JPS6126721A - Method for evaluating hardenability of steel by x-ray diffraction - Google Patents

Method for evaluating hardenability of steel by x-ray diffraction

Info

Publication number
JPS6126721A
JPS6126721A JP14748784A JP14748784A JPS6126721A JP S6126721 A JPS6126721 A JP S6126721A JP 14748784 A JP14748784 A JP 14748784A JP 14748784 A JP14748784 A JP 14748784A JP S6126721 A JPS6126721 A JP S6126721A
Authority
JP
Japan
Prior art keywords
steel
diffraction
gcp
hardened steel
peak
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14748784A
Other languages
Japanese (ja)
Other versions
JPH0457730B2 (en
Inventor
Masanori Kurita
政則 栗田
Ikuo Ihara
郁夫 井原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP14748784A priority Critical patent/JPS6126721A/en
Publication of JPS6126721A publication Critical patent/JPS6126721A/en
Publication of JPH0457730B2 publication Critical patent/JPH0457730B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/55Hardenability tests, e.g. end-quench tests

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To measure rapidly the hardenability of steel on a nondestructive basis by obtaining a diffraction line showing the relation between the diffraction angle and the intensity of X-rays, and measuring the sharpness of a peak from a Gaussian curve parameter closely resembling the peak. CONSTITUTION:The diffraction line showing the relation between the diffuraction angle and the intensity of X-rays is obtained by irradiating X-rays on hardened steel. The sharpness of the peak of a sharp diffraction line characteristic of incompletely hardened steel is measured by using the parameter of a Gaussian curve (a constant, hereinafter referred to as GCP) resembling closely the peak of the diffraction line. The GCP at this time is compared with the previously obtained GCP of completely hardened steel contg. the same amt. of C. The incompleteness of hardening or the area ratios of troostite structure and pearlite structure to martensite structue are thus measured. The completeness of hardening of steel or hardenability can be evaluated by this method on a nondestructive basis without depending on the measurement of hardness, etc.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はX線回折により鋼の焼入れの完全さまたは焼入
性を評価するX線回折による鋼の焼入れ性の評価方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for evaluating the hardenability of steel by X-ray diffraction, which evaluates the completeness of hardening or hardenability of steel by X-ray diffraction.

従来の技術 一般に、鋼を焼入れる際に焼入れが不完全であると、そ
の後の焼戻しによって十分な強度や靭性が得られないの
で、強度の高い調質鋼を得るためには、まず鋼を完全に
焼入れることが重要である。このような焼入れの完全さ
を判定するために、硬度計による硬度測定や顕微鏡によ
る組織観察が最も広く用いられている。
Conventional technology Generally speaking, if the quenching is incomplete when steel is quenched, sufficient strength and toughness cannot be obtained by subsequent tempering. It is important to harden it. In order to judge the completeness of such hardening, hardness measurement using a hardness meter and microstructural observation using a microscope are most widely used.

発明が解決しようとする問題点 しかしこれらの方法は部材から試験片を切り出す必要が
ある。ため、評価に当って多くの労力を要するのみなら
ず、部材に損傷を与えるなどの欠点がある。
Problems to be Solved by the Invention However, these methods require cutting out a test piece from the member. Therefore, it not only requires a lot of effort for evaluation, but also has drawbacks such as damage to components.

この発明は上記欠点を改善する目的でなされたものであ
る。
This invention was made for the purpose of improving the above-mentioned drawbacks.

問題点を解決するための手段及び作用 完全な焼入れによって鋼の組織がマルテンサイトになる
と、X線回折線が著しく広がる。しかし、焼入れが不完
全で組織の中にフェライトとバーライ)またはトルース
タイト組織が混入していると、回折線ピークが鋭くなる
。ここに、回折線とは、第1図に示したような回折角X
とX線強度yとの関係を示す曲線である。回折角Xは、
測定物に入射したX線の方向と、測定物から回折したX
線の方向とがなす角の補角である。また第1図で、回折
線のすそ野の両端の点AとBとを結んだ基線ABを、回
折線のバックグラウンド(以下BGで表す)と呼んでい
る。
Means and Effects for Solving the Problems When the steel structure becomes martensite through complete quenching, the X-ray diffraction lines become significantly broadened. However, if the quenching is incomplete and the structure contains ferrite, barley, or troostite structure, the diffraction peaks become sharp. Here, the diffraction line refers to the diffraction angle X as shown in Figure 1.
This is a curve showing the relationship between y and X-ray intensity y. The diffraction angle X is
The direction of the X-rays incident on the object to be measured and the X-rays diffracted from the object
It is the supplementary angle of the angle formed by the direction of the line. In FIG. 1, a base line AB connecting points A and B at both ends of the base of the diffraction line is called the background of the diffraction line (hereinafter referred to as BG).

