JPH0794819A - Laser element - Google Patents

Laser element

Info

Publication number
JPH0794819A
JPH0794819A JP23504193A JP23504193A JPH0794819A JP H0794819 A JPH0794819 A JP H0794819A JP 23504193 A JP23504193 A JP 23504193A JP 23504193 A JP23504193 A JP 23504193A JP H0794819 A JPH0794819 A JP H0794819A
Authority
JP
Japan
Prior art keywords
light
dot
laser
region
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23504193A
Other languages
Japanese (ja)
Other versions
JP3323872B2 (en
Inventor
Kenji Todori
顕司 都鳥
Shuji Hayase
修二 早瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP23504193A priority Critical patent/JP3323872B2/en
Publication of JPH0794819A publication Critical patent/JPH0794819A/en
Application granted granted Critical
Publication of JP3323872B2 publication Critical patent/JP3323872B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide a compact laser element which can oscillate (emit light) from an infrared ray wavelength region to an ultraviolet ray wavelength region. CONSTITUTION:The title element is provided with a laser resonator where a dot-shaped region 1 whose refractive index differs from that of a peripheral part at least in one-dimensional direction is laid out at a pitch of 1mum or less and which propagates light with a specific wavelength partially and a light emitting part 2 for emitting light at a specific wavelength which is laid out at a specific position in one-dimensional direction of the laser resonator.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はレーザー素子に関する。FIELD OF THE INVENTION This invention relates to laser devices.

【0002】[0002]

【従来の技術】レーザー光は、たとえば計測、通信、あ
るいは加工・熱源用などとして、広く実用に供されてい
る。そして、この種のレーザー光源としては、可視光ル
ビーレーザー、赤外光の YAGレーザー、 YLFレーザーな
どの固体レーザー、可視光Arレーザー、紫外光窒素レー
ザーなどの気体レーザーが、一般的によく知られてい
る。また、半導体技術の開発に伴い、赤外GaAs系半導体
レーザーが開発され、レーザー素子(レーザー光発振
器)は、大幅にコンパクト化されている。
2. Description of the Related Art Laser light is widely put to practical use, for example, for measurement, communication, or for processing and heat sources. As this type of laser light source, solid-state lasers such as visible light ruby laser, infrared YAG laser and YLF laser, gas lasers such as visible light Ar laser and ultraviolet light nitrogen laser are generally well known. ing. In addition, with the development of semiconductor technology, infrared GaAs semiconductor lasers have been developed, and laser devices (laser light oscillators) have been greatly downsized.

【0003】ところで、レーザー光の応用、たとえば光
記録などを行う際の情報密度を上げるため、光源などで
短波長化が望まれており、最近では半導体レーザーも赤
外光領域から可視光領域へと短波長化が進められてい
る。たとえば、ZnSe系の半導体レーザーで、 450nm付近
までの発振が実用化されようとしている。ここで、小型
レーザーで赤外光領域から、紫外光領域での発振を実現
し得れば、前記光記録などを行う際の情報密度を、さら
に大幅に向上し得るので、たとえば光ディスク装置など
のコンパクト化を容易に図ることが可能となる。
By the way, in order to increase the information density in the application of laser light, for example, in the case of optical recording, it is desired to shorten the wavelength of the light source. Recently, the semiconductor laser is also changed from the infrared light region to the visible light region. And shorter wavelengths are being promoted. For example, with a ZnSe-based semiconductor laser, oscillation up to around 450 nm is about to be put to practical use. Here, if it is possible to realize oscillation in the infrared light region to the ultraviolet light region with a small laser, the information density when performing the optical recording or the like can be further greatly improved. It becomes possible to easily make it compact.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、小型化
が可能な半導体レーザーは、前記GaAs系半導体レーザ
ー、およびZnSe系半導体レーザーが知られているのみ
で、紫外光領域で発振する小型レーザーは未だ知られて
いない。つまり、実用上大きな期待をもたれながら、波
長が 450nm以下で発振する小型レーザーは、実現するに
至っていない。
However, the only semiconductor lasers that can be miniaturized are the GaAs semiconductor lasers and the ZnSe semiconductor lasers, and the small lasers that oscillate in the ultraviolet region are still unknown. Has not been done. In other words, a small laser that oscillates at a wavelength of 450 nm or less has not been realized yet, with great expectations for practical use.

