JPH0795178B2 - Intermediate frequency stabilization method - Google Patents

Intermediate frequency stabilization method

Info

Publication number
JPH0795178B2
JPH0795178B2 JP63191497A JP19149788A JPH0795178B2 JP H0795178 B2 JPH0795178 B2 JP H0795178B2 JP 63191497 A JP63191497 A JP 63191497A JP 19149788 A JP19149788 A JP 19149788A JP H0795178 B2 JPH0795178 B2 JP H0795178B2
Authority
JP
Japan
Prior art keywords
intermediate frequency
frequency
signal
polarization
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63191497A
Other languages
Japanese (ja)
Other versions
JPH0240635A (en
Inventor
真 渋谷
俊太郎 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63191497A priority Critical patent/JPH0795178B2/en
Priority to EP89113983A priority patent/EP0352809B1/en
Priority to DE68927969T priority patent/DE68927969T2/en
Priority to US07/386,072 priority patent/US5023946A/en
Publication of JPH0240635A publication Critical patent/JPH0240635A/en
Publication of JPH0795178B2 publication Critical patent/JPH0795178B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は光通信システムに用いられる光ヘテロダイン
受信方法における中間周波数安定化方法に関するもので
ある。
TECHNICAL FIELD The present invention relates to an intermediate frequency stabilizing method in an optical heterodyne receiving method used in an optical communication system.

(従来の技術) 光ヘテロダイン検波通信(コヒーレント光通信)は、光
の強度を変調する直接検波通信比べ受信感度が高く、ま
た周波数利用効率が高いため、長距離高密度伝送が可能
であるという利点を有する。(斉藤、山本、木村「コヒ
ーレント光ファイバ伝送変調技術‐FSK光ヘテロダイン
検波」電々公社電球実用化報告第31巻第12号、1982年)
このコヒーレント光通信は、信号光と局部発振光の合波
光を光検出器で受光し、信号光と局部発振光の周波数差
に相当するビートを中間周波数信号として得、これを復
調することによってベースバンド信号を得るものであ
る。
(Prior Art) Optical heterodyne detection communication (coherent optical communication) has a higher reception sensitivity and higher frequency utilization efficiency than direct detection communication in which the intensity of light is modulated. Have. (Saito, Yamamoto, Kimura "Coherent Optical Fiber Transmission Modulation Technology-FSK Optical Heterodyne Detection", Denka Kogyo Practical Report, Vol. 31, No. 12, 1982)
In this coherent optical communication, the combined light of the signal light and the local oscillation light is received by a photodetector, a beat corresponding to the frequency difference between the signal light and the local oscillation light is obtained as an intermediate frequency signal, and this is demodulated to produce a base signal. A band signal is obtained.

ところでこの方法では、信号光偏波変動によって信号光
と局部発振光の偏波状態に不一致が生じ、受信感度が劣
化する。また、信号光と局部発振光の周波数変動によっ
て中間周波数が変動し、受信特性が劣化する。従って光
ヘテロダイン検波通信においては、信号光の偏波変動の
補償と中間周波数の安定化が必要である。
By the way, in this method, the polarization state of the signal light and the locally oscillated light become inconsistent due to the polarization fluctuation of the signal light, and the reception sensitivity is deteriorated. Further, the intermediate frequency fluctuates due to the frequency fluctuations of the signal light and the local oscillation light, and the reception characteristics deteriorate. Therefore, in the optical heterodyne detection communication, it is necessary to compensate the polarization fluctuation of the signal light and stabilize the intermediate frequency.

