JPH0797420A - Production of aminoformaldehyde resin - Google Patents

Production of aminoformaldehyde resin

Info

Publication number
JPH0797420A
JPH0797420A JP24266993A JP24266993A JPH0797420A JP H0797420 A JPH0797420 A JP H0797420A JP 24266993 A JP24266993 A JP 24266993A JP 24266993 A JP24266993 A JP 24266993A JP H0797420 A JPH0797420 A JP H0797420A
Authority
JP
Japan
Prior art keywords
reaction
infrared
reactor
absorbance
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24266993A
Other languages
Japanese (ja)
Inventor
Hiroshi Hisada
廣 久田
Teruhiko Tamura
輝彦 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP24266993A priority Critical patent/JPH0797420A/en
Publication of JPH0797420A publication Critical patent/JPH0797420A/en
Pending legal-status Critical Current

Links

Landscapes

  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)
  • Phenolic Resins Or Amino Resins (AREA)

Abstract

PURPOSE:To produce easily an aminoformaldehyde resin of desired quality with improved safety of reaction operation by stopping the reaction of melamine, urea or guanamine with formaldehyde when the near-infrared absorbance of the reaction solution reaches the set. CONSTITUTION:The title production process comprises feeding a compound selected from among melamine, urea and guanamine, formaldehyde and an alcohol to a reactor, while performing the reaction, continuously or intermittently measuring the near-infrared absorbance of the reaction solution, and stopping the reaction when the measured value reaches the set. A desirable method of measuring the near-infrared absorbance of the reaction solution uses a system composed of an infrared irradiation and reception section provided in the reactor and a near-infrared spectrocope connected to the irradiation and reception section through an optical fiber, because the progress of the reaction of the reaction solution can be grasped simultaneously with the measurement and a continuous measurement is possible.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、近赤外分光分析計を用
いる事で反応の進行度を迅速に把握することができ、そ
れらのデータをもとに、反応条件の制御を自動的に行う
事により、一定した品質の目的物を得ることが出来る極
めて有効なアミノホルムアルデヒド樹脂の製造法に関す
る。
BACKGROUND OF THE INVENTION The present invention makes it possible to quickly grasp the progress of a reaction by using a near-infrared spectrophotometer, and to automatically control the reaction conditions based on those data. The present invention relates to an extremely effective method for producing an aminoformaldehyde resin, which can obtain a target product having a constant quality by carrying out.

【0002】[0002]

【従来の技術】従来より、メラミン、尿素およびグアナ
ミンから選ばれる化合物とホルムアルデヒドを反応して
メチロール化物を生成せしめ、次に酸性条件下で縮合お
よびアルコールにてアルキルエーテル化を行って得られ
るアミノホルムアルデヒド樹脂は、焼き付け型塗料の架
橋剤として広く使用されている。これらのアミノホルム
アルデヒド樹脂を製造する場合、通常、温度および反応
時間を制御しながら反応を進行させて製造するが、仕込
み原料の純度の振れや、計量誤差のために反応モル比の
変動を受けるため、一定の反応条件下で安定した品質の
目的物を得ることは極めて困難であった。そのため、上
記反応においては従来より反応中30分ないし60分の
間隔で反応器より反応液を採取し反応物の粘度、溶剤に
対する希釈価等を手分析で測定し反応の進行度を把握し
それらをもとに、反応温度、反応時間、pHを制御する
方法が行われていた。
2. Description of the Related Art Conventionally, aminoformaldehyde obtained by reacting a compound selected from melamine, urea and guanamine with formaldehyde to form a methylol compound, and then subjecting the compound to condensation under acidic conditions and alkyl etherification with an alcohol. Resins are widely used as cross-linking agents in baking paints. When these aminoformaldehyde resins are manufactured, the reaction is usually carried out while controlling the temperature and reaction time, but the reaction molar ratio is fluctuated due to fluctuations in the purity of the charged raw materials and measurement errors. However, it was extremely difficult to obtain a target product of stable quality under certain reaction conditions. Therefore, in the above reaction, the reaction solution was collected from the reactor at intervals of 30 to 60 minutes during the reaction, and the viscosity of the reaction product and the dilution value with respect to the solvent were manually analyzed to grasp the progress of the reaction. Based on the above, a method of controlling the reaction temperature, the reaction time and the pH has been carried out.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記手分析法
では測定結果を得るのに20分ないし30分の時間を要
するほか測定誤差があり、正確に所望の粘度、溶剤希釈
価で反応を終了させることは極めて困難であった。塗料
用の架橋剤としては、上記の粘度や溶剤希釈価は製品の
性能に影響する非常に重要な要因であり、所望の粘度や
溶剤希釈価の目的物が容易に得られないという問題は極
めて深刻なるものであった。
However, in the above-mentioned manual analysis method, it takes 20 to 30 minutes to obtain the measurement result and there is a measurement error, and the reaction is accurately completed at the desired viscosity and solvent dilution value. It was extremely difficult to do. As a cross-linking agent for paints, the above viscosity and solvent dilution value are very important factors affecting the performance of the product, and the problem that the desired viscosity or solvent dilution value cannot be easily obtained is extremely problematic. It was serious.

【0004】また、上記手分析法によれば、高温の反応
器より反応液を採取する場合、刺激臭の強いホルムアル
デヒドガスやアルコールが飛散し作業環境的に問題であ
るばかりか、反応液の組成が変化してしまうため分析誤
差を生ずる原因ともなっていた。
Further, according to the above-mentioned manual analysis method, when the reaction solution is sampled from a high temperature reactor, formaldehyde gas and alcohol having a strong irritating odor scatter, which is not only a work environment problem but also the composition of the reaction solution. Since it changes, it also causes an analysis error.

【0005】本発明が解決しようとする課題は、所望の
品質を得るための、特に所望の溶剤希釈価或いは粘度を
有する目的物を容易に、且つ、安全に得ることのできる
アミノホルムアルデヒド樹脂の製造法を提供することに
ある。
The problem to be solved by the present invention is to produce an aminoformaldehyde resin which can easily and safely obtain a desired product having a desired solvent dilution value or viscosity for obtaining a desired quality. To provide the law.

【0006】[0006]

【課題を解決するための手段】本発明者等は、鋭意研究
を重ねた結果、近赤外分光分析計を用い、反応液中の近
赤外線吸光度を測定し、その測定値から反応進行状態を
即時的に把握して反応器の温度、反応時間を制御するこ
とにより上記課題を解決できることを見いだし本発明を
完成するに至った。
Means for Solving the Problems As a result of intensive studies, the inventors of the present invention have measured the near-infrared absorbance in a reaction solution using a near-infrared spectrophotometer, and based on the measured value, show the reaction progress state. The present invention has been completed by discovering that the above problems can be solved by immediately grasping and controlling the temperature and reaction time of the reactor.

