JPH0797089B2 - Hardness measuring method for hardened steel by X-ray diffraction using Gaussian curve - Google Patents

Hardness measuring method for hardened steel by X-ray diffraction using Gaussian curve

Info

Publication number
JPH0797089B2
JPH0797089B2 JP58008944A JP894483A JPH0797089B2 JP H0797089 B2 JPH0797089 B2 JP H0797089B2 JP 58008944 A JP58008944 A JP 58008944A JP 894483 A JP894483 A JP 894483A JP H0797089 B2 JPH0797089 B2 JP H0797089B2
Authority
JP
Japan
Prior art keywords
hardness
standard deviation
following equation
diffraction
ray intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58008944A
Other languages
Japanese (ja)
Other versions
JPS59155743A (en
Inventor
政則 栗田
Original Assignee
政則 栗田
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 政則 栗田 filed Critical 政則 栗田
Priority to JP58008944A priority Critical patent/JPH0797089B2/en
Publication of JPS59155743A publication Critical patent/JPS59155743A/en
Publication of JPH0797089B2 publication Critical patent/JPH0797089B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、X線回折により焼入れたままの鋼材およひ焼
入れ後種々の温度で焼戻した鋼材の硬度を測定する方法
に関するものである。
Description: TECHNICAL FIELD The present invention relates to a method for measuring the hardness of an as-quenched steel material and a steel material quenched at various temperatures after quenching by X-ray diffraction.

〔従来の技術及び発明が解決しようとする課題〕[Problems to be Solved by Prior Art and Invention]

以下の説明では、焼入れたままの鋼材および焼入れ後種
々の温度で焼戻した鋼材を便宜上焼入鋼と言う。
In the following description, the as-quenched steel material and the steel material that has been tempered at various temperatures after quenching are referred to as hardened steel for the sake of convenience.

一般的に、焼入鋼の硬度測定は焼入鋼の焼入性の判定や
強度の評価に不可欠である。
Generally, hardness measurement of hardened steel is indispensable for judging hardenability and evaluation of strength of hardened steel.

従来広く用いられていたビッカース硬度など硬度計によ
る硬度測定は、材料から試験片を切り出し、測定する部
位を研磨する必要があり、多くの労力と費用を要した。
Hardness measurement using a hardness meter such as Vickers hardness which has been widely used conventionally requires cutting out a test piece from a material and polishing a portion to be measured, which requires a lot of labor and cost.

そこで、焼入れによって鋼の組織がアルテンサイト化す
ると、X線による回折線の幅が著しく広がることに着目
して、焼入鋼の回折線半価幅と硬度との関係を明らかに
した研究が二三見られる。
Therefore, two studies have clarified the relationship between the half-value width of the diffraction line and the hardness of the hardened steel, focusing on the fact that the width of the diffraction line due to X-rays remarkably widens when the structure of the steel becomes altensite by quenching. Seen three times.

ここで、回折線とは第1図〜第3図に示したような回折
角xとX線強度yとの関係を示す曲線である。回折角x
とは、材料に入射したX線の方向と、材料から回折した
X線の方向とがなす角の捕角である。
Here, the diffraction line is a curve showing the relationship between the diffraction angle x and the X-ray intensity y as shown in FIGS. Diffraction angle x
Is the angle between the direction of X-rays incident on the material and the direction of X-rays diffracted from the material.

第1図で、回折線の裾野におけるX線強度の低い部分a
とeとを結んだ基線aeを、回折線のバックグラウンド
(BGで表す)と呼んでいる。
In FIG. 1, a portion a where the X-ray intensity is low at the foot of the diffraction line
The baseline ae that connects E and e is called the background of diffraction lines (represented by BG).

また半価幅Bとは、第1図に説明したように、BGよりも
上にある回折線の高さの半分の高さにおける回折線の幅
であり、回折線の広がりを表す尺度してよく用られてい
る。
The half-value width B is the width of the diffraction line at a height half the height of the diffraction line above BG, as described in FIG. It is often used.

しかし、半価幅による硬度測定は、第2図及び第3図に
示すように回折線全体のX線強度を測定する必要があり
多くの測定時間を要するのみならず、第3図に示したよ
うな幅広い回折線をもつ焼入鋼に対しては、半価幅測定
に必要な回折線バックグラウンドを正確に求めることは
困難であるという難点をもっており、いまだ実用化され
ていない。
However, in the hardness measurement by the half width, it is necessary to measure the X-ray intensity of the entire diffraction line as shown in FIG. 2 and FIG. With respect to hardened steel having such a wide range of diffraction lines, it is difficult to accurately obtain the diffraction line background required for measuring the half width, and it has not been put to practical use yet.

本発明は、上述のような硬度計による硬度測定及び回折
線半価幅による硬度側定の欠点を解決したもので、硬度
計で測定する為の小さい試験片を作製する必要が全くな
く、また製品や構造物を傷つけない非破壊的な硬度測定
方法であって、X線の照射さえできれば被測定物に接触
せずにその硬度を求めることのできるガウス曲線を用い
たX線回折による硬度測定方法を提供するものである。
The present invention solves the drawbacks of the hardness measurement by the hardness meter and the hardness determination by the diffraction line half width as described above, and there is no need to make a small test piece for measurement by the hardness meter at all. A non-destructive hardness measurement method that does not damage products and structures, and can measure the hardness without contacting the object to be measured as long as it can irradiate X-rays. Hardness measurement by X-ray diffraction using a Gaussian curve It provides a method.