光ヘテロダイン検波通信では、従来この信号光の偏波変
動の補償方法の1つとして、偏波ダイバーシチ光受信方
法が知られている。これは信号光と局部発振光の合波光
を偏波分離部で互いに偏波状態が直交する第1、第2の
合波光に分離し、それぞれ個別の受光器で受光して第1
および第2の中間周波数信号に変換し、この2つの中間
周波数信号を処理部で復調、合成をすることにより、信
号光の偏波状態に依存しない安定なベースバンド信号を
得るものである。この処理部における信号の復調、およ
び合成方法として、2つの中間周波数信号の位相を一致
させた上で合成し、その後復調する方法と、2つの中間
周波数信号を個別に復調した後に合成する方法(ベース
バンド合成方法)とがある。このうち後者のベースバン
ド合成方法は中間周波数信号の位相を調整する必要がな
いため構成が単純で、受信感度劣化を小さくすることが
可能である為、盛んに研究が行なわれている。例えばグ
ランス(B.Glance)はPSK差動同期検波によって復調を
行うベースバンド合成方法を用いた偏波ダイバーシチ光
受信方法における感度劣化は0.4dBであることを理論的
に明らかにしている。(グランス(B.Glance)、“ポー
ラリゼーションインデペンデントコヒーレントオプティ
カルレシーバ”(“Polarization independent coheren
t opticalreceiver")ジャーナルオブライトウェイブテ
クノロジー(Journal of Lightwave Technology)第5
巻、1987年、274ページ) 一方、光ヘテロダイン検波通信のもう1つの課題である
中間周波数安定化方法としては、中間周波数信号を周波
数弁別器に入力し、その出力によって局部発振光源の発
振周波数を制御する方法等が用いられていた。
In the optical heterodyne detection communication, the polarization diversity optical receiving method has been known as one of the methods for compensating for the polarization fluctuation of the signal light. This is because the combined light of the signal light and the locally oscillated light is separated into first and second combined light whose polarization states are orthogonal to each other in the polarization separation unit, and the light is received by individual light receivers to receive the first light.
And a second intermediate frequency signal, and the processing section demodulates and synthesizes the two intermediate frequency signals to obtain a stable baseband signal that does not depend on the polarization state of the signal light. As a method of demodulating and synthesizing signals in this processing unit, two intermediate frequency signals are made to match in phase and then synthesized, and a method of individually demodulating the two intermediate frequency signals and then synthesizing ( Baseband synthesis method). Among them, the latter baseband synthesis method has a simple structure because it is not necessary to adjust the phase of the intermediate frequency signal and can reduce the deterioration of reception sensitivity, and thus is actively researched. For example, Glance (B. Glance) has theoretically clarified that the sensitivity degradation in the polarization diversity optical receiving method using the baseband combining method that demodulates by PSK differential synchronous detection is 0.4 dB. (B.Glance, "Polarization independent coheren optical receiver"("Polarization independent coheren
t opticalreceiver ") Journal of Lightwave Technology 5th
Vol. 1987, p. 274) On the other hand, as another method of stabilizing the intermediate frequency, which is another problem of optical heterodyne detection communication, the intermediate frequency signal is input to the frequency discriminator, and the oscillation frequency of the local oscillation light source is output by the output. A control method or the like was used.

(発明が解決しようとする課題) しかしながら、ベースバンド合成方法を用いた偏波ダイ
バーシチ光受信方法では中間周波数信号が2系統あり、
それぞれの中間周波数信号の位相、強度は信号光の偏波
状態に従って変動するため、この2つの中間周波数信号
をそのまま加え合せた場合、信号光の偏波状態によって
は2つの中間周波数信号が打消し合ってしまうことがあ
る。従って中間周波数の安定化を行うためには2つの中
間周波数信号を2つの周波数弁別器でそれぞれ周波数弁
別した後、その出力を合成することによって制御信号を
得る必要があり、システム規模が大きくなる等の課題が
あった。
(Problems to be Solved by the Invention) However, in the polarization diversity optical receiving method using the baseband combining method, there are two systems of intermediate frequency signals,
Since the phase and intensity of each intermediate frequency signal fluctuate according to the polarization state of the signal light, if these two intermediate frequency signals are added together as they are, the two intermediate frequency signals will cancel depending on the polarization state of the signal light. There is a case that fits. Therefore, in order to stabilize the intermediate frequency, it is necessary to obtain the control signal by frequency-discriminating the two intermediate-frequency signals with the two frequency discriminators and then synthesizing the outputs thereof, resulting in an increase in the system scale. There was a problem.