【0005】本発明は、この様な点に鑑み、安価であり
ながら、赤外光波長領域から紫外光波長領域での発振
(発光)が可能な小型レーザー素子の提供を目的とす
る。
In view of the above points, an object of the present invention is to provide a small-sized laser element which is inexpensive and can oscillate (emits) in the infrared light wavelength region to the ultraviolet light wavelength region.

【0006】[0006]

【課題を解決するための手段】本発明に係るレーザー素
子は、少なくとも一次元方向に周辺部とは屈折率の異な
る点状領域が1μm 以下のピッチで配置され所定波長の
光を部分的に伝播するレーザー共振器と、前記レーザー
共振器の一次元方向の所定位置に配設された所定波長で
発光する発光部とを具備して成ることを特徴とする。
In a laser device according to the present invention, point-like regions having a refractive index different from that of a peripheral portion in at least one dimension are arranged at a pitch of 1 μm or less and partially propagate light having a predetermined wavelength. And a light emitting unit which emits light at a predetermined wavelength and is arranged at a predetermined position in the one-dimensional direction of the laser resonator.

【0007】以下本発明を詳細に説明すると、近年、あ
るピッチを成す点状の格子が周期的に存在すると、前記
格子のピッチと同程度の波長の波が回折されること、こ
の現象に基づいてその領域に存在し得る定常波の波長が
限定されること、さらに、金属や半導体中の電子は結晶
格子の周期性によって、定常波の限定がバンド構造の形
成として現れるということを着眼点とした研究が進めら
れている。すなわち、可視光の波長程度のピッチで、そ
の周辺部とは屈折率が異なる点状領域を格子状に形成
し、電子波の代わりに可視光波長領域の電磁波を用いた
バンド構成を対象とする、いわゆるフォトニックバンド
の研究が盛んになされており、マイクロ波やミリ波での
実験も知られている。
The present invention will be described in detail below. In recent years, when point-like gratings having a certain pitch are periodically present, a wave having a wavelength about the same as the pitch of the grating is diffracted. The study focused on the fact that the wavelength of standing waves that can exist in the region is limited, and that the electrons in metals and semiconductors are limited by the periodicity of the crystal lattice, and that the standing waves are limited by the formation of a band structure. Is being promoted. That is, a band structure in which electromagnetic waves in the visible light wavelength region are used instead of electron waves is formed by forming a dot-shaped region having a refractive index different from that of the peripheral portion in a grid pattern at a pitch of about the wavelength of visible light. , So-called photonic bands are actively researched, and experiments with microwaves and millimeter waves are also known.

【0008】本発明者らは、前記フォトニックバンドの
研究に着目し、さらに超 LSI技術を応用した場合、サブ
μm までの極微小ピッチの格子形成が可能で、この極微
小ピッチの格子形成により可視光領域から紫外光領域で
のフォトニックバンドを実現することができ、またこの
ような周期的格子により形成されたバンドに対し、バン
ドギャップに相当する波長の光は反射されるという知見
を得た。さらにこのような知見に基づき研究を進めた結
果、上述したような点状領域を少なくとも一次元方向に
1μm 以下のピッチで形成すれば、前記一次元方向には
所定波長の光が部分的に伝播されることを見出し、本発
明を達成するに至ったものである。
[0008] The inventors of the present invention focused on the research of the photonic band, and further, when applying the VLSI technology, it is possible to form a grating with an extremely small pitch up to sub μm. We have found that it is possible to realize a photonic band from the visible light region to the ultraviolet light region, and that light with a wavelength corresponding to the band gap is reflected by the band formed by such a periodic grating. It was Furthermore, as a result of further research based on such knowledge, the above-mentioned dot-shaped region is at least one-dimensionally oriented.
The inventors have found that when the pitch is 1 μm or less, light of a predetermined wavelength is partially propagated in the one-dimensional direction, and the present invention has been accomplished.