一般に、不完全焼入鋼は、幅広い回折線を示すマルテン
サイト組織と鋭い回折線を示すトルースタイト(フエラ
イシと微細なセメンタイトから成る組織)の混合組織、
または全く焼きが入っていない場合にはマルテンサイト
組織は現われずフエライ(とセメンタイトの混合組織(
パーライト、)ルースタイト、ソルバイト)をもってい
る。
In general, incompletely hardened steel has a mixed structure of martensitic structure showing broad diffraction lines and troostite (structure consisting of ferrite and fine cementite) showing sharp diffraction lines.
Or, if there is no quenching at all, no martensitic structure appears and a mixed structure of ferrite (and cementite) appears.
perlite, loosetite, sorbite).

第2図は、機械構造用炭素”@ 545 Cを水焼入れ
した完全焼入鋼(組織がすべてマルテンサイトになって
いる鋼)を、CrKα特性X線で測定した回折線で、マ
ルテンサイト組織特有な幅広い回折線を示している。第
3図は、水焼入れした完全焼入鋼545cを一500℃
で焼戻した均一なソルバイト組織をもつ試験片の回折線
である。
Figure 2 is a diffraction line measured using CrKα characteristic X-rays for a completely hardened steel (steel whose structure is entirely martensite) made by water-quenching mechanical structural carbon ``@545C'', which shows the characteristic martensitic structure. Figure 3 shows water-quenched fully hardened steel 545c at -500°C.
This is a diffraction line of a specimen with a uniform sorbite structure tempered by .

パーライト、トルースタイト及びツルパイlは、すべて
フェライトとセメンタイトの混合組織であり、このうち
でトルースタイトとソルバイトはフェライト相に微細な
セメンタイトが分散した組織である。マルテンサイト組
織が第2図のような幅広い回折線をもっているのに対し
て、パーライト、トルースタイト及びソルバイト組織は
すべてフェライト相に特有な第3図に示したような鋭い
回折線をもっている。
Pearlite, troostite, and sorbite are all mixed structures of ferrite and cementite, and among these, troostite and sorbite are structures in which fine cementite is dispersed in a ferrite phase. While martensitic structures have broad diffraction lines as shown in FIG. 2, pearlite, troostite, and sorbite structures all have sharp diffraction lines as shown in FIG. 3, which are characteristic of ferrite phases.

L/ タカッて、マルテンサイト組織とトルースタイト
組織から成る不完全焼入鋼の回折線は、第2図と第3図
の回折線を重ね合わせた回折線となり、均一なマルテン
サイト組織から成る完全焼入鋼の幅広い回折線に比べて
、回折線ピークが鋭くなる。
L/ In other words, the diffraction line of incompletely hardened steel consisting of martensite structure and troostite structure is a diffraction line obtained by superimposing the diffraction lines of Fig. 2 and Fig. The diffraction peaks are sharper than the broad diffraction lines of hardened steel.

次に、この回折線ピークの鋭さを測定するガウス曲線パ
ラメータの求め方について説明する。
Next, a method of determining a Gaussian curve parameter for measuring the sharpness of this diffraction line peak will be explained.

一般に、回折線のピーク付近は、次式で表わされるガウ
ス曲線で°近似できることが明らかにされている。
Generally, it has been revealed that the vicinity of the peak of a diffraction line can be approximated by a Gaussian curve expressed by the following equation.

y−Cgxp(−eLx+6z)(l!、(’)Q) 
 (+)ただし、C9α、bは定数である。また、統計
学でよく知られているように、確率分布を表わす正規確
率密度関数f (−)は、次式で表わされる。
y-Cgxp(-eLx+6z)(l!, (')Q)
(+) However, C9α and b are constants. Furthermore, as is well known in statistics, the normal probability density function f (-) representing a probability distribution is expressed by the following equation.

ただし、μ、σは、f (−)の平均値及び標準偏差で
ある。正規確率密度関数i <x>の広がりは、その標
準偏差σで表わされることはよく知られた事実である。
However, μ and σ are the average value and standard deviation of f (−). It is a well-known fact that the spread of the normal probability density function i<x> is expressed by its standard deviation σ.