〔課題を解決するための手段〕[Means for Solving the Problems]

本発明の要旨を説明する。 The gist of the present invention will be described.

焼入れたままの鋼材および焼入れ後種々の温度で焼戻し
た鋼材の一部を切り出していくつかの試験片を作製し、
これらの各試験片の硬度をビッカース硬度などの公知の
硬度測定方法により求めるとともにこれらの各試験片に
X線を照射して回折角とxとX線強度yとの関係を示す
各試験片の回折線を求め、この回折線の高さの50〜80%
以上の領域を下記の(1)式で表されるガウス曲線で近
似し、このガウス曲線を下記の(2)式で表される正規
確率密度関数と考えたとき下記(1)式の標準偏差αが
下記の(2)式の標準偏差σに相当することから下記の
(4)式を導き、下記の(4)式の標準偏差αを、下記
の(1)式の定数aを最小二乗法を用いて求め、この最
小二乗法で求めた定数aを簡易な式に変形した後、下記
の(4)式のaに代入して下記の(5)式を得ることに
より決定し、この下記の(5)式で決定される各試験片
に対する下記の(1)式の標準偏差αと前記公知の硬度
測定方法により求めた各試験片の硬度とを夫々縦軸及び
横軸にプロットすることによって前記標準偏差αと公知
の硬度との関係即ち較正曲線を作成し、続いて、前記の
熱処理をした鋼材と同材質の被測定物にX線を照射して
前記同様に標準偏差αを求め、この被測定物の標準偏差
αを前記較正曲線にあてはめて該被測定物の硬度を求め
ることを特徴とするガウス曲線を用いたX線回折による
焼入鋼の硬度測定方法に係るものである。
Some test pieces were prepared by cutting out a part of the as-quenched steel material and the tempered steel material at various temperatures after quenching,
The hardness of each of these test pieces is determined by a known hardness measuring method such as Vickers hardness, and each test piece is irradiated with X-rays to show the relationship between the diffraction angle and x and the X-ray intensity y. 50-80% of the height of this diffraction line
When the above area is approximated by a Gaussian curve represented by the following equation (1) and this Gaussian curve is considered as a normal probability density function represented by the following equation (2), the standard deviation of the following equation (1) Since α corresponds to the standard deviation σ of the following equation (2), the following equation (4) is derived, and the standard deviation α of the following equation (4) is calculated by using the constant a of the following equation (1) as a minimum of two. After the constant a obtained by the least squares method is transformed into a simple formula, it is determined by substituting it in a of the following formula (4) to obtain the following formula (5). The standard deviation α of the following equation (1) for each test piece determined by the following equation (5) and the hardness of each test piece obtained by the above-mentioned known hardness measuring method are plotted on the vertical axis and the horizontal axis, respectively. To obtain a relationship between the standard deviation α and known hardness, that is, a calibration curve, and to obtain the same value as the heat-treated steel material. Gauss characterized in that the object to be measured of the material is irradiated with X-rays to obtain the standard deviation α in the same manner as described above, and the standard deviation α of the object to be measured is applied to the calibration curve to obtain the hardness of the object to be measured. The present invention relates to a method for measuring the hardness of hardened steel by X-ray diffraction using a curve.

記 (1)式 y=C exp(−ax2+bx)(a>0,C>0) 但し、C,a,bは定数,xは回折角,yはX線強度である。Note (1) Formula y = C exp (−ax 2 + bx) (a> 0, C> 0) where C, a and b are constants, x is a diffraction angle, and y is an X-ray intensity.

(2)式 但し、σとμはそれぞれ正規確率密度関数の標準偏差と
平均値である。
Formula (2) However, σ and μ are the standard deviation and the average value of the normal probability density function, respectively.

(4)式 (5)式 但し、 Ti=12ti 2−n2+1 で、kは定数、Σはi=i〜nまでの和をとることを表
し、1nは自然対数を表し、yiはX線強度の測定値、cは
回折線に係る各測定点(回折角xi,X線強度yi)の回折角
xの間隔、即ちステップ幅、nはX線強度yの測定点の
数を表す。
Formula (4) Equation (5) However, T i = 12t i 2 −n 2 +1 , K is a constant, Σ is a sum of i = i to n, 1n is a natural logarithm, y i is a measurement value of X-ray intensity, and c is each measurement point related to the diffraction line ( The interval between the diffraction angles x of the bending angle x i and the X-ray intensity y i , that is, the step width, and n represents the number of measurement points of the X-ray intensity y.

〔作 用〕[Work]

本発明は、回折線のピーク付近に当てはめたガウス曲線
の標準偏差αが短時間で計算できる簡便な式を導き、こ
の標準偏差αを用いて焼入鋼の熱処理に伴う回折線の広
がりを評価して焼入鋼の硬度を測定する方法であって、
この標準偏差αが硬度計によって測定された硬度とよく
対応することを利用するものである。
The present invention derives a simple formula in which the standard deviation α of the Gaussian curve fitted near the peak of the diffraction line can be calculated in a short time, and the standard deviation α is used to evaluate the spread of the diffraction line accompanying the heat treatment of the hardened steel. A method for measuring the hardness of hardened steel by
It utilizes that the standard deviation α corresponds well with the hardness measured by the hardness meter.