【0007】即ち、本発明はメラミン、尿素またはグア
ナミンから選ばれる化合物(A)とホルムアルデヒド
(B)とアルコール類(C)とを反応器に供給し反応を
進行させながら、反応液中の近赤外線吸光度を測定し、
その測定値が予め設定された値に到達した時点で反応を
終了させることを特徴とするアミノホルムアルデヒド樹
脂の製造法に関する。
That is, according to the present invention, the compound (A) selected from melamine, urea or guanamine, formaldehyde (B) and alcohols (C) are supplied to the reactor to allow the reaction to proceed while the near infrared rays in the reaction solution are added. Measure the absorbance,
The present invention relates to a method for producing an aminoformaldehyde resin, which comprises terminating the reaction when the measured value reaches a preset value.

【0008】本発明のアミノホルムアルデヒド樹脂の製
造法は、具体的には前記(A)〜(C)からなる反応に
おいて、目的とする溶剤希釈価若しくは粘度の値に対応
する近赤外線吸光度の値を予め算出しておき、実際の反
応時には近赤外分光分析計を用いて、反応液中の近赤外
線吸光度を連続的又は断続的に測定し、目的とする溶剤
希釈価に対応する近赤外線吸光度に到達した時点で反応
を終了させる方法が挙げられる。更に具体的には、メラ
ミン、尿素、グアナミンから選ばれる化合物(A)とホ
ルムアルデヒド(B)とアルコール類(C)とを反応さ
せ、反応の進行に伴う特定波長領域の近赤外線の吸光度
の変化を追跡し、また、同時に前記吸光度値の夫々に対
応する反応生成物の粘度若しくは溶剤希釈価データの両
者を回帰分析し、吸光度−(溶剤希釈価若しくは粘度)
を軸とする2軸座標上に検量線を作製し、演算式を作製
する。次いで、この演算式に基づいて所望の溶剤希釈価
値若しくは粘度に対応する近赤外線吸光度を割り出し、
連続的若しくは断続的に反応液中の近赤外線吸光度を測
定し、目的とする吸光度に到達した時点で反応を終了さ
せる方法が挙げられる。この場合、事前に同様の上記反
応を行ない、検量線を作製し、予め演算式を求めておく
ことが好ましい。(以下、この演算式を求める為に行な
う反応を「予備反応」という。)
In the method for producing an aminoformaldehyde resin of the present invention, specifically, in the reaction comprising the above (A) to (C), the value of near infrared absorption corresponding to the desired solvent dilution value or viscosity value is determined. Calculate in advance, and use the near-infrared spectrophotometer at the time of actual reaction to measure the near-infrared absorbance in the reaction solution continuously or intermittently to obtain the near-infrared absorbance corresponding to the target solvent dilution value. A method of terminating the reaction when it reaches is mentioned. More specifically, the compound (A) selected from melamine, urea, and guanamine is reacted with formaldehyde (B) and alcohols (C) to change the absorbance of near-infrared light in a specific wavelength region as the reaction progresses. Tracking, and at the same time, regression analysis of both the viscosity or solvent dilution value data of the reaction product corresponding to each of the above absorbance values, absorbance- (solvent dilution value or viscosity)
A calibration curve is created on a biaxial coordinate with the axis as an axis, and an arithmetic expression is created. Then, based on this calculation formula, calculate the near infrared absorbance corresponding to the desired solvent dilution value or viscosity,
Examples include a method of measuring near-infrared absorbance in a reaction solution continuously or intermittently and terminating the reaction when the desired absorbance is reached. In this case, it is preferable that the same reaction as described above be carried out in advance, a calibration curve be prepared, and an arithmetic expression be obtained in advance. (Hereinafter, the reaction performed to obtain this calculation formula is referred to as the "preliminary reaction".)

【0009】また、この予備反応を行なって予め演算式
を求めておく場合には、回帰分析による検量線作製にお
いて同一の試料についての測定を数回行い、より精度の
高い検量線とすることが好ましい。
When the preliminary reaction is carried out and the calculation formula is obtained in advance, the measurement of the same sample may be performed several times in the preparation of the calibration curve by regression analysis to obtain a more accurate calibration curve. preferable.

【0010】また、上記演算式を得るにあたって、計算
機を用いる場合或いは近赤外分光分析計に解析演算機能
が内蔵されている場合は、上述の検量線をその機能を用
いて作製し、該演算式にて,反応液中の粘度若しくは溶
剤希釈価値を算出してもよい。
Further, when a computer is used to obtain the above arithmetic expression or when the near infrared spectrophotometer has a built-in analytical arithmetic function, the above-mentioned calibration curve is prepared using the function and the arithmetic operation is performed. The viscosity in the reaction liquid or the solvent dilution value may be calculated by a formula.

【0011】測定に用いる近赤外線の吸収波長領域は特
に限定されるものではなく、通常、750〜2,100
nmにおいて、アミノホルムアルデヒド樹脂で吸収の見
られる波長域1,150〜1,250nm、1,320
〜1,450nm、1,450〜1,500nm、1,
500〜1,600nm、1,650〜1,740n
m、1,750〜1,850nm、1,860〜1,9
80nm、2,000〜2,100nmの中から、経時
的な吸光度変化の生ずる波長領域を選択することができ
るが、なかでも化合物(A)中のアミノ基或いは本発明
で得られるアミノホルムアルデヒド樹脂の反応中間物で
あるメチロール化物中のメチロール基に起因する吸収波
長領域を測定することが好ましく、具体的には前記アミ
ノ基の場合1,450〜1,500nmであって、メチ
ロール化物中のメチロール基の場合1,500〜1,6
00nmの領域が挙げられる。
The near infrared absorption wavelength range used for measurement is not particularly limited, and is usually 750 to 2,100.
in the wavelength range of 1,150 to 1,250 nm, where the absorption is seen in the aminoformaldehyde resin, 1,320
~ 1,450 nm, 1,450-1,500 nm, 1,
500-1,600nm, 1,650-1,740n
m, 1,750-1,850 nm, 1,860-1,9
The wavelength region in which the time-dependent change in absorbance occurs can be selected from 80 nm and 2,000 to 2,100 nm. Among them, the amino group in the compound (A) or the aminoformaldehyde resin obtained in the present invention can be selected. It is preferable to measure the absorption wavelength region due to the methylol group in the methylol compound which is a reaction intermediate, specifically, in the case of the amino group, 1,450 to 1,500 nm, and the methylol group in the methylol compound is measured. In case of 1,500-1,6
A region of 00 nm can be mentioned.