式(1)のガウス曲線は、式(2)の正規確率密度関数
と同じ型をもっているので、式(1)と弐〇)のx2の
係数を等しいとおけば となる。したがって、回折線ピークに当てはめたガウス
曲線のもつ係数αから求めた1/J了τは、吹(2)の
関数の広が9を表わす標準偏差σに相当するので、この
l/v”27によってガウス曲線で近似された回折線の
広が塾を表わすことができる。この値をガウス曲線パラ
メータ(以下GCPと略す)と名づけ、これを次のよう
にαで表わす。
Since the Gaussian curve in Equation (1) has the same type as the normal probability density function in Equation (2), it can be obtained by setting the coefficients of x2 in Equations (1) and 2〇) to be equal. Therefore, 1/J τ obtained from the coefficient α of the Gaussian curve fitted to the peak of the diffraction line corresponds to the standard deviation σ representing the spread 9 of the function of Fuki (2), so this l/v”27 can represent the spread of a diffraction line approximated by a Gaussian curve.This value is named the Gaussian curve parameter (hereinafter abbreviated as GCP) and is expressed by α as follows.

次に、式(4)のGCPαの求め方について説明する。Next, how to obtain GCPα in equation (4) will be explained.

一般に、正しい回折X線強度を得るためには、X線強度
の実測値yをバックグラウンド(JG)及びLPA因子
で補正する必要がある。しかし、LPA因子補正は、式
(4)のαの値にほとんど影響しないことが明らかkさ
れているので省略できる。BG補正とは、回折線をEG
強強度、を基準にして測定すること、すなわちX線強度
として実測値yの代りにy−y、を用いることである。
Generally, in order to obtain a correct diffraction X-ray intensity, it is necessary to correct the measured value y of the X-ray intensity by the background (JG) and LPA factors. However, since it is clear that the LPA factor correction has almost no effect on the value of α in equation (4), it can be omitted. BG correction refers to converting diffraction lines into EG
It is to measure based on the strong intensity, that is, to use y-y instead of the actual measurement value y as the X-ray intensity.

しかし、このBG補正を省略して実測値yから求めたG
CPを用いても、回折線の広が9は評価できるので、測
定時間及び計算時間が短縮できるという実用的立場から
、ここではEGを補正せずに求めたGCPについて主と
して述べるが、BG補正をした場合のGCPも同様な方
法で求め得ることは言うまでもない。
However, the G calculated from the actual measured value y by omitting this BG correction
Even if CP is used, the spread9 of the diffraction line can be evaluated, so from a practical standpoint that measurement time and calculation time can be shortened, we will mainly discuss GCP obtained without EG correction, but GCP obtained without BG correction will be discussed here. It goes without saying that the GCP in this case can also be obtained in a similar manner.

一般に、鋼の回折線の最大X線強度をywとすれば、少
くとも0.8yヤ以上の回折線ピーク付近は4ガウス曲
線でよく近似できることが明らかにされている。いま、
第4図のように、一定のステップ幅Cで測定した0、8
 ’/mmx”上のル個の点に、最小二乗法を用いてガ
ウス曲線を当てはめて式(1)の定数αを求め、これを
式(4)に代入すれば、回折線の広がヤを表わすガウス
曲線パラメータ(GCP)αが次式よシ計算できる。
Generally, it has been revealed that if the maximum X-ray intensity of a steel diffraction line is yw, the vicinity of the peak of a diffraction line of at least 0.8yy can be well approximated by a 4 Gauss curve. now,
0,8 measured with a constant step width C as shown in Figure 4.
By applying a Gaussian curve to the points on '/mm The Gaussian curve parameter (GCP) α that represents α can be calculated using the following equation.

ただし、lrbは自然対数を表わし、 Tz ”= l 2 tS −n” + 1である。However, lrb represents the natural logarithm, Tz"=l2tS-n"+1.

EG補正をした場合のGCPは、式(5)のyの代りに
、yからBG強度y6を差し引いた値y−y。
GCP when EG correction is performed is the value y−y obtained by subtracting the BG intensity y6 from y instead of y in equation (5).

を代入すれば求まる。It can be found by substituting .

実施例 次に、不完全焼入鋼の実測例について説明する。Example Next, an actual measurement example of incompletely hardened steel will be explained.

第5図には、用いた試験片の形状を示した。FIG. 5 shows the shape of the test piece used.