〔実施例〕〔Example〕

本発明の硬度測定に用いるガウス曲線の標準偏差αの求
め方を説明する。回折線ピーク付近は、次式で表される
ガウス曲線で近似できることが明らかにされている。
A method of obtaining the standard deviation α of the Gaussian curve used for the hardness measurement of the present invention will be described. It has been clarified that the vicinity of the diffraction line peak can be approximated by a Gaussian curve represented by the following equation.

y=C exp(−ax2+bx)(a>0,C>0) (1) 但し、C,a,bは定数,xは回折角,yはX線強度である。y = C exp (−ax 2 + bx) (a> 0, C> 0) (1) where C, a and b are constants, x is the diffraction angle, and y is the X-ray intensity.

本発明で提案した回折線の広がりを評価する値としての
ガウス曲線の標準偏差αは、(1)式のガウス曲線を次
式で表される正規確率密度関数 但し、σとμはそれぞれ正規確率密度関数の標準偏差と
平均値である。と考えれば、この正規確率密度関数の標
準偏差σに相当する値である。
The standard deviation α of the Gaussian curve as a value for evaluating the spread of the diffraction line proposed in the present invention is obtained by using the Gaussian curve of the equation (1) as a normal probability density function However, σ and μ are the standard deviation and the average value of the normal probability density function, respectively. Considering that, it is a value corresponding to the standard deviation σ of this normal probability density function.

(1)式と(2)式のx2の係数を等しいとおくと、
(2)式のσと(1)式の定数aとの間には次式が成り
立つ。
If the coefficients of x 2 in equations (1) and (2) are equal,
The following equation holds between σ in equation (2) and the constant a in equation (1).

正規確率密度関数の広がりは、その標準偏差σで表され
ることは、よく知られた事実である。
It is a well known fact that the spread of a normal probability density function is represented by its standard deviation σ.

従って、もし回折線を近似した(1)式のガウス曲線を
(2)式の正規確率密度関数と考えれば、(2)式のσ
に相当する値 によって、ガウス曲線で近似された回折線の広がりを表
すことができる。従って、この がガウス曲線の標準偏差で、これをαで表すと、ガウス
曲線の標準偏差αは となる。
Therefore, if the Gaussian curve of equation (1) that approximates the diffraction line is considered to be the normal probability density function of equation (2), then σ of equation (2)
The value corresponding to Can express the spread of the diffraction line approximated by a Gaussian curve. Therefore, this Is the standard deviation of the Gaussian curve. If this is represented by α, the standard deviation of the Gaussian curve α is Becomes

ガウス曲線で近似できる回折線は回折線のピーク付近で
あるが、ガウス曲線で近似できる回折線の範囲は試験片
の材質によって異なる。
The diffraction line that can be approximated by the Gaussian curve is near the peak of the diffraction line, but the range of the diffraction line that can be approximated by the Gaussian curve depends on the material of the test piece.

そこで、第4図のように回折線のX線強度の最大値をy
maxとし、Rをある定数とするとき、Rymax以上の各点が
ガウス曲線でよく近似できるものとする。
Therefore, the maximum value of the X-ray intensity of the diffraction line is y
It is assumed that each point of Ry max and above can be well approximated by a Gaussian curve when max is set and R is a constant.

このRの値は材料によって異なり、およそ0.5から0.85
の値をとることが本発明者の過去の研究によって明らか
にされている。
The value of R depends on the material and is approximately 0.5 to 0.85.
It has been clarified by the inventor's past research that the value of is taken.

しかし、多くの材料に対して、少なくとも0.8ymax以上
の各点はガウス曲線でよく近似されるので、ここではR
を0.8に選んだ場合について説明するが、Rを他の値に
選んだ場合についても全く同様であることは言うまでも
ない。
However, for many materials, each point of at least 0.8y max is well approximated by a Gaussian curve, so here R
Although the case where R is selected to 0.8 will be described, it goes without saying that the same applies when R is selected to another value.

次に、具体的に(4)式のガウス曲線の標準偏差αの求
め方を説明する。
Next, a method of specifically determining the standard deviation α of the Gaussian curve of the equation (4) will be described.

いま第4図のように、0.8ymax以上のn個の点(x1,
y1),(x2,y2),・・・,(xn,yn)に最小二乗法を用
いて(1)式のガウス曲線を当てはめて定数aの求め、
これを(4)式に代入すれば回折線の広がりを表すガウ
ス曲線の標準偏差αが計算される。
As Figure 4 now, 0.8y max over n number of points (x 1,
y 1 ), (x 2 , y 2 ), ..., (x n , y n ) is applied to the Gaussian curve of equation (1) using the least squares method to obtain the constant a.
By substituting this into the equation (4), the standard deviation α of the Gaussian curve showing the spread of the diffraction line is calculated.