【0012】ここで、上記の溶剤希釈価とは、反応液を
一定量(g)採り定められた温度(25℃)で所定の溶
剤を加え溶液に混濁が認められる時の溶剤量(ml)を
読みとり,反応液の単位重量当たりの溶剤量をもって表
した数値を言う。
Here, the above-mentioned solvent dilution value means a certain amount (g) of a reaction solution, a predetermined solvent at a predetermined temperature (25 ° C.), and a solvent amount (ml) when a turbidity is observed in the solution. Is read and the value is expressed as the amount of solvent per unit weight of the reaction solution.

【0013】本発明で用いるメラミン、尿素およびグア
ナミンから選ばれる化合物(A)とは、夫々1分子あた
りアミノ基を2個以上、好ましくは2〜5個有する化合
物であり、例えば、アセトグアナミン、ベンゾグアナミ
ン、フェニルアセトグアナミン、フタログアナミン、C
TUグアナミン等のグアナミン化合物、尿素,メラミン
が挙げられる。これらはそれぞれ単独で用いてもよい
し、また、2種以上を併用してもよい。
The compound (A) selected from melamine, urea and guanamine used in the present invention is a compound having two or more, preferably 2 to 5, amino groups per molecule, and examples thereof include acetoguanamine and benzoguanamine. , Phenylacetoguanamine, phthaloguanamine, C
Examples include guanamine compounds such as TU guanamine, urea, and melamine. These may be used alone or in combination of two or more.

【0014】ホルムアルデヒド(B)とは、特に限定さ
れるものではないが、ホルマリン、パラホルムアルデヒ
ド等が挙げられる。これらはそれぞれ単独で用いてもよ
いし、また、2種以上を併用してもよい。
The formaldehyde (B) is not particularly limited, but examples thereof include formalin and paraformaldehyde. These may be used alone or in combination of two or more.

【0015】本発明で用いるアルコール類(C)は、メ
ラミン、尿素およびグアナミンから選ばれる化合物
(A)とホルムアルデヒド(B)との反応によって得ら
れるメチロール化物をアルキル化する為の必須の成分で
あり、特にその構造が限定されるものではなく、通常、
一般式CnH(2n+1)OHで表せるモノアルキルアルコ
ールが何れも使用できる。nの値は特に制限されるもの
ではないが、通常1〜8の整数であり、n=1〜3の低
分子量のアルコール類(C)を用いた場合はより親水性
のアミノホルムアルデヒド樹脂となり、n=4〜8の高
分子量のアルコール類(C)を用いた場合は親油性が高
くなり油変性アルキド、オイルフリーアルキド、アクリ
ル樹脂などと相溶性のよいアミノホルムアルデヒド樹脂
となる。この様なアルコール類(C)としては、例え
ば、メタノール、エタノール、n−プロパノール、is
o−プロパノール;n−ブタノール、iso−ブタノー
ル、sec−ブタノール、tert−ブタノール、n−
アミルアルコール、tert−アミルアルコール、n−
ヘキシルアルコール、sec−ヘキシルアルコール、2
−メチルペンタノール、sec−ヘキシルアルコール、
2−エチルブチルアルコール、sec−ヘプチルアルコ
ール、n−オクチルアルコール、2−エチルヘキシルア
ルコール、sec−オクチルアルコール、シクロヘキサ
ノール等が挙げられる。これらのアルコール類(C)
は、単独でも或いは2種以上併用してもよく、また、反
応溶媒として過剰に用いる事もできる。
The alcohol (C) used in the present invention is an essential component for alkylating a methylol compound obtained by reacting a compound (A) selected from melamine, urea and guanamine with formaldehyde (B). , Its structure is not particularly limited,
Any monoalkyl alcohol represented by the general formula CnH (2n + 1) OH can be used. The value of n is not particularly limited, but it is usually an integer of 1 to 8, and when a low molecular weight alcohol (C) of n = 1 to 3 is used, a more hydrophilic aminoformaldehyde resin is obtained, When a high molecular weight alcohol (C) having n = 4 to 8 is used, the lipophilicity becomes high and the aminoformaldehyde resin has good compatibility with oil-modified alkyd, oil-free alkyd, acrylic resin and the like. Examples of such alcohols (C) include methanol, ethanol, n-propanol, is
o-propanol; n-butanol, iso-butanol, sec-butanol, tert-butanol, n-
Amyl alcohol, tert-amyl alcohol, n-
Hexyl alcohol, sec-hexyl alcohol, 2
-Methylpentanol, sec-hexyl alcohol,
2-ethylbutyl alcohol, sec-heptyl alcohol, n-octyl alcohol, 2-ethylhexyl alcohol, sec-octyl alcohol, cyclohexanol and the like can be mentioned. These alcohols (C)
May be used alone or in combination of two or more, and may be used in excess as a reaction solvent.

【0016】メラミン、尿素およびグアナミンから選ば
れる化合物(A)とアルデヒド(B)とアルコール類
(C)との仕込み割合は、目的とするアミノホルムアル
デヒド樹脂の分子量或いは性質に応じ適宜選択でき、特
に限定されるものではないが、通常、(A)成分1モル
に対して、(B)成分が1〜12モル、(C)成分が2
〜20モルである。
The charging ratio of the compound (A) selected from melamine, urea and guanamine, the aldehyde (B) and the alcohols (C) can be appropriately selected according to the molecular weight or properties of the target aminoformaldehyde resin, and is particularly limited. However, usually 1 to 12 moles of the component (A) and 2 moles of the component (C) are used per 1 mole of the component (A).
~ 20 moles.

【0017】また、本発明においては更に水(D)を併
用することにより、化合物(A)のメチレン架橋をより
促進することができる。水(D)の使用量は特に限定さ
れるものではなく、目的とする分子量等に応じて選択し
て用いることができるが、反応系内の水の量が多いほ
ど、アルコール類(C)の反応性が鈍くなりアルキル化
し難い傾向にあるため、反応系内の水含有量を調整しな
がら反応を行なうことが好ましい。
Further, in the present invention, methylene crosslinking of the compound (A) can be further promoted by using water (D) together. The amount of water (D) to be used is not particularly limited and can be selected and used according to the desired molecular weight and the like. However, the larger the amount of water in the reaction system, the greater the amount of alcohol (C) It is preferable to carry out the reaction while adjusting the water content in the reaction system, because the reactivity becomes dull and the alkylation tends to be difficult.