第6図は一第5図の形状をもつ545cの試験片を85
0℃に加熱後、水中で静止したまま冷却したときの光学
顕微鏡組織写真で、この試験片はマルテンサイ)組織(
白い部分)とトルースタイト(黒い部分)の混合組織を
もっている。第7図には、この試験片の回折線を示した
。これを、第2図及び第3図に示した均一な組織をもつ
熱処理鋼の回折線と比べると、幅広い回折線のすそ野に
対して、回折線ピークが異状に鋭くなっているのが特徴
である。
Figure 6 shows a 545c test piece with the shape shown in Figure 5.
This is an optical microscopic micrograph taken when the specimen was heated to 0°C and then cooled while standing still in water.
It has a mixed structure of white part) and troostite (black part). FIG. 7 shows the diffraction lines of this test piece. When we compare this with the diffraction lines of heat-treated steel with a uniform structure shown in Figures 2 and 3, we find that the diffraction line peaks are unusually sharp compared to the wide base of the diffraction lines. be.

第8図は、同じく第5図に示した形状の試験片545C
を850°℃に加熱後、油中に冷却した場合の光学顕微
鏡写真である。・この試験片も、第6図に示した試験片
と同様に、マルテンサイト(白い部分)とトルースタイ
ト(黒い部分)の混合組織から成っており、回折線は第
9図に示したように、鋭い回折線ピークを示している。
FIG. 8 shows a test piece 545C having the shape also shown in FIG.
This is an optical micrograph taken when the sample was heated to 850°C and then cooled in oil.・Similar to the test piece shown in Figure 6, this test piece also consists of a mixed structure of martensite (white part) and troostite (black part), and the diffraction lines are as shown in Figure 9. , showing sharp diffraction line peaks.

第10図は、不完全焼入鋼のこのような異状な回折線が
得られる理由を説明した図で、組織写真に対応する回折
線を模式的に示した。この組織写真の中央部のくぼみは
、マイクロビッカース硬度Hvを測定したときの圧痕で
ある。第10図(C)に示した不完全焼入鋼の組織はマ
ルテンサイトとトルースタイトの混合組織であり、その
回折線はトルースタイトの鋭い回折線とマルテンサイト
の輻広い回折線を重ね合せた形状になるので、ピーク付
近は鋭く、すそ舒は広がったプロフィルとなることがわ
かる。
FIG. 10 is a diagram explaining the reason why such abnormal diffraction lines are obtained in incompletely hardened steel, and schematically shows the diffraction lines corresponding to the microstructure photograph. The depression in the center of this microstructure photograph is an indentation when the micro Vickers hardness Hv was measured. The structure of the incompletely hardened steel shown in Figure 10 (C) is a mixed structure of martensite and troostite, and its diffraction line is a superposition of the sharp diffraction line of troostite and the broad diffraction line of martensite. It can be seen that the profile is sharp near the peak and wide at the hem.

したがって、回折線のピークの鋭さを測定できるGCP
αは、完全焼入鋼よりも不完全焼入鋼の方が小さい値を
とる。もし、完全焼入鋼(組織がすべてマルテンサイト
になった鋼)のGCPを種々の炭素含有量(0%)を有
する鋼に対して前もって求めておき、同一の炭素含有量
をもつ不完全焼入鋼のGCP(これをα、とする)と完
全焼入鋼のGCP(これを4とする)との比rを次式 %式%(6) から求めれば、このrの値から焼入れの不完全さ、また
はマルテンサイトとトルースタイト組織の占める面積比
を知ることができる。
Therefore, GCP can measure the sharpness of the peak of the diffraction line.
α takes a smaller value for incompletely hardened steel than for completely hardened steel. If the GCP of fully hardened steel (steel whose structure is entirely martensite) is determined in advance for steels with various carbon contents (0%), If the ratio r between the GCP of the filled steel (this is set as α) and the GCP of the fully hardened steel (this is set as 4) is calculated from the following formula % formula % (6), then from the value of r, the quenching It is possible to know the imperfections or the area ratio occupied by martensite and troostite structures.

