intake pressure is above a predetermined value, that is, when there is no risk of white smoke generation, the accelerator pedal is depressed and suspended. Exhaust gas recirculation is performed at a standard exhaust gas recirculation flow rate determined according to the engine speed, and this reduces NOx in the exhaust gas. When the intake pressure falls below a predetermined value, that is, when there is a risk of white smoke generation, exhaust gas recirculation is performed at a flow rate that is increased by a predetermined amount from the standard exhaust gas recirculation flow rate. In this way, when the intake pressure is lower than a predetermined value, the exhaust gas recirculation flow rate is increased, which causes the intake pressure to rise, and a large amount of relatively high-temperature exhaust gas flows into the engine combustion chamber, which reduces the compression rate. The intake air temperature increases and the generation of white smoke is avoided.

以上に於ては本発明を特定の実施例について詳細に説明
したが、本発明はこれに限定されるものではなく本発明
の範囲内にて種々の実施例が可能であることは当業者に
とっC明らかであろう。
Although the present invention has been described in detail with respect to specific embodiments above, it will be appreciated by those skilled in the art that the present invention is not limited thereto and that various embodiments can be made within the scope of the present invention. It should be obvious.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による排気ガス再循環制御り法を実施す
る排気ガス再循環制御装置を備えたfイーゼル機関の一
〇の実施例を示す概略構成図、第2図は本発明による排
気ガス再循環制御方法の一つの実施要領を示づフロー′
y−17−1−1第3図は本発明による排気ガス再循環
制御方法に於ける排気n′ス再循環流最の増量特性を示
すグラフである。 1・・・デー−ピル機関、2・・・シリンダボア、3・
・・ピストン、4・・・燃焼室、5・・・噴口、6・・
・渦流室。 7・・・燃焼噴射ノズル、8・・・吸気絞り装置、10
・・・吸気マニホールド、10・・・排気ポート、11
・・・排気マニホールド、12・・・ポペッh弁、13
・・・主吸気通路、14・・・主吸気絞り弁、15・・
・副吸気通路。 16・・・副吸気絞り弁、17・・・アクセルペダル、
18・・・ダブルダイヤフラム装置、19.20・・・
ダイヤフラム室、21.22・・・負圧制御弁、23・
・・負圧タンク、25・・・制御装置、26・・・回転
数センサ。 27・・・機関スイッチ、28・・・水温センサ、29
・・・アクセルセンサ、30・・・吸気圧力センサ、3
1・・・排気ガス取入ポー1〜,32・・・排気ガス注
入ボー1〜。 33・・・導管、34・・・排気ガス再循環制御弁、3
5・・・導管、36・・・弁ボート、37・・・弁要素
、38・・・弁ロッド、39・・・ダイヤフラム装置、
40・・・ダイヤフラム、41・・・ダイヤフラム室、
42・・・圧縮コイルばね、43・・・負圧制御弁 特 許 出 願 人  トヨタ自動車株式会社代   
理   人  弁理士  明石 昌毅第1図 第 3 図 吸気圧力PL
FIG. 1 is a schematic configuration diagram showing 10 embodiments of an f easel engine equipped with an exhaust gas recirculation control device implementing the exhaust gas recirculation control method according to the present invention, and FIG. 2 is a schematic diagram showing the exhaust gas recirculation control method according to the present invention. Flow illustrating one implementation of the recirculation control method
y-17-1-1 FIG. 3 is a graph showing the characteristic of increasing the amount of exhaust gas recirculation flow in the exhaust gas recirculation control method according to the present invention. 1... Day pill engine, 2... Cylinder bore, 3...
... Piston, 4... Combustion chamber, 5... Nozzle, 6...
- Vortex chamber. 7... Combustion injection nozzle, 8... Intake throttle device, 10
...Intake manifold, 10...Exhaust port, 11
...Exhaust manifold, 12...Poppet h valve, 13
...Main intake passage, 14...Main intake throttle valve, 15...
・Sub-intake passage. 16... Sub-intake throttle valve, 17... Accelerator pedal,
18...Double diaphragm device, 19.20...
Diaphragm chamber, 21.22...Negative pressure control valve, 23.
... Negative pressure tank, 25... Control device, 26... Rotation speed sensor. 27... Engine switch, 28... Water temperature sensor, 29
...Accelerator sensor, 30...Intake pressure sensor, 3
1...Exhaust gas intake port 1~, 32...Exhaust gas injection port 1~. 33... Conduit, 34... Exhaust gas recirculation control valve, 3
5... Conduit, 36... Valve boat, 37... Valve element, 38... Valve rod, 39... Diaphragm device,
40...Diaphragm, 41...Diaphragm chamber,
42...Compression coil spring, 43...Negative pressure control valve patent applicant: Toyota Motor Corporation representative
Masaki Akashi, Patent Attorney Figure 1 Figure 3 Intake Pressure PL