【0018】メラミン、尿素およびグアナミンから選ば
れる化合物(A)とアルデヒド(B)とアルコール類
(C)とを反応させる方法は、公知の方法によることが
でき、例えば予めホルムアルデヒド(B)をアルコール
類(C)若しくは更に水(D)に溶解しておき、次いで
メラミン、尿素およびグアナミンからなる化合物(A)
を加えてもよいし、また、ホルムアルデヒド(B)が固
形である場合には(A)〜(C)若しくは更に(D)を
同時に混合してもよい。
The method of reacting the compound (A) selected from melamine, urea and guanamine with the aldehyde (B) and the alcohols (C) may be a known method, for example, formaldehyde (B) is previously reacted with alcohols. (C) or further dissolved in water (D) and then compound (A) consisting of melamine, urea and guanamine
Alternatively, when formaldehyde (B) is solid, (A) to (C) or further (D) may be mixed at the same time.

【0019】また、具体的な方法としては、通常の攪拌
装置、加熱冷却装置、コンデンサ、セパレイタを具備し
た反応器に、上述した配合割合に従って、(A)〜
(C)或いは(A)〜(D)を仕込み、アルカリ条件下
で70〜120℃の温度域にてメチロール化反応させた
後、酸性条件下にてアルキルエーテル化反応及び縮合反
応を進め目標とする粘度或いは溶剤希釈価まで反応を行
わせることができる。製品としてはそのまま用いるか、
更には、未反応のアルデヒド、アルコールを減圧蒸留に
て除去し、その後、必要な溶剤で目的とする固形分含有
率に希釈して使用してもよい。
Further, as a specific method, a reactor equipped with an ordinary stirring device, heating / cooling device, condenser, and separator is used in accordance with the above-mentioned mixing ratio (A).
After charging (C) or (A) to (D) and carrying out a methylolation reaction in a temperature range of 70 to 120 ° C. under alkaline conditions, an alkyl etherification reaction and a condensation reaction are promoted under acidic conditions as a target. The reaction can be carried out up to the desired viscosity or solvent dilution value. Do you use it as a product as it is,
Furthermore, the unreacted aldehyde and alcohol may be removed by distillation under reduced pressure, and then diluted with a necessary solvent to a desired solid content, and then used.

【0020】この様にして反応を進行させ、近赤外線吸
光度を連続的或いは断続的に測定し、次いで、前記吸光
度が目標とする粘度或いは溶剤希釈価の相当する値に到
達した時に、冷却し反応を終了させることができる。
The reaction is allowed to proceed in this way, and the near-infrared absorbance is measured continuously or intermittently. Then, when the absorbance reaches the target value of the viscosity or the solvent dilution value, the reaction is cooled. Can be terminated.

【0021】この様にして得られるアミノホルムアルデ
ヒド樹脂において、その分子量はアルキド樹脂の架橋剤
或いは成形用樹脂等の用途によって異なり、特に限定さ
れるものではないが、例えば、アルキド樹脂の架橋剤等
の焼き付け型塗料の架橋剤として用いる場合には、数平
均分子量が200〜10,000、好ましくは300〜
7,000の範囲が挙げられる。本発明においては、極
めて正確な溶剤希釈価のものが得られるので特に上記焼
き付け型塗料として有用である。
In the aminoformaldehyde resin thus obtained, the molecular weight thereof varies depending on the use of the alkyd resin cross-linking agent or the molding resin and is not particularly limited. For example, the alkyd resin cross-linking agent or the like may be used. When used as a cross-linking agent for baking type paints, the number average molecular weight is 200 to 10,000, preferably 300 to
The range is 7,000. In the present invention, an extremely accurate solvent dilution value can be obtained, which is particularly useful as the above-mentioned baking type paint.

【0022】反応液中の近赤外線吸光度を測定する方法
としては、特に限定されるものではなく、例えば反応
器から直接反応液をサンプリングするか、反応器に樹
脂循環用ラインを設けて反応液をサンプリングして近赤
外分光分析計にかけて測定する方法、或いは反応器内
または樹脂循環ライン内に近赤外光の照射及び受光部位
が配設され、かつ該部位と近赤外分光計とが光ファイバ
ーケーブルを介して接続されたシステムを用いる方法が
挙げられる。これらの中でも特に、測定と同時に反応液
中の反応進行状態が把握でき、しかも連続的に測定可能
である点からの反応器内に近赤外光の照射及び受光部
位が配設され、かつ、該部位と近赤外分光分析計とが光
ファイバーケーブルを介して接続されたシステムを用い
る方法が好ましい。
The method of measuring the near-infrared absorbance in the reaction solution is not particularly limited, and for example, the reaction solution is sampled directly from the reactor or a resin circulation line is provided in the reactor to prepare the reaction solution. A method of sampling and measuring with a near-infrared spectrophotometer, or a site for irradiating and receiving near-infrared light in a reactor or a resin circulation line, and the site and the near-infrared spectrometer are optical fibers There is a method using a system connected via a cable. Among these, in particular, the reaction progress state in the reaction solution can be grasped at the same time as the measurement, and the near-infrared light irradiation and light receiving parts are arranged in the reactor from the point of being capable of continuous measurement, and, A method using a system in which the site and the near infrared spectrophotometer are connected via an optical fiber cable is preferable.

【0023】また、近赤外光の照射及び受光部位とは反
応液に対して近赤外光を照射し反応液中を透過した光を
受光して近赤外スペクトルが採取できるもの、或いは、
反応液へ近赤外光を照射し、その反射光を受光して近赤
外スペクトルを採取できるものを示し、特に限定される
ものではないが、照射部と受光部とが一体になっており
反応液中に近赤外光を透過せしめる、所謂プローブを用
いることが好ましい。
The near-infrared light irradiating and light-receiving part is one that irradiates the reaction solution with near-infrared light and receives light transmitted through the reaction solution to collect a near-infrared spectrum, or
It shows the one that can irradiate the reaction solution with near-infrared light and receive the reflected light to collect the near-infrared spectrum.It is not particularly limited, but the irradiation part and the light-receiving part are integrated. It is preferable to use a so-called probe that allows near-infrared light to pass through the reaction solution.

【0024】光ファイバーケーブルとしては、近赤外光
を伝送でき、かつ、近赤外波長域において近赤外光の吸
収のない材質のものであればよく、特に限定されるもの
ではないが、伝送媒体として石英製光ファイバーを用
い、ファイバーの外周をフッ素樹脂またはイミド樹脂で
保護被覆し、更にシリコンゴム、炭素繊維、金属製金網
等で強化したものが好ましく、その断面の直径は、価
格、ケーブルの柔軟性等から通常、0.3〜0.6mm
である。また、この光ファイバーを50〜200本の束
にしケーブルとして用いてもよい。
The optical fiber cable is not particularly limited as long as it is made of a material that can transmit near infrared light and does not absorb near infrared light in the near infrared wavelength range. It is preferable to use an optical fiber made of quartz as a medium, the outer periphery of the fiber is protected and coated with a fluororesin or an imide resin, and further reinforced with silicon rubber, carbon fiber, metal wire mesh, etc. Usually 0.3 ~ 0.6mm due to flexibility
Is. In addition, a bundle of 50 to 200 of the optical fibers may be used as a cable.