第11図には、炭素含有量(0%)の異なる15種類の
鋼を水焼入れ後、サブゼロ処理をして完全に焼入れだと
きの0%とマイクロビッカース硬度Hvとの関係を黒丸
で示した。また、この図には、機械構造用炭素鋼545
Cと炭素工具鋼SK3を、冷却速度を変えることによっ
て不完全に焼入れだ場合の硬度を白丸で示した。
Figure 11 shows the relationship between 0% and micro-Vickers hardness Hv when 15 types of steel with different carbon contents (0%) are water-quenched and then subjected to sub-zero treatment and completely quenched. . This figure also shows 545 carbon steel for machine structures.
The white circles indicate the hardness of C and carbon tool steel SK3 when they are incompletely hardened by changing the cooling rate.

図11の硬度Hvは、一つの試験片に対して7点測定し
た値の平均値である。図11は、不完全焼入鋼の硬度は
、当然のことながら、同一の0%をもつ完全焼入鋼の硬
度よりも小さい値をとることを示している。
The hardness Hv in FIG. 11 is the average value of values measured at seven points for one test piece. FIG. 11 shows that the hardness of incompletely hardened steel is naturally smaller than the hardness of fully hardened steel with the same 0%.

第12図は、第11図と同じ試験片を用いて求めた0%
とGCPαとの関係である。第12図は、第11図と同
様な傾向を示しており、不完全焼入鋼のGCP(白丸)
は、完全焼入鋼のGCP(黒丸)よりも小さい値をとっ
ている。
Figure 12 shows 0% calculated using the same test piece as in Figure 11.
and GCPα. Figure 12 shows the same tendency as Figure 11, with GCP of incompletely hardened steel (white circles).
has a smaller value than the GCP (black circle) of fully hardened steel.

これらの不完全焼入鋼のrを式(6)から求めたところ
、545cではr−0,23〜0.90、SK3ではr
 −0,16〜OJ4であった。第12図は、本発明で
提案したGCPを用いたX線回折による方法によって、
焼入れの不完全さを評価できることを示している。
When the r of these incompletely hardened steels was calculated from equation (6), it was r-0.23 to 0.90 for 545c and r-0.23 to 0.90 for SK3.
-0.16 to OJ4. Figure 12 shows the results obtained by the method of X-ray diffraction using GCP proposed in the present invention.
This shows that it is possible to evaluate the incompleteness of quenching.

第13図は、545Cを完全に焼入れ後、種種の温度で
焼戻しだ試験片(黒丸で示す)と不完全に焼入れた試験
片(白丸で示す)の硬度HvとGCPαとの関係を示し
た結果である。この図は、いずれの試験片に対しても硬
度Hvの上昇とともにGCPαが大きくなること、また
同一の硬度に対して、不完全焼入鋼のGCPは完全焼入
れ後、焼戻しだ試験片のGCPに比べて小さい値をとる
ことを示している。
Figure 13 shows the relationship between hardness Hv and GCPα of 545C specimens that were completely quenched and then tempered at various temperatures (indicated by black circles) and those that were incompletely quenched (indicated by white circles). It is. This figure shows that GCPα increases with increasing hardness Hv for all test specimens, and that for the same hardness, the GCP of incompletely hardened steel is the same as that of completely quenched and tempered specimens. This shows that the value is small compared to the above.

発明の効果 本発明は上述の如く、X線回折装置またはX線応力測定
装置を用いて評価すべき焼入鋼にX線を照射することに
より回折角とX線強度との関係を示す回折線を求め、こ
の回折線のピーク付近を近似したガウス曲線のもつパラ
メータを用いて焼入れの不完全な不完全焼入鋼に特有な
鋭い回折線ピークの先鋭度を測定し、得られたGCPを
、前もって求めておいた同一の炭素含有量をもつ完全′
焼入鋼のGCPと比較することによって、不完全焼入鋼
の焼入れの不完全さまたはマルテンサイト組織に対する
トルースタイト組織やパーライト組織の面積比を測定す
ることにより鋼の焼入れの完全さまたは焼入性を評価す
るようにしたことから、従来の硬度測定や顕微鏡組織観
察による方法とは異なり、実物の測定が可能であると共
に、部材より試験片を切り出す必要がないので非破壊的
な測定が非接触かつ迅速に行なえるようになる。
Effects of the Invention As described above, the present invention produces diffraction lines showing the relationship between diffraction angle and X-ray intensity by irradiating X-rays on hardened steel to be evaluated using an X-ray diffraction device or an X-ray stress measurement device. The sharpness of the sharp diffraction line peak, which is characteristic of incompletely quenched steel, is measured using the parameters of a Gaussian curve that approximates the vicinity of the peak of this diffraction line, and the obtained GCP is Complete ′ with the same carbon content determined in advance
Incompleteness of quenching of incompletely quenched steel by comparing with GCP of quenched steel or completeness of quenching of steel by measuring the area ratio of troostite structure or pearlite structure to martensitic structure Unlike conventional hardness measurement or microscopic structure observation methods, this method allows measurement of the actual object, and there is no need to cut out a test piece from the component, making non-destructive measurement possible. You will be able to do it easily and quickly.