【0009】なお、本発明では、発光部が 1μm 以下の
ピッチで配置された点状領域の配列中央部に配設され
て、所定波長の光が一次元両方向に部分的に伝播されて
もよいが、発光部を点状領域の配列の端部付近に配設し
て、この点状領域の配列とは反対側は所定波長の光が伝
播せず反射される点状領域の配置としてもよい。さらに
ここで、所定波長の光が部分的に伝播する一次元方向に
対して、二次元方向ないし三次元方向に電磁波波長が伝
播しないような格子構造にすると、発振しきい値を低減
できる。そして、この場合、格子配列としては、たとえ
ば体心立方格子や面心立方格子などが挙げられ、また格
子点の形態としては、球,正四面体,正八面体,正十六
面体などが挙げられる。
In the present invention, the light emitting portions may be arranged in the central portion of the arrangement of the dot-like regions arranged at a pitch of 1 μm or less so that light of a predetermined wavelength is partially propagated in both one-dimensional directions. However, the light emitting portion may be arranged near the end of the array of dot-like regions, and the dot-like regions may be arranged on the side opposite to the array of dot-like regions where light of a predetermined wavelength does not propagate and is reflected. . Further, the oscillation threshold can be reduced by using a lattice structure in which the electromagnetic wave wavelength does not propagate in the two-dimensional direction or the three-dimensional direction with respect to the one-dimensional direction in which the light of the predetermined wavelength partially propagates. In this case, the lattice array may be, for example, a body-centered cubic lattice or a face-centered cubic lattice, and the lattice points may be in the form of a sphere, a regular tetrahedron, a regular octahedron, a regular dodecahedron, or the like.

【0010】本発明においては、特にポリシランを素材
とすることにより、容易に紫外光を発振するレーザー素
子を形成し得る。すなわち、ポリシランは高感度の感光
性体を有しており、露光部がシロキサン化して屈折率が
0.3程度変化するので、可視光から紫外光の波長程度の
ピッチで格子の形成を容易に行うことができる。しかも
ポリシランは 340nm付近で発光するので、それ自体発光
部となって小型の紫外光レーザーとして機能し得るから
である。なお、ポリシランを素材とした場合は、前記の
ごとくレーザー共振器となる格子の所定位置への発光部
の挿着を要しないが、たとえばNd3+: Y3 Al5 O12ガラ
スなどの発光性ガラス、AlAs系半導体やSeZn系半導体、
色素系の各種発光材料をドープした形態などによって、
所定位置への発光部の形成・挿着を行ってもよい。また
このとき、レーザー共振器となる格子についても素材は
特にポリシランに限定されず、感光性を有しかつ露光部
で屈折率が変化する素材であれば、同様にして格子の形
成を行うことができる。
In the present invention, a laser element which oscillates ultraviolet light can be easily formed particularly by using polysilane as a material. That is, polysilane has a high-sensitivity photosensitizer, and the exposed area is siloxane-ized to have a refractive index of
Since it changes by about 0.3, it is possible to easily form the grating at a pitch of about the wavelength of visible light to ultraviolet light. Moreover, since polysilane emits light in the vicinity of 340 nm, it can serve as a light emitting portion itself and function as a small ultraviolet laser. When polysilane is used as the material, it is not necessary to insert the light emitting portion at a predetermined position of the lattice to be the laser resonator as described above, but for example, Nd 3+ : Y 3 Al 5 O 12 Glass, AlAs semiconductors and SeZn semiconductors,
Depending on the form in which various dye-based luminescent materials are doped,
The light emitting portion may be formed and attached at a predetermined position. At this time, the material for the grating to be the laser resonator is not particularly limited to polysilane, and the grating can be formed in the same manner as long as the material has photosensitivity and the refractive index changes in the exposed portion. it can.