したがって、本発明の目的はベースバンド合成方法を用
いた偏波ダイバーシチ光受信方法において、信号光の偏
波変動に影響されない、構成の簡単な中間周波数安定化
方法を提供することにある。
Therefore, an object of the present invention is to provide an intermediate frequency stabilizing method having a simple structure, which is not affected by the polarization fluctuation of the signal light, in the polarization diversity optical receiving method using the baseband combining method.

(課題を解決するための手段) 本発明は、光送信部より送信されてきた信号光を偏波分
離部で直交する2つの偏波成分に分離し、この偏波分離
された信号光と局部発振光とのビート成分を2つの光検
出器で検出し得られた2つの中間周波数信号をそれぞれ
復調した後に合成することによって復調信号出力を取り
出す偏波ダイバーシチ光ヘテロダイン受信方法におい
て、前記2つの中間周波数信号の一部をとりだし、一方
の中間周波数信号を遅延させた後に両者を合成し、この
合成された中間周波数信号の周波数変動を周波数弁別器
で検出し、この周波数弁別器の出力によって局部発振光
源の発振周波数を制御することを特徴とする中間周波数
安定化方法である。
(Means for Solving the Problems) In the present invention, a signal light transmitted from an optical transmission unit is separated into two polarization components orthogonal to each other by a polarization separation unit, and the polarization-separated signal light and a local component are separated. In the polarization diversity optical heterodyne reception method, a demodulated signal output is obtained by demodulating two intermediate frequency signals obtained by detecting a beat component with oscillating light with two photodetectors and then combining the two intermediate frequency signals, A part of the frequency signal is taken out, one of the intermediate frequency signals is delayed, the two are combined, the frequency fluctuation of the combined intermediate frequency signal is detected by a frequency discriminator, and the local oscillation is generated by the output of this frequency discriminator. It is an intermediate frequency stabilization method characterized by controlling the oscillation frequency of a light source.

(作用) 本発明では上記のように2つの中間周波数信号のうち片
方に遅延を与えることによって両者の相関を小さくし、
両者を合成しても互いに打消し合うことがなくなる。し
たがってこの合成された中間周波数信号を用いて周波数
弁別を行ない局部発振光源の発振周波数に帰還をかける
ことにより、信号光の偏波状態に依らず中間周波数安定
化を行うことができる。
(Operation) In the present invention, by delaying one of the two intermediate frequency signals as described above, the correlation between the two is reduced,
Even if they are combined, they will not cancel each other out. Therefore, by performing frequency discrimination using the synthesized intermediate frequency signal and feeding back the oscillation frequency of the local oscillation light source, the intermediate frequency can be stabilized regardless of the polarization state of the signal light.

(実施例) 第1図に本発明の第1の実施例の構成図、第2図に本発
明の動作の説明図を示す。
(Embodiment) FIG. 1 is a block diagram of the first embodiment of the present invention, and FIG. 2 is an explanatory view of the operation of the present invention.