【図面の簡単な説明】[Brief explanation of the drawing]

図面はこの発明の一実施例を示し、第1図は回折角Xと
X線強度yの関係を示す回折線の模式図、第2図は完全
に焼入れだマルテンサイト組織からなる機械構造用炭素
鋼545cの回折線図、第3図は545cを水焼入れ後
、500℃で焼戻しだ545Cの回折線図、第4図は回
折線ピークをガウス曲線で近似する方法の説明図、第5
図(W) # (6)は試験片形状を示す平面及び側面
図、第6図は水中に静止したまま冷却した不完全焼入@
545Cの金属組織図、第7図は水中に静止しY−まま
冷却した不完全焼入@545Cの回折線図、第8図は油
中に冷却した不完全焼入鋼545cの金属組織図、第9
図は油中に冷却した不完全焼入鋼5h5Cの金属回折線
図、第10図(cL) 、 (6) I (C)はマル
テンサイトとトルースタイト組織の混合組織をもつ不完
全焼入鋼の金属組織及び回折線プロフィルの説明図、第
11図は完全焼入鋼及び不完全焼入鋼の炭素含有量とマ
イクロビッカース硬度との関係を示す線図、第12図は
完全焼入鋼及び不完全焼入鋼の炭素含有量とGCPαと
の関係を示す図、第13図は545Cの焼入・焼戻鋼と
不完全焼入鋼の硬度HvとGCPαとの関係を示す線図
である。 第4図 回折角χ 第5図 (bン 第6図
The drawings show one embodiment of the present invention; Fig. 1 is a schematic diagram of diffraction lines showing the relationship between the diffraction angle Diffraction diagram of steel 545c, Fig. 3 is a diffraction diagram of 545C obtained by water quenching and tempering at 500°C, Fig. 4 is an explanatory diagram of the method of approximating the diffraction peak with a Gaussian curve, Fig. 5
Figure (W) # (6) is a plane and side view showing the shape of the specimen, and Figure 6 is incomplete quenching @ cooled while stationary in water.
The metallographic diagram of 545C, Figure 7 is the diffraction diagram of incompletely quenched @545C cooled in Y-state while standing still in water, and Figure 8 is the metallographic diagram of incompletely quenched steel 545c cooled in oil. 9th
The figure shows the metal diffraction diagram of incompletely hardened steel 5h5C cooled in oil. Figure 10 (cL), (6) I (C) shows incompletely hardened steel with a mixed structure of martensite and troostite structure. Fig. 11 is a diagram showing the relationship between carbon content and micro-Vickers hardness of fully quenched steel and incompletely quenched steel, Fig. 12 is a diagram showing the relationship between carbon content and micro-Vickers hardness of fully quenched steel and A diagram showing the relationship between carbon content and GCPα of incompletely hardened steel, and FIG. 13 is a diagram showing the relationship between hardness Hv and GCPα of 545C hardened and tempered steel and incompletely hardened steel. . Fig. 4 Diffraction angle χ Fig. 5 (b Fig. 6

Claims (1)

【特許請求の範囲】[Claims] X線回折装置またはX線応力測定装置を用いて評価すべ
き焼入鋼にX線を照射することにより回折角とX線強度
との関係を示す回折線を求め、この回折線のピーク付近
を近似したガウス曲線のもつパラメータ(定数:以下G
CPと呼ぶ)を用いて焼入れの不完全な不完全焼入鋼に
特有な鋭い回折線ピークの先鋭度を測定し、得られたG
CPを、前もって求めておいた同一の炭素含有量をもつ
完全焼入鋼のGCPと比較することによって、不完全焼
入鋼の焼入れの不完全さまたはマルテンサイト組織に対
するトルースタイト組織やパーライト組織の面積比を測
定することにより鋼の焼入れの完全さまたは焼入性を評
価することを特徴とするX線回折による鋼の焼入れ性の
評価方法。
By irradiating the hardened steel to be evaluated with X-rays using an X-ray diffraction device or an X-ray stress measuring device, a diffraction line indicating the relationship between the diffraction angle and the Parameters (constants: hereinafter G) of the approximated Gaussian curve
G
By comparing the CP with the predetermined GCP of fully hardened steel with the same carbon content, it is possible to determine the imperfection of quenching in incompletely hardened steel or the presence of troostite or pearlite structure in contrast to martensitic structure. A method for evaluating the hardenability of steel by X-ray diffraction, which comprises evaluating the completeness of hardening or hardenability of steel by measuring the area ratio.
JP14748784A 1984-07-18 1984-07-18 Method for evaluating hardenability of steel by x-ray diffraction Granted JPS6126721A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14748784A JPS6126721A (en) 1984-07-18 1984-07-18 Method for evaluating hardenability of steel by x-ray diffraction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14748784A JPS6126721A (en) 1984-07-18 1984-07-18 Method for evaluating hardenability of steel by x-ray diffraction