このαの計算式はかなり複雑な式となるが、これに種々
の計算技術を施し、最も簡単な形にすれば 但し、 Ti=12ti 2−n2+1 で、kは定数、Σはi=i〜nまでの和をとることを表
し、1nは自然対数を表し、yiはX線強度の測定値、cは
回折線に係る各測定点(回折角xi,X線強度yi)の回折角
のxの間隔、即ちステップ幅、nはX線強度yの測定点
の数を表す。
The calculation formula of this α is quite complicated, but if various calculation techniques are applied to this and it is made into the simplest form, However, T i = 12t i 2 −n 2 +1 , K is a constant, Σ is a sum of i = i to n, 1n is a natural logarithm, y i is a measurement value of X-ray intensity, and c is each measurement point related to the diffraction line ( The interval of x of the diffraction angle of the bending angle x i , the X-ray intensity y i , that is, the step width, and n represents the number of measurement points of the X-ray intensity y.

となる。Becomes

尚、第1図〜第3図において、本来の回折線はバックグ
ラウンド(BG)から上部のX線強度から成る。この本来
の回折線を得る為にBGを補正した(即ち、BGを差し引い
た)場合のガウス曲線の標準偏差αは、X線強度yをそ
のまま使う代わりに、yからBG強度ybを引いた値y−yb
を用いれば計算できる。
In FIGS. 1 to 3, the original diffraction line consists of the X-ray intensity above the background (BG). The standard deviation α of the Gaussian curve when BG is corrected (that is, BG is subtracted) to obtain this original diffraction line, the BG intensity y b is subtracted from y instead of using the X-ray intensity y as it is. Value y−y b
Can be calculated by using.

しかし、BGを補正しない場合の(5)式のαからも回折
線の広がりは評価でき、硬度は十分な精度で測定できる
ので、ここではBG補正を省略した場合のαについて説明
するが、BGを補正した場合のαも同様な方法で求め得る
ことは言うまでもない。
However, since the spread of the diffraction line can be evaluated and the hardness can be measured with sufficient accuracy even from α in Eq. (5) when BG is not corrected, here, α when BG correction is omitted will be described. Needless to say, α in the case of correcting can be obtained by a similar method.

なお、鋼を焼入れる、すなわち高温から急冷すると、鋼
の組織は通常マルテンサイト変態し、鋼は硬くなるとと
もに回折線は第3図のように広がる。しかし、第2図に
図示したS35C鋼は、炭素含有量(約0.35%)が低いの
で、このような急冷によって組織がマルテンサイト変態
しなかったために、第2図に示したような鋭い回折線を
もっており、硬度も低い。
When the steel is quenched, that is, rapidly cooled from a high temperature, the structure of the steel usually undergoes martensitic transformation, the steel becomes hard, and the diffraction line broadens as shown in FIG. However, since the S35C steel shown in Fig. 2 has a low carbon content (about 0.35%), the structure did not undergo martensitic transformation due to such rapid cooling, so the sharp diffraction line as shown in Fig. 2 was obtained. It has a low hardness.

以下、第5図から第8図を説明する。Hereinafter, FIGS. 5 to 8 will be described.

ここでは、鋼材の残留応力測定によく用いられるクロム
(Cr)KαX線を用いたX線応力測定装置を使ってガウ
ス曲線の標準偏差αを測定する場合を例にとって説明す
るが、他のX線源やX線回折装置を使っても、αは同様
に測定できる。
Here, an example is described in which the standard deviation α of the Gaussian curve is measured using an X-ray stress measurement device that uses chromium (Cr) Kα X-rays that is often used for residual stress measurement of steel materials. Α can be similarly measured using a source or an X-ray diffractometer.

第5図は、ガウス曲線の標準偏差αを迅速に測定するた
めの回折線ピーク付近のX線強度yの各点の取り方を説
明したものである。
FIG. 5 illustrates how to take each point of the X-ray intensity y in the vicinity of the diffraction line peak in order to quickly measure the standard deviation α of the Gaussian curve.

X線強度を測定する際には、X線入射角すなわち被測定
物表面の法線と入射X線の方向とがなす角度は任意の値
でもよいが、できるだけ強いX線強度が得られるX線入
射角として、通常は0゜を用いる。
When measuring the X-ray intensity, the X-ray incident angle, that is, the angle formed by the normal line of the surface of the object to be measured and the direction of the incident X-ray may be any value, but the X-ray intensity is as strong as possible. Normally, 0 ° is used as the incident angle.

yを測定するX線検出器は、回折角xの小さい側から大
きい側へ走査しても、または逆方向に走査してもよい
が、X線応力測定装置のX線検出器は通常、高角度側か
ら低角度側へ走査するので、ここでは高角度側から低角
度側へ、第5図に示したように、A,B,C,・・・,P,Q,Rの
順に走査した場合について説明する。
An X-ray detector for measuring y may scan from a side with a small diffraction angle x to a side with a large diffraction angle x, or may scan in the opposite direction. Since scanning is performed from the angle side to the low angle side, here, from the high angle side to the low angle side, as shown in FIG. 5, A, B, C, ..., P, Q, R are sequentially scanned. The case will be described.