【0011】なお、上記レーザー共振器においては、部
分的に伝播させる光の波長λに対し点状領域(格子点)
のピッチ Pはλ/ 2の正数倍(1μm 以下)、径の大き
さはP/10以上, 9・ P/10以下となるように点状領域
を配置すればよい。また、この点状領域の配置数は、光
が部分的に伝播する一次元方向に10周期程度以上であ
り、点状領域と周辺部との屈折率差は 0.1以上であれば
よい。
In the above laser resonator, a point-like region (lattice point) with respect to the wavelength λ of light partially propagated.
The pitch P may be a positive multiple of λ / 2 (1 μm or less), and the size of the diameter may be P / 10 or more and 9 · P / 10 or less, and the dot-like regions may be arranged. Further, the number of arranged dot-shaped regions is about 10 cycles or more in the one-dimensional direction in which light partially propagates, and the difference in refractive index between the dot-shaped regions and the peripheral portion may be 0.1 or more.

【0012】[0012]

【作用】本発明に係るレーザー素子によれば、いわゆる
フォトニックバンドを形成する点状領域(格子点)は、
1種の波長選択ミラーとして機能するので、点状領域の
配置数やピッチ間隔などを変化させることにより、選択
する波長および反射率を任意に設定し得ることになる。
そして、一次元方向に配置された点状領域(格子点)間
の所定位置に配設した発光部を光もしくは電流によって
励起し、反転分布状態を形成すると、前記点状領域が共
振器ミラーとなって、共振方向へレーザー光を発振す
る。一方、前記レーザー光が発振する共振方向に対し
て、その周辺部(二次元方向ないし三次元方向)を、電
磁波波長の伝播が抑制されるような点状領域の配置とす
ると、さらに反転分布状態を採り易くなる。つまり、二
次元方向などへの自然放出発光が減少して、発振しきい
値が大幅に下がることになり、安定したレーザー機能を
保持・発揮する。
According to the laser element of the present invention, the dot-like regions (lattice points) forming a so-called photonic band are
Since it functions as one type of wavelength selection mirror, the wavelength and reflectance to be selected can be set arbitrarily by changing the number of arranged dot-shaped regions, the pitch interval, and the like.
Then, when the light emitting portion arranged at a predetermined position between the dot-like regions (lattice points) arranged in the one-dimensional direction is excited by light or current to form an inverted distribution state, the dot-like regions serve as resonator mirrors. Then, the laser light is oscillated in the resonance direction. On the other hand, when the laser light oscillates in the resonance direction, the periphery (two-dimensional direction or three-dimensional direction) of the laser light is arranged in a dot-shaped region in which the propagation of the electromagnetic wave wavelength is suppressed. Will be easier to pick up. In other words, the spontaneous emission light emission in the two-dimensional direction and the like is reduced, and the oscillation threshold value is significantly lowered, so that a stable laser function is maintained and exhibited.

【0013】[0013]

【実施例】以下図1 (a)および (b)を参照して本発明の
実施例を説明する。
EXAMPLES Examples of the present invention will be described below with reference to FIGS. 1 (a) and 1 (b).

【0014】図1 (a)は本発明に係るレーザー素子の要
部構成例を断面的に示したもので、ポリシランを素材と
して、10μm 角の立方体を成している。この構成例で
は、三次元方向に配置された点状領域(格子点)配列1
a,1b,1c,1e,1f,1gなどにおいて各点状領域(格子
点)1の間隔(ピッチ)が一定である一方、点状領域
(格子点)配列1dにおいて点状領域(格子点)1の間隔
(ピッチ)が、前記点状領域(格子点)配列1a,1b,1
c,1e,1f,1gなどの場合と異なっている。つまり、点
状領域(格子点)配列1dにおいては、部分的に点状領域
(格子点)1の間隔(ピッチ)を小さめに設定し、この
点状領域(格子点)配列1dの間の所定位置に発光部2を
配設した構成を採っている。
FIG. 1 (a) is a cross-sectional view showing an example of the essential structure of a laser device according to the present invention, which is made of polysilane and forms a cube of 10 μm square. In this configuration example, a dot-shaped area (lattice point) array 1 arranged in the three-dimensional direction
In a, 1b, 1c, 1e, 1f, 1g, etc., the interval (pitch) of each dot-like area (lattice point) 1 is constant, while in dot-like area (lattice point) array 1d, dot-like area (lattice point) The interval (pitch) of 1 is the dot-like region (lattice point) array 1a, 1b, 1
It is different from the case of c, 1e, 1f, 1g, etc. That is, in the dot-like region (lattice point) array 1d, the interval (pitch) of the dot-like region (lattice point) 1 is partially set to be small, and the predetermined interval between the dot-like region (lattice point) array 1d is set. The configuration is such that the light emitting unit 2 is arranged at the position.