第1図の実施例は2Gb/sPSK差動同期光ヘテロダイン検波
受信器に本発明を適用したものである。2Gb/sでPSK変調
された信号光1は光合波器2で局部発振光3と合波され
た後、偏波分離部4で2つの直交する偏波成分に分離さ
れ、それぞれ光検出器5、6で受光され、中間周波数信
号7、8が出力される。処理部9でこの中間周波数信号
7、8はPSK差動同期光ヘテロダイン検波方式によって
それぞれ復調された後合成され、ベースバンド信号10が
出力される。このPSK差動同期光ヘテロダイン検波方式
については、例えば江村による“400Mb/sオプティカルD
PSKヘテロダインディテクションイクスパリメンツユー
ジングDBRレーザーダイオードウィズイクスターナルオ
プティカルフィードバック”(“400Mb/s Optical DPSK
heterodyne detection experiments using DBR,laser
diode with external optikal feedback")アイ・オー
・オー・シー‐イー・シー・オー・シー'85(IOCC-ECO
C'85)テクニカルダイジェスト、第401ページ等の文献
に詳細な解説がなされている。
The embodiment shown in FIG. 1 is an application of the present invention to a 2 Gb / s PSK differential synchronous optical heterodyne detection receiver. The signal light 1 PSK-modulated at 2 Gb / s is multiplexed with the local oscillation light 3 by the optical multiplexer 2, then separated into two orthogonal polarization components by the polarization demultiplexing unit 4, and the photodetector 5 respectively. , 6 and the intermediate frequency signals 7 and 8 are output. In the processing unit 9, the intermediate frequency signals 7 and 8 are demodulated by the PSK differential synchronous optical heterodyne detection method and then combined, and a baseband signal 10 is output. This PSK differential synchronous optical heterodyne detection system is described in, for example, “400 Mb / s Optical D” by Emura.
PSK Heterodyne Detection Extractions Uses DBR Laser Diode with External Optical Feedback "(" 400Mb / s Optical DPSK
heterodyne detection experiments using DBR, laser
diode with external optikal feedback ") I OC OC-EC OC '85 (IOCC-ECO
C'85) A detailed explanation is given in the literature such as the technical digest and page 401.

ここで中間周波数信号の周波数安定化のため2つの中間
周波数信号7、8の一部がとりだされ、遅延回路11によ
って片方の中間周波数信号にτの遅延が与えられた後、
両者は合成回路12で合成される。この合成された中間周
波数信号13のスペクトルを第2図に示す。このスペクト
ルにおいて、1/τの周波数間隔で谷が生じているが、こ
れは中間周波数信号7、8が互いに打消しあっているた
め生じるものであり、両者の強度が等しいとき、つまり
信号光1の偏波分離部における分岐比が1:1になったと
きこの谷は最も深くなる。しかし遅延量τを大きくとっ
てこの谷の周波数間隔を十分に小さくすることにより、
この谷の周波数安定度に対する影響を無視できるほど小
さくすることが可能である。本実施例では遅延回路11と
して長さ6mの同軸ケーブルを用いた この合成された中間周波数信号13は、周波数弁別器14に
よって周波数弁別され、周波数制御信号15が出力されこ
れによって局部発振光源16の発振周波数に帰還がかけら
れる。本実施例では遅延線17とミクサ18と第1のローパ
スフィルタ19によって構成される周波数弁別器14によっ
て中間周波数を4GHzに安定化することができ、その周波
数変動量は信号光の偏波状態変動にかかわらず10MHz以
下に抑えることができた。
Here, a part of the two intermediate frequency signals 7 and 8 is taken out to stabilize the frequency of the intermediate frequency signal, and after a delay of τ is given to one of the intermediate frequency signals by the delay circuit 11,
Both are combined by the combining circuit 12. The spectrum of the synthesized intermediate frequency signal 13 is shown in FIG. In this spectrum, valleys occur at a frequency interval of 1 / τ, but they occur because the intermediate frequency signals 7 and 8 cancel each other out. This valley becomes the deepest when the splitting ratio in the polarization splitting part of becomes 1: 1. However, by increasing the delay amount τ and sufficiently reducing the frequency interval of this valley,
The influence of this valley on the frequency stability can be made small enough to be ignored. In the present embodiment, a 6 m long coaxial cable is used as the delay circuit 11, the synthesized intermediate frequency signal 13 is frequency discriminated by a frequency discriminator 14, and a frequency control signal 15 is output. Feedback is applied to the oscillation frequency. In this embodiment, the frequency discriminator 14 including the delay line 17, the mixer 18, and the first low-pass filter 19 can stabilize the intermediate frequency to 4 GHz, and the frequency fluctuation amount is the polarization state fluctuation of the signal light. However, I was able to keep it below 10MHz.