【0025】プローブを用いて測定する場合、その配設
場所はプローブが反応液に浸され、反応液が流動してい
る所であればよく、特に限定されるものではない。本発
明に用いられる近赤外分光分析計は市販のものが何れも
使用できるが、好ましくは750〜2,100nmの測
定波長範囲で、測光ノイズ吸光度値0.00002以下
であり波長精度0.5nmで連続的にスペクトル測定で
きるもの、または6〜19枚の固定フィルターを使って
750〜2,500nmの中から測定波長を選択して吸
光度または透過率を分光測定できるものが適当である。
更に、上述した様な吸光度の数値から回帰分析によって
粘度値或いは溶剤希釈価を解析演算処理できるものが好
ましい。
When the measurement is performed using a probe, the location of the probe is not particularly limited as long as the probe is immersed in the reaction solution and the reaction solution is flowing. As the near-infrared spectrophotometer used in the present invention, any commercially available one can be used, but preferably in the measurement wavelength range of 750 to 2,100 nm, the photometric noise absorbance value is 0.00002 or less and the wavelength accuracy is 0.5 nm. It is suitable to continuously measure the spectrum with the above method, or to measure the absorbance or the transmittance by selecting the measurement wavelength from 750 to 2,500 nm using 6 to 19 fixed filters.
Further, it is preferable that the viscosity value or the solvent dilution value can be analytically calculated by regression analysis from the above-mentioned absorbance values.

【0026】近赤外分光分析計による吸光度の測定は、
その測定時間の間隔は特に限定されるものではなく、3
0分以内の間隔若しくは連続的に測定できるが、15分
以内の間隔若しくは連続的に測定することがより好まし
い。この間隔であれば反応の状況を手分析法に比べて,
いち早く知ることができ、反応器へのフィードバック制
御が迅速になり、品質のより安定した製品を効果的に得
ることができる。
Measurement of absorbance by a near infrared spectrophotometer
The interval of the measurement time is not particularly limited, and 3
The measurement can be performed within an interval of 0 minutes or continuously, but it is more preferably within 15 minutes or continuously. With this interval, the reaction situation compared to the manual analysis method,
It is possible to quickly find out, the feedback control to the reactor becomes quick, and a product with more stable quality can be effectively obtained.

【0027】本発明においては、近赤外分光分析計から
更に反応制御コンピュータに接続し反応の制御を自動的
に行なうことが製品の安定化、或いは製造の効率化の点
から好ましい。
In the present invention, it is preferable that the near infrared spectrophotometer is further connected to a reaction control computer to automatically control the reaction from the viewpoint of product stabilization or production efficiency.

【0028】ここで、反応制御コンピュータとは、近赤
外分光分析計によって示される吸光度を所定の演算式に
入れ算出された計算値(粘度、溶剤希釈価)に基づい
て、所謂フィードバック制御により温度制御若しくはp
H調整剤の添加等により反応を制御し、粘度或いは溶剤
希釈価が目標とする値に到達した時点で冷却工程に移り
反応を止めるシーケンス制御も可能であるようにプログ
ラムされたものである。また、反応制御コンピュータは
更にプロセス制御機器へ接続されており、オンラインで
操作信号を伝達し自動制御するものである。
Here, the reaction control computer means temperature control by so-called feedback control based on calculated values (viscosity, solvent dilution value) calculated by putting the absorbance indicated by the near infrared spectrophotometer into a predetermined arithmetic expression. Control or p
The sequence is controlled so that the reaction can be controlled by adding an H adjuster and the sequence can be stopped by moving to the cooling step when the viscosity or the solvent dilution value reaches a target value. Further, the reaction control computer is further connected to the process control device and transmits an operation signal online to automatically control.

【0029】このような制御用コンピュータとしては、
例えば横河電機(株)製の「CENTUM」、「CENTUM μ-X
L」、山武ハネウエル(株)製の「TDCS-3000LCN」等の
専用機種に加えてコンピュータ一般の公知のものが何れ
も使用できる。
As such a control computer,
For example, "CENTUM", "CENTUM μ-X" manufactured by Yokogawa Electric Corporation
In addition to dedicated models such as "L" and "TDCS-3000LCN" manufactured by Yamatake Honeywell Co., any known computer can be used.

【0030】[0030]

【実施例】以下、実施例及び比較例を示して本発明を具
体的に説明するが、本発明はこれらの実施例に限定され
るものではない。また、実施例で使用した近赤外波長は
一例であり、反応の内容、条件が変わることによって測
定波長は、長波長側または短波長側にシフトする。
The present invention will be specifically described below with reference to examples and comparative examples, but the present invention is not limited to these examples. The near-infrared wavelength used in the examples is an example, and the measurement wavelength shifts to the long wavelength side or the short wavelength side depending on the reaction content and conditions.

【0031】実施例1 第1図に示す様に攪拌装置、コンデンサ、セパレイタ、
加熱冷却装置、真空装置、温度センサ、プローブを取り
付けた1000リットルの反応器に、近赤外分光分析計、反応制
御コンピュータを接続し反応装置を組み、前記反応器に
iso-フ゛タノール481部(6.5モル)、メラミン126部(1モル)、80%ハ゜ラホルムア
ルテ゛ヒト゛187.3部(5モル)を仕込んで80℃に昇温しアルカリ条
件下で30分間メチロール化反応を行い、しかる後酸性条
件下で、加熱、還流脱水させながらアルキルエーテル化
反応、縮合化反応を進行せしめ、反応器内の反応進行度
を近赤外分光光度計を用いて1478nmの吸光度値を測定
しながら反応した。n−ヘキサン希釈価測定による反応
進行度と吸光度値との関係から予め求めた次の演算式に
て5分間隔で測定、算出し、その値をもとにn−ヘキサ
ン希釈価が4.00を示した時点で、自動的に冷却し反応を
終了させた。得られた反応生成溶液の、n−ヘキサン希
釈価(ml/g樹脂、25℃)を測定したところ4.00であっ
た。
Example 1 As shown in FIG. 1, a stirring device, a condenser, a separator,
A 1000 liter reactor equipped with a heating / cooling device, a vacuum device, a temperature sensor, and a probe is connected to a near-infrared spectrophotometer and a reaction control computer to assemble the reactor,
481 parts (6.5 mol) of iso-butanol, 126 parts (1 mol) of melamine, and 187.3 parts (5 mol) of 80% paraformaldehyde were charged, the temperature was raised to 80 ° C, and the methylolation reaction was carried out for 30 minutes under alkaline conditions. Under post-acidic conditions, the alkyl etherification reaction and condensation reaction are allowed to proceed while heating and refluxing dehydration, and the reaction progress in the reactor is measured by measuring the absorbance value at 1478 nm using a near infrared spectrophotometer. did. The n-hexane dilution value shows 4.00 based on the value calculated from the relationship between the reaction progress rate and the absorbance value measured by the n-hexane dilution value, calculated at 5 minute intervals by the following calculation formula. At that point, the reaction was automatically terminated by cooling. When the n-hexane dilution value (ml / g resin, 25 ° C.) of the obtained reaction product solution was measured, it was 4.00.