まず、無応力状態の鋼材の回折線のピーク位置が約156
゜であるから、これよりも高角度側のおよそ159゜から1
60゜の位置AからX線検出器を低角度側へ、一定の間隔
(ステップ幅)cで走査して、第5図のようにX線強度
yを測定する。
First, the peak position of the diffraction line of unstressed steel is about 156
Since it is ゜, about 159 ゜ on the higher angle side than this 1
The X-ray detector is scanned from the position A of 60 ° to the low angle side at a constant interval (step width) c, and the X-ray intensity y is measured as shown in FIG.

測定されたyは、インターフェイスを介してパーソナル
コンピュータに入力し、これによってyの最大値ymax
決定される。
The measured y is input to the personal computer via the interface, which determines the maximum value y max of y.

さらに、X線強度yの測定を続け、yがピークを通過し
0.8ymax以下になるとX線検出器が自動的に止まり、y
の測定を終了する。
Further, the X-ray intensity y is continuously measured, and y passes through the peak.
When 0.8y max or less, the X-ray detector automatically stops and y
End the measurement of.

これと同時に第5図の0.8ymax以上のn個の点C,・・・,
P,Qから(5)式によってガウス曲線の標準偏差αがパ
ーソナルコンピュータによって計算される。
At the same time, n points C of 0.8y max or more in FIG.
The standard deviation α of the Gaussian curve is calculated from P and Q by the equation (5) by the personal computer.

これらの値は、パーソナルコンピュータで1秒以内で計
算されるのでαを求める時間は第5図のX線強度の各点
を測定する時間にほぼ等しくなる。
Since these values are calculated within 1 second by the personal computer, the time for obtaining α is almost equal to the time for measuring each point of the X-ray intensity in FIG.

第6図は、本発明の測定方法を迅速に精度よく実施する
ためのパーソナルコンピュータを用いた自動測定装置の
原理図である。
FIG. 6 is a principle diagram of an automatic measuring device using a personal computer for rapidly and accurately carrying out the measuring method of the present invention.

1はX線発生装置である。1 is an X-ray generator.

X線管球2から出た入射X線rは測定物3に照射され
る。
The incident X-ray r emitted from the X-ray tube 2 is applied to the measurement object 3.

測定物3によって回折されたX線強度yは、X線検出器
4によって測定される。
The X-ray intensity y diffracted by the measurement object 3 is measured by the X-ray detector 4.

X線検出器4は、パルスモータ5によって測定物3の表
面を中心とした円弧に沿って走査され、所定の回折角度
位置xにおけるX線強度yを測定し、これをX線計数装
置6へ送る。
The X-ray detector 4 is scanned by the pulse motor 5 along an arc centered on the surface of the measurement object 3, measures the X-ray intensity y at a predetermined diffraction angle position x, and sends it to the X-ray counter 6. send.

X線計数装置6で測定されたX線強度yは、インターフ
ェイス8を介してパーソナルコンピュータ9に送られ、
あらかじめ組み込まれたプログラムに従って、αを計算
する。
The X-ray intensity y measured by the X-ray counter 6 is sent to the personal computer 9 via the interface 8,
Calculate α according to a pre-loaded program.

第5図に示したようにデータを効率よく迅速に測定する
ためのX線検出器4の駆動制御は、パルスモータ駆動制
御装置7をインターフェイス8を介してパーソナルコン
ピュータ9で行う。
As shown in FIG. 5, drive control of the X-ray detector 4 for efficient and rapid measurement of data is performed by the personal computer 9 via the interface 8 of the pulse motor drive controller 7.

ディスプレイ10は、パーソナルコンピュータ9のプログ
ラムや計算結果を表示するために用いる。
The display 10 is used to display the programs and calculation results of the personal computer 9.

プリンタ11及びプロッタ12は、測定したデータや結果の
記録およびグラフ化に用いる。
The printer 11 and plotter 12 are used for recording and graphing measured data and results.

ミニフロッピイディスク13は、プログラムやデータを記
録し保存するために用いる。
The mini-floppy disk 13 is used for recording and storing programs and data.

第6図の装置を構成している各要素のうちでX線発生装
置1からX線計算装置6の部分は新たに製作するか、ま
たは従来周知のX線応力測定装置やX線回折装置などを
用いることができる。
Of the elements constituting the apparatus shown in FIG. 6, the portions from the X-ray generator 1 to the X-ray calculator 6 are newly manufactured, or the conventionally well-known X-ray stress measuring device, X-ray diffracting device, etc. Can be used.

しかし、ガウス曲線の標準偏差αを迅速に自動測定する
ためには、第6図のパルスモータ駆動制御装置7からミ
ニフロッピイディスク13までの装置は新たに付加しなけ
ればならない。
However, in order to quickly and automatically measure the standard deviation α of the Gaussian curve, the devices from the pulse motor drive control device 7 to the mini floppy disk 13 in FIG. 6 must be newly added.

これらのうちで、パーソナルコンピュータ9からミニフ
ロッピイディスク13までの装置は、市販のパーソナルコ
ンピュータの本体とその周辺機器である。
Among these, the devices from the personal computer 9 to the mini floppy disk 13 are the main body of a commercially available personal computer and its peripheral devices.