【0015】上記レーザー素子の構成を、その製造工程
とともに、より具体的に説明すると、先ず下記[化1]
に一般式を示すポリシラン(分子量 200,000)を、LB法
(Langmuir Brodgett 法)によって、支持基板上に厚さ
0.6μm 成膜し、全面を紫外線で照射してシロキサン化
させる。
The structure of the above laser device will be described more specifically together with its manufacturing process. First, the following [Chemical formula 1] will be given.
Polysilane (molecular weight 200,000), whose general formula is shown in Fig. 1, is formed on the supporting substrate by the LB method (Langmuir Brodgett method).
A film with a thickness of 0.6 μm is formed, and the entire surface is irradiated with ultraviolet rays to form siloxane.

【0016】[0016]

【化1】 次いで、LB法によって、厚さ 0.1μm のポリシラン層を
積層・成膜し、このポリシラン層を選択的に露光する
と、露光部がシロキサン化する一方未露光部が 0.1μm
角の点状領域(格子点)1となり、 0.7μm 間隔(ピッ
チ)の点状領域(格子点)配列1aが形成される。その
後、前記点状領域(格子点)配列1a面上に、同様にして
厚さ 0.6μm のポリシラン層を積層・成膜して、全面を
紫外線で照射し、さらに厚さ 0.1μm のポリシラン層を
積層・成膜し、このポリシラン層を選択的に露光する
と、露光部がシロキサン化する一方未露光部が 0.1μm
角の点状領域(格子点)1となり、前記点状領域(格子
点)配列1aと同様の 0.7μm 間隔(ピッチ)の点状領域
(格子点)配列1bが形成される。以下、同様の工程を繰
り返して、支持基板上に6層の点状領域(格子点)配列
を形成する。なお、図中1bは5層目の点状領域(格子
点)配列、1cは6層目の点状領域(格子点)配列をそれ
ぞれ示す。
[Chemical 1] Then, a 0.1 μm-thick polysilane layer is laminated and formed by the LB method, and when this polysilane layer is selectively exposed, the exposed part becomes siloxane, while the unexposed part is 0.1 μm.
The angular dot-like regions (lattice points) 1 are formed, and the dot-like region (lattice point) array 1a is formed at 0.7 μm intervals (pitch). Thereafter, a polysilane layer having a thickness of 0.6 μm is similarly laminated and formed on the surface of the dot-shaped region (lattice point) array 1a, and the entire surface is irradiated with ultraviolet rays to form a polysilane layer having a thickness of 0.1 μm. By stacking and forming a film, and selectively exposing this polysilane layer, the exposed area becomes siloxane while the unexposed area is 0.1 μm.
The angular dot-like regions (lattice points) 1 are formed, and the dot-like region (lattice point) array 1b is formed at 0.7 μm intervals (pitch) similar to the dot-like region (lattice point) array 1a. Thereafter, the same process is repeated to form a six-layer array of dot-like regions (lattice points) on the supporting substrate. In the figure, 1b indicates a dot-like area (lattice point) array on the fifth layer, and 1c indicates a dot-like area (lattice point) array on the sixth layer.