【0032】Y1=517X12−584X1+165 ただし、Y1:n−ヘキサン希釈価 X1:1478nmの吸光度 しかるのち、減圧蒸留して脱溶剤を行い、キシレン/i
so−ブタノール=30/70(重量比)なる混合溶剤
で希釈した。得られた樹脂は固形分59.3%、粘度(ガー
ドナ、25℃)S−Tであった。また、固形分の数平均分
子量はGPCによるポリスチレン標準物質からの換算値
で950であった。
Y1 = 517X1 2 -584X1 +165 However, the absorbance of Y1: n-hexane dilution value X1: 1478 nm was measured. Then, the solvent was distilled off under reduced pressure to remove xylene / i.
It was diluted with a mixed solvent of so-butanol = 30/70 (weight ratio). The obtained resin had a solid content of 59.3% and a viscosity (Gardner, 25 ° C.) S-T. Further, the number average molecular weight of the solid content was 950 in terms of the value converted from the polystyrene standard substance by GPC.

【0033】実施例2 実施例1と同様にして反応装置を組み、反応器にn-フ゛タノ
ール518部(7.0モル)、80%ハ゜ラホルムアルテ゛ヒト゛225部(6モル)、水72部
(4モル)、メラミン126部(1モル)を仕込んで攪拌混合し95℃に昇
温してメチロール化反応させ、次いで酸性条件下、加
熱、還流脱水させながら反応を進行せしめ、反応器内の
反応進行度を近赤外分光光度計を用いて1476nmの吸光
度値を測定しながら反応した。n−ヘキサン希釈価と吸
光度値との関係から予め求めた次の演算式にて5分間隔
で測定、算出し、n−ヘキサン希釈価が6.80を示した時
点で、自動的に10%水酸化ナトリウム水溶液を仕込み、
pHを7.0とし、次いで冷却して反応を終了させた。得
られた反応生成溶液の、n−ヘキサン希釈価(ml/g樹
脂、25℃)を測定したところ6.80であった。
Example 2 A reaction apparatus was assembled in the same manner as in Example 1, and 518 parts (7.0 mol) of n-butanol, 225 parts (6 mol) of 80% paraformaldehyde were added to the reactor, and 72 parts of water.
(4 mol), 126 parts (1 mol) of melamine were charged, mixed with stirring, heated to 95 ° C. to cause a methylolation reaction, and then allowed to proceed under acidic conditions with heating and reflux dehydration to allow the reaction to proceed. The reaction progress was performed by measuring the absorbance value at 1476 nm using a near infrared spectrophotometer. It was measured and calculated at 5-minute intervals by the following calculation formula previously obtained from the relationship between the n-hexane dilution value and the absorbance value, and when the n-hexane dilution value showed 6.80, 10% hydroxylation was automatically performed. Charge the sodium aqueous solution,
The pH was brought to 7.0 and then cooled to terminate the reaction. When the n-hexane dilution value (ml / g resin, 25 ° C.) of the obtained reaction product solution was measured, it was 6.80.

【0034】Y2=1739X22−1754X2+446 ただし、Y2:n−ヘキサン希釈価 X2:1476nmの吸光度 しかるのち、減圧蒸留で脱溶剤を行ない、次いでキシレ
ンで希釈した。得られた樹脂は固形分60.2%、粘度F−
Gであった。また、固形分の数平均分子量はGPCによ
るポリスチレン標準物質からの換算値で1400であっ
た。
Y2 = 1739X2 2 −1754X2 + 446 However, the dilution value of Y2: n-hexane X2: the absorbance at 1476 nm, the solvent was removed by vacuum distillation, and then diluted with xylene. The obtained resin has a solid content of 60.2% and a viscosity of F-
It was G. Further, the number average molecular weight of the solid content was 1400 in terms of the value converted from the polystyrene standard substance by GPC.

【0035】実施例3 実施例1と同様にして反応装置を組み、反応器にiso-フ゛
タノール444部(6.0モル)、80%ハ゜ラホルムアルテ゛ヒト゛97.5部(2.6モル)、
水79.2部(4.4モル)、ヘ゛ンソ゛ク゛アナミン245部(1モル)を仕込んで攪
拌混合し95℃に昇温してメチロール化反応させ、次いで
酸性条件下、反応を進行せしめ、1484nmの吸光度値を
測定しながら反応した。メタノール希釈価と吸光度値と
の関係から予め求めた次の演算式にて10分間隔で測
定、算出しメタノール希釈価が0.60を示した時点で自動
的に冷却して反応を終了させた。得られた反応生成溶液
の、メタノール希釈価(ml/g樹脂、25℃)を測定した
ところ0.60であった。
Example 3 A reaction apparatus was assembled in the same manner as in Example 1, and 444 parts (6.0 mol) of iso-butanol, 97.5 parts (2.6 mol) of 80% paraformaldehyde were added to the reactor.
79.2 parts of water (4.4 mol) and 245 parts of benzoguanamine (1 mol) were charged, mixed with stirring, heated to 95 ° C. to cause a methylolation reaction, then the reaction was allowed to proceed under acidic conditions, and the absorbance value at 1484 nm was measured. While reacting. The reaction was terminated by automatically cooling when the methanol dilution value showed 0.60, which was measured and calculated at 10-minute intervals by the following arithmetic expression previously obtained from the relationship between the methanol dilution value and the absorbance value. The methanol dilution value (ml / g resin, 25 ° C.) of the obtained reaction product solution was measured and found to be 0.60.