このようなパーソナルコンピュータを備えた装置は、マ
イコンを内蔵した周知のX線応力測定装置やX線回折装
置に比べると、求めたい値や測定条件に従って、最適な
プログラムを組み変えることができるプログラマブルな
装置であるという長所をもっている。
An apparatus equipped with such a personal computer is a programmable program capable of recombining an optimum program according to a desired value or measurement condition, as compared with a known X-ray stress measurement apparatus or X-ray diffraction apparatus having a built-in microcomputer. It has the advantage of being a device.

第7図には、ガウス曲線の標準偏差αを第5図に示した
方法を用いてパーソナルコンピュータによって求めると
きのフローチャートを示した。
FIG. 7 shows a flowchart for obtaining the standard deviation α of the Gaussian curve by the personal computer using the method shown in FIG.

第7図で、ハのPt,c,x0はそれぞれプリセットタイム
(秒)(X線強度yiの測定時間),ステップ幅,及び回
折角の初期値すなわち測定を開始するx座標である。
In FIG. 7, C, Pt, c, x 0 is the preset time (second) (measurement time of X-ray intensity y i ), the step width, and the initial value of the diffraction angle, that is, the x coordinate for starting the measurement.

第7図のチのRは、通常は0.8にとればよい。R in FIG. 7C is usually set to 0.8.

チでX線強度yiがRymax以下になると、即座にαがパー
ソナルコンピュータで計算され測定が終了するので、計
算に必要なX線強度yiをむだなく、迅速に測定でき、半
価幅測定時間の約1/5で測定が完了する。
When the X-ray intensity y i becomes less than R y max in α, α is immediately calculated by the personal computer and the measurement ends, so the X-ray intensity y i required for the calculation can be measured quickly without wasting, and the half width The measurement is completed in about 1/5 of the measurement time.

もし必要があれば、第5図に示したように測定結果をプ
ロッタでグラフ化させることもできる。
If necessary, the measurement results can be plotted on a plotter as shown in FIG.

最後に、ガウス曲線の標準偏差αと硬度Hvを種々の焼入
鋼について測定した例について説明する。
Finally, an example in which the standard deviation α of the Gaussian curve and the hardness Hv are measured for various hardened steels will be described.

第8図は、機械構造用炭化鋼S45Cを焼入れたままの試験
片および焼入れ後種々の温度で焼戻した試験片のビッカ
ーズ硬度Hv(試験荷重500g)とガウス曲線の標準偏差α
との関係即ち、較正曲線を示したものである。
FIG. 8 shows the Vickers hardness Hv (test load 500 g) and standard deviation α of the Gaussian curve of the test piece of the machine structural carbonized steel S45C as-quenched and the test piece tempered at various temperatures after quenching.
That is, the relationship, that is, the calibration curve is shown.

この図は、αは硬度Hvとかなりよく対応し、この図を用
いてαからHvを求めることができることを示している。
This figure shows that α corresponds fairly well with hardness Hv, and that Hv can be obtained from α using this figure.

〔発明の効果〕〔The invention's effect〕

以上のように、本発明は焼入鋼の試験片の回折線のピー
ク付近をガウス曲線で近似し、このガウス曲線の標準偏
差で熱処理に伴う回折線の広がりを評価し、この試験片
と同種の鋼材の試験片を用いて予め求めておいた当該標
準偏差と硬度との関係即ち較正曲線を用いて、該鋼材の
硬度を測定するガウス曲線による硬度測定方法であるか
ら、従来の半価幅による硬度測定に比べて、次のような
長所をもっている。
As described above, the present invention approximates the vicinity of the peak of the diffraction line of the hardened steel test piece with a Gaussian curve, evaluates the spread of the diffraction line accompanying heat treatment with the standard deviation of this Gaussian curve, and the same kind as this test piece Since it is a Gaussian hardness measurement method for measuring the hardness of the steel material by using the relationship between the standard deviation and the hardness, which is obtained in advance using the test piece of the steel material described above, that is, the calibration curve, the conventional half width It has the following advantages over the hardness measurement by.

(1) 本発明は、回折線のピーク付近のみのX線強度
を測定すればよいので、測定時間が大幅(半価幅測定の
約1/5)に短縮できる。
(1) Since the present invention only needs to measure the X-ray intensity only near the peak of the diffraction line, the measurement time can be greatly reduced (about 1/5 of half-width measurement).

(2) 一般に、焼入鋼は幅広い回折線をもち、半価幅
測定に必要な回折線のバックグラウンド(BG)を正確に
求めることは困難であるが、本発明はBGを求める必要が
ないので、幅広い回折線をもつ焼入鋼に対しても精度よ
く硬度が測定できる。
(2) Generally, hardened steel has a wide range of diffraction lines, and it is difficult to accurately obtain the background (BG) of the diffraction lines necessary for measuring the half width, but the present invention does not need to obtain BG. Therefore, the hardness can be accurately measured even for hardened steel having a wide range of diffraction lines.

さらに、本発明は、従来最も広く用いられてきた硬度計
による硬度測定に比べて、次のような長所をもってい
る。
Further, the present invention has the following advantages over the hardness measurement by the hardness meter which has been most widely used in the past.

(1) 非破壊的で非接触な硬度測定ができる。(1) Non-destructive, non-contact hardness measurement can be performed.