Publications (2)

Publication Number Publication Date
JPS6126721A true JPS6126721A (en) 1986-02-06
JPH0457730B2 JPH0457730B2 (en) 1992-09-14

Family

ID=15431499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14748784A Granted JPS6126721A (en) 1984-07-18 1984-07-18 Method for evaluating hardenability of steel by x-ray diffraction

Country Status (1)

Country Link
JP (1) JPS6126721A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102706903A (en) * 2012-05-24 2012-10-03 合肥工业大学 Method for measuring interface constituent of tyre wire cord

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102706903A (en) * 2012-05-24 2012-10-03 合肥工业大学 Method for measuring interface constituent of tyre wire cord

Also Published As

Publication number Publication date
JPH0457730B2 (en) 1992-09-14

Similar Documents

Publication Publication Date Title
Doig et al. Nonequilibrium solute segregation to austenite grain boundaries in low alloy ferritic and austenitic steels
JPS6126721A (en) Method for evaluating hardenability of steel by x-ray diffraction
Mevec et al. Combining hardness measurements of a heat-treated crankshaft bearing with cross-sectional residual stress and retained austenite distributions measured by HEXRD
US11274979B2 (en) Methods of non-destructive residual stress measurement using barkhausen noise and use of such methods
CN113702132A (en) Detection method for paracrystallized steel decarburized layer containing abnormal structure
Kahrobaee et al. A Magnetic Nondestructive Evaluation Method to Simultaneously Determine Chemical Composition and Heat Treatment Characteristics of Plain Carbon Steels: A Statistical Modeling Approach
Cosarinsky et al. Non-destructive characterisation of laser-hardened steels
Horn et al. Identification of a process window for tailored carburization of sheet metals in hot stamping
Kirby et al. Effect of sulfur on microstructure and properties of medium-carbon microalloyed bar steels
Morgano et al. Simulation of heat treatment of jominy specimen to improve quality of automotive gear components
JPS59155743A (en) Method for measuring hardness of heat treated steel by x-ray diffraction using gaussian curve method
JP3149225B2 (en) Non-destructive evaluation method of toughness using Barkhausen noise
CN111638238B (en) Method for measuring reverse transformation austenite by adopting expansion method
JP2022070044A (en) Method for evaluating metallic member
Szobota et al. Non-destructive Test for Control of the Surface Quality of Semi Product at the Automotive Industry
KR100482523B1 (en) Analysis method of residual stress in retained austenite mixed with martensite microstruture of carburized steel alloy surface
Athavale et al. On a modified approach of measuring quench severity and its application
SU892203A1 (en) Method of determining stressed condition of plastically deformed materials
DE10320036A1 (en) Determining diffusion coefficient of carbon in steels comprises embedding sample of steel in oxidizing powder, annealing, measuring resulting decarburizing profile, and mathematically analyzing
SU457019A1 (en) The method for determining the critical temperature of the martensitic transformation
JPS62188725A (en) Control device for quality of induction heat treatment
SU730837A1 (en) Method of quality control of high-speed steel thermal treatment
CN107490665A (en) Fe in cold rolling low carbon aluminum-killed steel plate tissue3The detection method of C amount of precipitations
Chiriac et al. The Effects of Non-Isothermal Plastic Deformation on the Martensitic Transformation of 1.8 GPa Press Hardening Steel and Implications toward Production Paths
Holmberg et al. Predictive Modeling of Induction-Hardened Depth Based on the Barkhausen Noise Signal. Micromachines 2023, 14, 97