第3図は第2の実施例の構成図を示す。第2の実施例で
は周波数弁別器14において、合成された中間周波数信号
13の高域成分と低域成分のレベルを比較することによっ
て周波数弁別を行っている。すなわち、しゃ断周波数が
いずれも4GHzであるハイパスフィルタ20とローパスフィ
ルタ21によって、合成された中間周波数信号13の高域成
分と低域成分をとりだし、第1の電力検出器22と第2の
電力検出器23によってそれぞれの信号レベルを検出す
る。この第1および第2の電力検出器22、23の出力は加
算器24と引算器25とに入力され、割算器26において引算
器25の出力は加算器24の出力で割算される。これにより
割算器26の出力は中間周波数信号レベルに依存せず中間
周波数信号の周波数変動のみに応じて変化するのでこれ
を制御信号として局部発振光源16の発振周波数を制御し
中間周波数信号の周波数を4GHzに安定化することができ
その周波数変動量を5MHz以下に抑えることができた。
FIG. 3 shows a block diagram of the second embodiment. In the second embodiment, in the frequency discriminator 14, the synthesized intermediate frequency signal
Frequency discrimination is performed by comparing the levels of 13 high-frequency components and low-frequency components. That is, the high-pass filter 20 and the low-pass filter 21 each having a cut-off frequency of 4 GHz extract the high-frequency component and the low-frequency component of the synthesized intermediate frequency signal 13 to detect the first power detector 22 and the second power detector. The signal level is detected by the device 23. The outputs of the first and second power detectors 22 and 23 are input to the adder 24 and the subtractor 25, and the output of the subtractor 25 is divided by the output of the adder 24 in the divider 26. It As a result, the output of the divider 26 does not depend on the intermediate frequency signal level but changes only in accordance with the frequency fluctuation of the intermediate frequency signal. Therefore, the oscillation frequency of the local oscillation light source 16 is controlled by using this as a control signal to control the frequency of the intermediate frequency signal. Could be stabilized at 4 GHz, and its frequency fluctuation could be suppressed to 5 MHz or less.

以上、本発明の2つの実施例を説明したが本発明はこれ
らの実施例に限定されるものではなく、本発明の範囲内
で種々の変形、変更が可能であることが言うまでもな
い。
Although the two embodiments of the present invention have been described above, the present invention is not limited to these embodiments, and it goes without saying that various modifications and changes can be made within the scope of the present invention.

例えば第1、第2の実施例では信号の変復調方法に2Gb/
sPSK差動同期検波方法を用いたが、本発明は信号の変調
方法およびビットレートにかかわりなく適用することが
可能である。又、中間周波数信号の周波数弁別を行なう
のに、第1、第2の実施例に示した以外の周波数弁別器
を用いることも可能である。又、第1、第2の実施例で
は同軸ケーブルを用いて中間周波数信号の遅延を行った
が、周波数弁別に必要な帯域と十分な遅延量が確保され
てる限り、どのような遅延方法をとってもかまわない。
例えばストリップラインを用いた遅延線や広帯域アンプ
等を遅延回路として用いることも可能であり、信号のビ
ットレートが低いときはLC回路による遅延回路を用いる
等も可能である。
For example, in the first and second embodiments, the signal modulation / demodulation method is 2 Gb /
Although the sPSK differential synchronous detection method is used, the present invention can be applied regardless of the signal modulation method and bit rate. It is also possible to use frequency discriminators other than those shown in the first and second embodiments for discriminating the frequency of the intermediate frequency signal. Further, in the first and second embodiments, the intermediate frequency signal is delayed by using the coaxial cable, but any delay method can be adopted as long as the necessary band for frequency discrimination and a sufficient delay amount are secured. I don't care.
For example, a delay line using a strip line, a broadband amplifier, or the like can be used as the delay circuit, and when the signal bit rate is low, a delay circuit using an LC circuit can be used.