(2) パーソナルコンピュータを用いた測定の自動化
が容易であり、これと本発明で導いたガウス曲線の標準
偏差を求める(5)式を用いれば、極めて短時間に硬度
が測定できる。
(2) The automation of the measurement using a personal computer is easy, and the hardness can be measured in an extremely short time by using this and the equation (5) for obtaining the standard deviation of the Gaussian curve derived in the present invention.

(3) 大型構造物や、形状が平面でない切欠部やフィ
レット部などの硬度計によって測定できない物体に対し
ても硬度が測定できる。
(3) The hardness can be measured even for a large structure or an object that cannot be measured by a hardness meter such as a notch or fillet having a non-planar shape.

【図面の簡単な説明】[Brief description of drawings]

図面は本発明の一実施例を示すもので、第1図は半価幅
Bの求め方の説明図、第2図及び第3図は焼入れした機
械構造用炭素鋼S35Cと炭素工具鋼SK3の回折線の図、第
4図は回折線ピーク付近のn個の点に最小二乗法を用い
て当てはめたガウス曲線の模式図、第5図は機械構造用
炭素鋼S45Cの回折線を例にとって、ガウス曲線の標準偏
差αを求めるためのX線強度yの各点のとり方を示す
図、第6図は本発明の装置の原理図、第7図はガウス曲
線の標準偏差αを求めるためのパーソナルコンピュータ
のフローチャート図、第8図は焼入れたままおよび焼入
れ後種々の温度で焼戻した鋼材のS45Cの標準偏差αとビ
ッカース硬度Hvとの関係を示す図である。
The drawings show one embodiment of the present invention. FIG. 1 is an explanatory view of the method for obtaining the half width B, and FIGS. 2 and 3 show quenched carbon steel S35C for machine structural use and carbon tool steel SK3. Diffraction line diagram, Fig. 4 is a schematic diagram of a Gaussian curve fitted to the n points near the diffraction line peak using the least squares method, and Fig. 5 is an example of the diffraction line of carbon steel S45C for machine structure. FIG. 6 is a diagram showing how to take each point of the X-ray intensity y for obtaining the standard deviation α of the Gaussian curve, FIG. 6 is a principle diagram of the apparatus of the present invention, and FIG. 7 is a personal computer for obtaining the standard deviation α of the Gaussian curve. FIG. 8 is a flowchart of a computer, and FIG. 8 is a diagram showing the relationship between the standard deviation α of S45C and the Vickers hardness Hv of a steel material that has been quenched and tempered at various temperatures after quenching.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】焼入れたままの鋼材および焼入れ後種々の
温度で焼戻した鋼材の一部を切り出していくつかの試験
片を作製し、これらの各試験片の硬度をビッカース硬度
などの公知の硬度測定方法により求めるとともにこれら
の各試験片にX線を照射して回折角とxとX線強度yと
の関係を示す各試験片の回折線を求め、この回折線の高
さの50〜80%以上の領域を下記の(1)式で表されるガ
ウス曲線で近似し、このガウス曲線を下記の(2)式で
表される正規確率密度関数と考えたとき下記(1)式の
標準偏差αが下記の(2)式の標準偏差σに相当するこ
とから下記の(4)式を導き、下記の(4)式の標準偏
差αを、下記の(1)式の定数aを最小二乗法を用いて
求め、この最小二乗法で求めた定数aを簡易な式に変形
した後、下記の(4)式のaに代入して下記の(5)式
を得ることにより決定し、この下記の(5)式で決定さ
れる各試験片に対する下記の(1)式の標準偏差αと前
記公知の硬度測定方法により求めた各試験片の硬度とを
夫々縦軸及び横軸にプロットすることによって前記標準
偏差αと公知の硬度との関係即ち較正曲線を作成し、続
いて、前記の熱処理をした鋼材と同材質の被測定物にX
線を照射して前記同様に標準偏差αを求め、この被測定
物の標準偏差αを前記較正曲線にあてはめて該被測定物
の硬度を求めることを特徴とするガウス曲線を用いたX
線回折による焼入鋼の硬度測定方法。 (1)式 y=C exp(−ax2+bx)(a>0,C>0) 但し、C,a,bは定数,xは回折角,yはX線強度である。 (2)式 但し、σとμはそれぞれ正規確率密度関数の標準偏差と
平均値である。 (4)式 (5)式 但し、 Ti=12ti 2−n2+1 で、kは定数、Σはi=i〜nまでの和をとることを表
し、1nは自然対数を表し、yiはX線強度の測定値、cは
回折線に係る各測定点(回折角xi,X線強度yi)の回折角
のxの間隔、即ちステップ幅、nはX線強度yの測定点
の数を表す。
1. Test pieces are produced by cutting out a part of the as-quenched steel material and a steel material that has been tempered at various temperatures after hardening, and the hardness of each of these test pieces is determined by a known hardness such as Vickers hardness. These test pieces are irradiated with X-rays by the measuring method, and the diffraction line of each test piece showing the relationship between the diffraction angle and x and the X-ray intensity y is obtained, and the height of this diffraction line is 50-80. When a region of% or more is approximated by a Gaussian curve represented by the following equation (1) and this Gaussian curve is considered as a normal probability density function represented by the following equation (2), the standard of the following equation (1) Since the deviation α corresponds to the standard deviation σ of the following equation (2), the following equation (4) is derived, and the standard deviation α of the following equation (4) is set to the minimum of the constant a of the following equation (1). After the constant a obtained by the least square method is transformed into a simple equation, the following (4) It is determined by substituting into the equation a to obtain the following equation (5), and the standard deviation α of the following equation (1) and the known hardness for each test piece determined by the following equation (5) The hardness of each test piece obtained by the measuring method is plotted on the vertical axis and the horizontal axis, respectively, to create a relationship between the standard deviation α and the known hardness, that is, a calibration curve, and subsequently, the heat-treated steel material. X on the same object as
The standard deviation α is obtained by irradiating a ray in the same manner as described above, and the standard deviation α of the object to be measured is applied to the calibration curve to obtain the hardness of the object to be measured X using a Gaussian curve.
Hardness measurement method for hardened steel by line diffraction. (1) Formula y = C exp (−ax 2 + bx) (a> 0, C> 0) where C, a and b are constants, x is a diffraction angle, and y is an X-ray intensity. Formula (2) However, σ and μ are the standard deviation and the average value of the normal probability density function, respectively. Formula (4) Equation (5) However, T i = 12t i 2 −n 2 +1 , K is a constant, Σ is a sum of i = i to n, 1n is a natural logarithm, y i is a measurement value of X-ray intensity, and c is each measurement point related to the diffraction line ( The interval of x of the diffraction angle of the bending angle x i , the X-ray intensity y i , that is, the step width, and n represents the number of measurement points of the X-ray intensity y.
JP58008944A 1983-01-21 1983-01-21 Hardness measuring method for hardened steel by X-ray diffraction using Gaussian curve Expired - Lifetime JPH0797089B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58008944A JPH0797089B2 (en) 1983-01-21 1983-01-21 Hardness measuring method for hardened steel by X-ray diffraction using Gaussian curve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58008944A JPH0797089B2 (en) 1983-01-21 1983-01-21 Hardness measuring method for hardened steel by X-ray diffraction using Gaussian curve