Claims (1)

【特許請求の範囲】[Claims] アイドル運転時に吸気絞りを行われるディーヒル機関の
排気ガス再循環制御方法にして、吸気流で見て吸気絞り
部より下流側の吸気通路に於ける吸気圧力を検出し、吸
気圧力が所定値以下の時には排気ガス再循環流量の増量
を行うことを特徴とプるディーゼル機関の排気ガス再循
環制御方法。
An exhaust gas recirculation control method for a D-Hill engine that throttles the intake air during idling operation detects the intake pressure in the intake passage downstream of the intake throttle section in terms of intake flow, and detects when the intake pressure is below a predetermined value. An exhaust gas recirculation control method for a diesel engine, which is characterized by sometimes increasing the exhaust gas recirculation flow rate.
JP57232649A 1982-12-27 1982-12-27 Exhaust gas recirculation control method of diesel engine Pending JPS59120771A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57232649A JPS59120771A (en) 1982-12-27 1982-12-27 Exhaust gas recirculation control method of diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57232649A JPS59120771A (en) 1982-12-27 1982-12-27 Exhaust gas recirculation control method of diesel engine

Publications (1)

Publication Number Publication Date
JPS59120771A true JPS59120771A (en) 1984-07-12

Family

ID=16942598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57232649A Pending JPS59120771A (en) 1982-12-27 1982-12-27 Exhaust gas recirculation control method of diesel engine

Country Status (1)

Country Link
JP (1) JPS59120771A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6193238A (en) * 1984-10-15 1986-05-12 Mitsubishi Electric Corp Suction device for engine
JPH01313649A (en) * 1988-06-10 1989-12-19 Nippon Denso Co Ltd Intake control device of diesel engine
JPH02140454A (en) * 1988-11-22 1990-05-30 Kubota Ltd Exhaust gas circulator for internal combustion engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6193238A (en) * 1984-10-15 1986-05-12 Mitsubishi Electric Corp Suction device for engine
JPH01313649A (en) * 1988-06-10 1989-12-19 Nippon Denso Co Ltd Intake control device of diesel engine
JPH02140454A (en) * 1988-11-22 1990-05-30 Kubota Ltd Exhaust gas circulator for internal combustion engine

Similar Documents

Publication Publication Date Title
US4313406A (en) Multi-cylinder internal combustion engine
JP3546703B2 (en) Actuator control device for internal combustion engine
JP3427612B2 (en) An intake flow control device for an internal combustion engine
KR0184317B1 (en) Exhaust brake system for a motor vehicle
JPS59120771A (en) Exhaust gas recirculation control method of diesel engine
JP4501761B2 (en) Control device for internal combustion engine
JPS6054491B2 (en) compression ignition internal combustion engine
JPH06123258A (en) Exhaust gas recirculation device for internal combustion engine
JPS59120772A (en) Exhaust gas recirculation control method of diesel engine
JP3156545B2 (en) Intake control device for internal combustion engine
JPH11148375A (en) Warming-up accelerating device for diesel engine
JPS648179B2 (en)
JPS59215954A (en) Exhaust recirculation controlling method in diesel engine
JPH0315026B2 (en)
JP2023045440A (en) Control device of vehicle
JPS61101629A (en) Method of controlling relationship between suction throttle and egr of diesel engine
JPS6137814Y2 (en)
JP3295676B2 (en) Exhaust brake device
JPS6040849Y2 (en) Diesel engine exhaust recirculation device
JP3011099U (en) Blow-off valve for internal combustion engine
JPS59215953A (en) Exhaust gas recirculation controlling method in diesel engine
JPH0338449Y2 (en)
JPH0417787Y2 (en)
JPS6145053B2 (en)
JPS6179828A (en) Exhaust gas recirculating device in diesel engine