(発明の効果) 以上、詳細に述べたように本発明では2つの中間周波数
信号の片方を遅延させた後に合成するため、信号光の偏
波変動により2つの中間周波数信号間の位相差が変化し
ても2つの中間周波数信号が打消し合うことがない。こ
のため、2つの中間周波数信号を別々に周波数弁別する
必要はなく、合成された中間周波数信号を1つの周波数
弁別器で周波数弁別することによって中間周波数安定化
のための制御信号が得られる。したがって本発明によっ
てベースバンド合成型の偏波ダイバーシチ光受信方法に
おいて簡易な構成で信号光の偏波状態に依存せず中間周
波数安定化を行うことができる。
(Effect of the Invention) As described above in detail, in the present invention, one of the two intermediate frequency signals is delayed and then combined, so that the phase difference between the two intermediate frequency signals changes due to the polarization fluctuation of the signal light. However, the two intermediate frequency signals do not cancel each other. Therefore, it is not necessary to separately discriminate the two intermediate frequency signals from each other, and the control signal for stabilizing the intermediate frequency can be obtained by discriminating the frequency of the combined intermediate frequency signal with one frequency discriminator. Therefore, according to the present invention, in the baseband combining type polarization diversity light receiving method, the intermediate frequency can be stabilized with a simple structure without depending on the polarization state of the signal light.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の第1の実施例を説明する図であり、第
2図は本発明の動作を説明する図であり、第3図は本発
明の第2の実施例を説明する図である。各図において 1……信号光、2……光合波器、3……局部発振光、4
……偏波分離部、5,6……光検出器、7,8……中間周波数
信号、9……処理部、10……ベースバンド信号、11……
遅延回路、12……合成回路、13……合成された中間周波
数信号、14……周波数弁別器、15……中間周波数制御信
号、16……局部発振光源、17……遅延線、18……ミク
サ、19……第1のローパスフィルタ、20……ハイパスフ
ィルタ、21……第2のローパスフィルタ、22……第1の
電力検出器、23……第2の電力検出器、24……加算器、
95……引算器、26……割算器 である。
FIG. 1 is a diagram for explaining the first embodiment of the present invention, FIG. 2 is a diagram for explaining the operation of the present invention, and FIG. 3 is a diagram for explaining the second embodiment of the present invention. Is. In each figure, 1 ... Signal light, 2 ... Optical multiplexer, 3 ... Local oscillation light, 4
...... Polarization splitting unit, 5,6 …… Photodetector, 7,8 …… Intermediate frequency signal, 9 …… Processing unit, 10 …… Baseband signal, 11 ……
Delay circuit, 12 …… Synthesis circuit, 13 …… Synthesized intermediate frequency signal, 14 …… Frequency discriminator, 15 …… Intermediate frequency control signal, 16 …… Local oscillation light source, 17 …… Delay line, 18 …… Mixer, 19 ... First low-pass filter, 20 ... High-pass filter, 21 ... Second low-pass filter, 22 ... First power detector, 23 ... Second power detector, 24 ... Addition vessel,
95 ... Subtractor, 26 ... Divider.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H04B 10/04 10/06 10/142 10/152 Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location H04B 10/04 10/06 10/142 10/152