【0036】Y3=18.712X3−9.644 ただし、Y3:メタノール希釈価 X3:1484nmの吸光度 しかるのち、減圧蒸留して脱溶剤を行い、ソルヘ゛ッソ100/フ
゛チルセロソルフ゛=80/20(重量比)の混合溶剤で希釈し
た。得られた樹脂は固形分66.5%、粘度V−Wであった
また、固形分の数平均分子量はGPCによるポリスチレ
ン標準物質からの換算値で980であった。
Y3 = 18.712 X3-9.644 However, Y3: Methanol dilution value X3: Absorbance at 1484 nm, then remove the solvent by distillation under reduced pressure and mix solvent 100 / butyl cellosolve = 80/20 (weight ratio). Diluted with solvent. The resin thus obtained had a solid content of 66.5% and a viscosity of V-W, and the number average molecular weight of the solid content was 980 in terms of the value converted from a polystyrene standard substance by GPC.

【0037】実施例4 実施例1と同様にして反応装置を組み、反応器にn-フ゛タノ
ール148部(2.0モル)、80%ハ゜ラホルムアルテ゛ヒト゛112.5部(3モル)、水18
部(0.9モル)、尿素60部(1.0モル)を仕込んで攪拌混合しアル
カリ性条件下で、95℃にて1時間反応させた後、pH3.
5の酸性条件下、加熱、還流脱水させながらアルキルエ
ーテル化反応、縮合反応を進行せしめ、近赤外分光光度
計を用いて1570nmの吸光度値を測定しながら反応し
た。n−ヘキサン希釈価測定値と吸光度値との関係から
予め求めた次の演算式にて20分間隔で測定、算出しn
−ヘキサン希釈価が2.90を示した時点で自動的に冷却し
反応を終了させた。得られた反応生成溶液の、n−ヘキ
サン希釈価(ml/g樹脂、25℃)を測定したところ2.90
であった。
Example 4 A reactor was assembled in the same manner as in Example 1, and 148 parts (2.0 mol) of n-butanol, 112.5 parts (3 mol) of 80% paraformaldehyde were added to the reactor, and 18 parts of water.
(0.9 mol) and 60 parts (1.0 mol) of urea were charged, mixed by stirring, and reacted under alkaline conditions at 95 ° C for 1 hour, and then pH was adjusted to 3.
Under acidic conditions of 5, the alkyl etherification reaction and the condensation reaction were allowed to proceed while heating and refluxing dehydration, and the reaction was performed while measuring the absorbance value at 1570 nm using a near infrared spectrophotometer. Measured and calculated at an interval of 20 minutes by the following arithmetic expression previously obtained from the relationship between the measured value of n-hexane dilution value and the absorbance value.
-When the hexane dilution value showed 2.90, the reaction was terminated by automatically cooling. When the n-hexane dilution value (ml / g resin, 25 ° C.) of the obtained reaction product solution was measured, it was 2.90.
Met.

【0038】Y4=−7.359X4+7.567 ただし、Y4:n−ヘキサン希釈価 X4:1570nmの吸光度 しかるのち、減圧蒸留して脱溶剤を行い、キシロール/n-フ゛タ
ノール=60/40(重量比)の混合溶剤で希釈した。得
られた樹脂は固形分60.4%、粘度Rであった。また、固
形分の数平均分子量はGPCによるポリスチレン標準物
質からの換算値で1060であった。
Y4 = -7.359 X4 + 7.567 However, Y4: n-hexane dilution value X4: Absorbance at 1570 nm After that, the solvent was removed by vacuum distillation to obtain xylol / n-butanol = 60/40 (weight ratio). It diluted with the mixed solvent of. The obtained resin had a solid content of 60.4% and a viscosity R. Further, the number average molecular weight of the solid content was 1060 in terms of the value converted from the polystyrene standard substance by GPC.

【0039】比較例1 実施例1と同様にして反応装置を組み、同じ反応操作に
て反応を進行せしめ、反応器内の樹脂を30分間隔でサン
プリングし公知の手分析法であるn−ヘキサン希釈価測
定(ml/g樹脂,25℃)を行い、横軸にサンプリング
時刻を、縦軸にn−ヘキサン希釈価を取り測定値をプロ
ットしグラフの曲線より反応の速度を把握し、n−ヘキ
サン希釈価(ml/g樹脂、25℃)4.00を目指して還流脱
水を終了させる時点を推定した。次いで冷却して反応を
終了し、得られた反応生成溶液のn−ヘキサン希釈価を
測定したところ4.30であった。
Comparative Example 1 A reaction apparatus was assembled in the same manner as in Example 1, the reaction was allowed to proceed in the same reaction operation, and the resin in the reactor was sampled at intervals of 30 minutes to obtain n-hexane which is a known manual analysis method. Dilution value measurement (ml / g resin, 25 ° C) is performed, sampling time is plotted on the horizontal axis and n-hexane dilution value is plotted on the vertical axis, and the measured values are plotted to grasp the reaction speed from the curve of the graph. The time to complete the reflux dehydration was estimated aiming at a hexane dilution value (ml / g resin, 25 ° C.) of 4.00. Then, the reaction was terminated by cooling, and the n-hexane dilution value of the obtained reaction product solution was measured and found to be 4.30.

【0040】しかるのち、減圧蒸留による脱溶剤を行
い、キシレン/iso−ブタノール=30/70(重量
比)なる混合溶剤で希釈した。得られた樹脂は固形分6
0.1%、粘度(ガードナ、25℃)S−Tであった。ま
た、固形分の数平均分子量はGPCによるポリスチレン
標準物質からの換算値で1180であった。
After that, the solvent was removed by distillation under reduced pressure and diluted with a mixed solvent of xylene / iso-butanol = 30/70 (weight ratio). The resin obtained has a solid content of 6
0.1%, viscosity (Gardner, 25 ° C) S-T. Moreover, the number average molecular weight of the solid content was 1180 in terms of the value converted from the polystyrene standard substance by GPC.

【0041】[0041]

【発明の効果】本発明によれば、所望の品質、特に所望
の溶剤希釈価や粘度を有する目的物を容易に得ることが
出来また、反応操作上の安全性が格段に優れるアミノホ
ルムアルデヒド樹脂の製造法を提供できる。
INDUSTRIAL APPLICABILITY According to the present invention, it is possible to easily obtain an intended product having a desired quality, particularly a desired solvent dilution value and viscosity, and to provide an aminoformaldehyde resin which is remarkably excellent in safety in reaction operation. A manufacturing method can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は実施例1で用いた装置による工程図であ
る。
FIG. 1 is a process drawing of the apparatus used in Example 1.