Publications (2)

Publication Number Publication Date
JPS59155743A JPS59155743A (en) 1984-09-04
JPH0797089B2 true JPH0797089B2 (en) 1995-10-18

Family

ID=11706776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58008944A Expired - Lifetime JPH0797089B2 (en) 1983-01-21 1983-01-21 Hardness measuring method for hardened steel by X-ray diffraction using Gaussian curve

Country Status (1)

Country Link
JP (1) JPH0797089B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007271600A (en) * 2006-03-08 2007-10-18 National Univ Corp Shizuoka Univ Nondestructive hardness evaluation method, nondestructive hardness evaluating apparatus and hardness-measuring device used for nondestructive hardness evaluation

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH028045U (en) * 1988-06-27 1990-01-18

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5454694A (en) * 1977-09-30 1979-05-01 Inst Fuijiki Usokiku Dafureni Method of inspecting mechanical properties of superhard material product

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007271600A (en) * 2006-03-08 2007-10-18 National Univ Corp Shizuoka Univ Nondestructive hardness evaluation method, nondestructive hardness evaluating apparatus and hardness-measuring device used for nondestructive hardness evaluation

Also Published As

Publication number Publication date
JPS59155743A (en) 1984-09-04

Similar Documents

Publication Publication Date Title
Jatczak Retained austenite and its measurement by X-ray diffraction
CN106970098B (en) Stress analysis device, method, and program
US9176067B2 (en) Apparatus and method for determining the effective cementation or nitriding depth of steel components, in particular gears
Doig et al. Nonequilibrium solute segregation to austenite grain boundaries in low alloy ferritic and austenitic steels
JPH0797089B2 (en) Hardness measuring method for hardened steel by X-ray diffraction using Gaussian curve
Macherauch et al. A modified diffractometer for x-ray stress measurements
JPH1164121A (en) X-ray stress measuring method
Shiyan Determining the brittle strength and mechanical stability of structural steel
JP2001296257A (en) Measuring method for crystal orientation distribution
JPH0327046B2 (en)
JP2022046416A (en) Measurement system and measurement method
JP6867315B2 (en) Residual stress measurement method
JP6650328B2 (en) Residual stress estimation method and residual stress estimation device
JP2002178147A (en) Method for easily predicting characteristic of weld metal and method for deciding weld executing condition
US20220198724A1 (en) Center shift amount estimating apparatus, method, and program
JPS6126721A (en) Method for evaluating hardenability of steel by x-ray diffraction
Nitschke-Pagel et al. Determination of residual stresses in welded structural steels with help of micromagnetic measurements
JPS6259256B2 (en)
CN113853536B (en) Characterization method for transmission source attribute characteristics of segmented gamma scanning measurement system
JP2022070044A (en) Method for evaluating metallic member
Habedank et al. Endurance limit of pulsed laser hardened component-like specimens—experiment and simulation
JPH06297758A (en) Measuring method for scanning line pitch
JPS63125242A (en) X-ray ct apparatus
Fraser et al. An automated procedure for the correction of background due to inelastic scattering in electron diffraction patterns
JP3149225B2 (en) Non-destructive evaluation method of toughness using Barkhausen noise