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】光送信部より送信されてきた信号光を偏波
分離部で直交する2つの偏波成分に分離し、この偏波分
離された信号光と局部発振光とのビート成分を2つの光
検出器で検出し得られた2つの中間周波数信号をそれぞ
れ復調した後に合成することによって復調信号出力を取
り出す偏波ダイバーシチ光ヘテロダイン受信方法におい
て、前記2つの中間周波数信号の一部をとりだし、一方
の中間周波数信号を遅延させた後に両者を合成し、この
合成された中間周波数信号の周波数変動を周波数弁別器
で検出し、この周波数弁別器の出力によって局部発振光
源の発振周波数を制御することを特徴とする中間周波数
安定化方法。
1. A signal light transmitted from an optical transmission unit is separated into two polarization components orthogonal to each other by a polarization separation unit, and the beat component of the polarization separated signal light and local oscillation light is divided into two. In the polarization diversity optical heterodyne receiving method in which two intermediate frequency signals detected by one photodetector are respectively demodulated and then combined to obtain a demodulated signal output, a part of the two intermediate frequency signals is taken out, After delaying one of the intermediate frequency signals, synthesizing them, detecting the frequency fluctuation of the synthesized intermediate frequency signal with a frequency discriminator, and controlling the oscillation frequency of the local oscillation light source by the output of this frequency discriminator. A method for stabilizing an intermediate frequency characterized by:
JP63191497A 1988-07-29 1988-07-29 Intermediate frequency stabilization method Expired - Lifetime JPH0795178B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP63191497A JPH0795178B2 (en) 1988-07-29 1988-07-29 Intermediate frequency stabilization method
EP89113983A EP0352809B1 (en) 1988-07-29 1989-07-28 Polarization diversity optical heterodyne receiver with phase adjustment of two i.f. signals for control of a local optical source
DE68927969T DE68927969T2 (en) 1988-07-29 1989-07-28 Optical heterodyne polarization diversity receiver with phase adjustment of two intermediate frequency signals to control a local light source
US07/386,072 US5023946A (en) 1988-07-29 1989-07-28 Polarization diversity optical heterodyne receiver with phase adjustment of two I.F. signals for control of a local optical source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63191497A JPH0795178B2 (en) 1988-07-29 1988-07-29 Intermediate frequency stabilization method

Publications (2)

Publication Number Publication Date
JPH0240635A JPH0240635A (en) 1990-02-09
JPH0795178B2 true JPH0795178B2 (en) 1995-10-11

Family

ID=16275632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63191497A Expired - Lifetime JPH0795178B2 (en) 1988-07-29 1988-07-29 Intermediate frequency stabilization method

Country Status (1)

Country Link
JP (1) JPH0795178B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2689875B2 (en) * 1993-12-24 1997-12-10 日本電気株式会社 Optical signal receiver
CN101359964B (en) * 2007-07-31 2011-06-15 富士通株式会社 Frequency bias monitoring apparatus and light coherent receiver

Also Published As

Publication number Publication date
JPH0240635A (en) 1990-02-09

Similar Documents

Publication Publication Date Title
US4856093A (en) Optical heterodyne receiver
EP0352809B1 (en) Polarization diversity optical heterodyne receiver with phase adjustment of two i.f. signals for control of a local optical source
JPH01211736A (en) Polarization diversity optical receiver for coherent optical communication
EP0314491B1 (en) Polarization diversity light receiving system
JP2658180B2 (en) Polarization diversity optical receiver
JPH0478251A (en) Demodulator and polarized wave diversity receiver for coherent optical communication provided with the demodulator
US5367397A (en) Wavelength-stabilizing method and its associated circuitry for an optical communication system
CA1308440C (en) Optical receiving method utilizing polarization diversity and apparatus for carrying out the same
EP1168681B1 (en) Method and apparatus for transmitting high-frequency signals in an optical communication system
JPS59122140A (en) Optical heterodyne detector
US4887314A (en) Optical FSK demodulator
JPH0795178B2 (en) Intermediate frequency stabilization method
US6043921A (en) Fading-free optical phase rate receiver
JPH0767093B2 (en) Polarization diversity optical heterodyne detection method and device
JPH05191352A (en) Coherent optical fiber communication system using polarized-light modulation
US3461388A (en) Phase locked loop receiver
EP0617526B1 (en) Coherent optical transceiver with frequency stabilisation
JPH04248721A (en) Balanced optical receiver
JPH07109994B2 (en) Polarization diversity type optical heterodyne receiver
JPH07297792A (en) Optical transmission system with frequency control
KR102519365B1 (en) Optical Receiving Apparatus and Method based on Polarization Intensity Rotation Frequency Shift Keying
JP2659417B2 (en) Coherent optical communication system
JPH05224267A (en) Optical receiver
JPH05303128A (en) Optical heterodyne detecting and receiving device capable of removing image signal
JPH03259632A (en) Optical heterodyne polarized wave diversity receiver