【符号の説明】[Explanation of symbols]

1:原料槽、2:攪拌機、3:反応槽、4:ジャケッ
ト、5:コンデンサ、6:セパレイタ、7:冷却水入
口、8:温度センサ、9:プローブ、10:光ファイバ
ーケーブル、11:近赤外分光分析計、12:DCS、
13:スチーム入口、14:真空装置、15:数値演算
装置
1: raw material tank, 2: agitator, 3: reaction tank, 4: jacket, 5: condenser, 6: separator, 7: cooling water inlet, 8: temperature sensor, 9: probe, 10: optical fiber cable, 11: near red External spectrophotometer, 12: DCS,
13: steam inlet, 14: vacuum device, 15: numerical operation device

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 メラミン、尿素およびグアナミンから選
ばれる化合物(A)とホルムアルデヒド(B)とアルコ
ール類(C)とを反応器に供給し反応を進行させなが
ら、反応液中の近赤外線吸光度を連続的又は断続的に測
定し、その測定値が予め設定された値に到達した時点で
反応を終了させることを特徴とするアミノホルムアルデ
ヒド樹脂の製造法。
1. A near infrared absorptivity in a reaction solution is continuously fed while a compound (A) selected from melamine, urea and guanamine, formaldehyde (B) and alcohols (C) are fed to a reactor to proceed the reaction. A method for producing an aminoformaldehyde resin, characterized in that the reaction is terminated when the measured value reaches a preset value.
【請求項2】 アミノホルムアルデヒド樹脂の数平均分
子量が200〜10,0000である請求項1記載の製
造法。
2. The method according to claim 1, wherein the aminoformaldehyde resin has a number average molecular weight of 200 to 10,000.
【請求項3】 更に、水(D)を併用する請求項1また
は2記載の製造法。
3. The method according to claim 1 or 2, which further comprises using water (D) together.
【請求項4】 反応器内に近赤外の照射及び受光部位が
配設され、かつ該部位と近赤外分光計とが光ファイバー
ケーブルを介して接続されたシステムを用いて反応液中
の近赤外線吸光度を測定する請求項1、2または3記載
の製造法。
4. A system in which near-infrared irradiation and light-receiving parts are arranged in the reactor, and the parts and the near-infrared spectrometer are connected via an optical fiber cable The method according to claim 1, 2 or 3, wherein infrared absorption is measured.
【請求項5】 反応器内に近赤外光の照射及び受光部位
が配設され、かつ、該部位と近赤外分光分析計とが、光
ファイバーケーブルを介して接続され、更に該近赤外分
光分析計が反応制御コンピュータに接続されているシス
テムを用いて反応液中の吸光度を測定し、その測定値が
予め設定された値に到達した時点で反応を自動的に終了
させる請求項4記載の製造法。
5. A reactor for irradiating and receiving near-infrared light is provided in the reactor, and the region and the near-infrared spectrophotometer are connected through an optical fiber cable, and the near-infrared light is further provided. 5. The spectrophotometer measures the absorbance in the reaction solution using a system connected to a reaction control computer, and the reaction is automatically terminated when the measured value reaches a preset value. Manufacturing method.
【請求項6】 波長領域が1400〜1600nmの近
赤外線の吸光度を測定する請求項4または5記載の製
法。
6. The method according to claim 4, wherein the absorbance of near infrared rays having a wavelength range of 1400 to 1600 nm is measured.
JP24266993A 1993-09-29 1993-09-29 Production of aminoformaldehyde resin Pending JPH0797420A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24266993A JPH0797420A (en) 1993-09-29 1993-09-29 Production of aminoformaldehyde resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24266993A JPH0797420A (en) 1993-09-29 1993-09-29 Production of aminoformaldehyde resin

Publications (1)

Publication Number Publication Date
JPH0797420A true JPH0797420A (en) 1995-04-11

Family

ID=17092482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24266993A Pending JPH0797420A (en) 1993-09-29 1993-09-29 Production of aminoformaldehyde resin

Country Status (1)

Country Link
JP (1) JPH0797420A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002051898A1 (en) * 2000-12-22 2002-07-04 Ari Ltd. Use of nir (near-infrared spectroscopy) in composite panel production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002051898A1 (en) * 2000-12-22 2002-07-04 Ari Ltd. Use of nir (near-infrared spectroscopy) in composite panel production

Similar Documents

Publication Publication Date Title
Poljansek et al. Characterization of phenol-formaldehyde prepolymer resins by in line FT-IR spectroscopy
Salehpour et al. Reaction monitoring of glycerol step‐growth polymerization using ATR‐FTIR spectroscopy
Dixon et al. The dissociation constants of melamine and certain of its compounds
Pu et al. Hydrolysis kinetics and stability of bis (triethoxysilyl) ethane in water-ethanol solution by FTIR spectroscopy
CN100516053C (en) Continuous method for producing highly methylolated melamine and etherified melamine formaldehyde resins
JP2012506472A (en) High purity diphenyl sulfone, preparation, and its use for the preparation of poly (aryl ether ketone)
CN108164500A (en) For producing the method for cyclic acetal in heterogeneous reaction system
JPH0797420A (en) Production of aminoformaldehyde resin
WO2002051898A1 (en) Use of nir (near-infrared spectroscopy) in composite panel production
JP6732804B2 (en) Method for producing aqueous hydrolyzate of aminoalkyl trialkoxysilane
Pedroso et al. Melamine/epichlorohydrin prepolymers: syntheses and characterization
Saxon et al. Crosslinking reactions of acrylic polymers containing carboxyl groups with melamine resins
US20100137450A1 (en) Process for the preparation of aqueous formaldehyde solutions
JPH02248417A (en) Production of high-molecular weight phenol resin
JPH06322054A (en) Production of phenol resin
RU2046808C1 (en) Method of synthesis ureaformaldehyde resin
Pavlyuchenko et al. Transetherification of melamine–formaldehyde resin methyl ethers and competing reaction of self‐condensation
JPH06220162A (en) Production of resin
Amin et al. Formation of alkoxy groups in the synthesis of butylated urea formaldehyde resins: Reaction mechanism and kinetic model
CN118085398B (en) Method for recycling polymer waste into functional high-activity polymer wax
Sepulchre et al. Synthesis and rheological study of some maleic acid and fumaric acid stereoregular polyesters, 6. Influence of some parameters on the polycondensation reaction of potassium maleate and 1, 4‐dihalogenobutanes
JP5956816B2 (en) Method for producing polyvinyl acetal resin
Jawanjal et al. Kinetics and mechanism of oxidation of substituted benzyl alcohol by polymer supported oxidizing agent
JPH03169833A (en) Preparation of 2-hydroxy-4-(2'-hydroxyethoxy)- phenylarylketone
RU2167888C2 (en) METHOD OF SYNTHESIS OF γ-POLYOXYMETHYLENE