【0017】次に、前記点状領域(格子点)配列1c面上
に、同様にして厚さ 0.6μm のポリシラン層を積層・成
膜して、発光部2となる領域以外の面を紫外線で照射
し、さらに厚さ 0.1μm のポリシラン層を積層・成膜
し、このポリシラン層を選択的に露光する。このとき、
図1 (b)に平面的に示すごとく、外径 1μm 程度の発光
部2に対し所定の一方向(図1 (b)で左方向)について
は、 0.1μm 角の点状領域(格子点)1を0.66μm 間隔
(ピッチ)で一次元方向に配置させる。次いでこのよう
な点状領域(格子点)配列1d面上に、厚さ 0.6μm のポ
リシラン層を積層・成膜して、発光部2となる領域以外
の面を紫外線で照射してシロキサン化させる。さらに厚
さ 0.1μm のポリシラン層を積層・成膜し、このポリシ
ラン層を選択的に露光する工程と、厚さ 0.6μm のポリ
シラン層を積層・成膜して、全面を紫外線で照射する工
程を繰り返して、6層の点状領域(格子点)配列を前記
発光部2上に順次形成して、10μm 角の六方晶格子体か
ら成るレーザー素子を得る。
Next, a polysilane layer having a thickness of 0.6 μm is similarly laminated and formed on the surface of the dot-shaped region (lattice point) array 1c, and the surface other than the region which becomes the light emitting portion 2 is exposed to ultraviolet rays. Irradiation is performed, and a polysilane layer having a thickness of 0.1 μm is laminated and formed, and this polysilane layer is selectively exposed. At this time,
As shown in plan view in FIG. 1 (b), in a predetermined direction (leftward in FIG. 1 (b)) with respect to the light emitting section 2 having an outer diameter of about 1 μm, a dot-like region (lattice point) of 0.1 μm angle 1 are arranged in a one-dimensional direction at 0.66 μm intervals (pitch). Then, a polysilane layer having a thickness of 0.6 μm is laminated and formed on the 1d surface of the dot-shaped region (lattice point) array, and the surface other than the region to be the light emitting portion 2 is irradiated with ultraviolet rays to be silicified. . In addition, the steps of laminating and forming a 0.1 μm thick polysilane layer and selectively exposing this polysilane layer, and the step of laminating and forming a 0.6 μm thick polysilane layer and irradiating the entire surface with ultraviolet rays. Repeatedly, a six-layer array of dot-like regions (lattice points) is sequentially formed on the light emitting portion 2 to obtain a laser device including a hexagonal crystal lattice of 10 μm square.

【0018】上記構成のレーザー素子の発光部2におい
て、パルス幅 5nsec、波長 337nmの光を、窒素レーザー
によって励起させたところ、紫外光領域波長で所要のレ
ーザー発振を呈した。すなわち、前記窒素レーザーで発
光部2を励起させ、点状領域(格子点)1からの各方向
への発光を受光器にて集光して観測した結果、励起出力
を10μW から10mWへ上げるに伴い、波長 350nmをピーク
とする発光半値全幅が20nmから 5nmへと細くなり、また
減衰時定数も20nsecから 4nsecへと速くなってレーザー
発振を行っていることが確認された。
In the light emitting section 2 of the laser device having the above-mentioned structure, when a light having a pulse width of 5 nsec and a wavelength of 337 nm was excited by a nitrogen laser, a required laser oscillation was exhibited in an ultraviolet light region wavelength. That is, the light emission part 2 was excited by the nitrogen laser, and the light emission in each direction from the dot-shaped region (lattice point) 1 was collected and observed by the light receiver. As a result, the excitation output was increased from 10 μW to 10 mW. Along with this, it was confirmed that the full width at half maximum of the emission peaking at a wavelength of 350 nm narrowed from 20 nm to 5 nm, and the decay time constant increased from 20 nsec to 4 nsec, causing laser oscillation.

【0019】なお、ここではポリシランを素材としてレ
ーザー素子を構成した場合を例示したが、本発明はこれ
に限定されるものでなく、同様に微細な加工が可能な他
の素材を用いて格子を形成してもよい。さらに、所定波
長の光が部分的に伝播する一次元方向に対して、二次元
方向ないし三次元方向に電磁波波長が伝播しないよう
に、上記では発光部周囲の一次元方向のみをピッチの異
なる格子構造としたが、要は一次元方向以外の方向への
光伝播が抑制・防止されればよいので、所定波長の光が
部分的に伝播する一次元方向に対して、その周辺部が所
定波長の光を伝播しないような光屈折率の異なる構成と
しておいてもよい。
Although the case where the laser element is made of polysilane as a material has been exemplified here, the present invention is not limited to this, and a lattice can be formed by using another material which can also be finely processed. You may form. Further, in order to prevent the electromagnetic wave wavelength from propagating in the two-dimensional direction or the three-dimensional direction with respect to the one-dimensional direction in which light of a predetermined wavelength partially propagates, in the above, a grating having a different pitch only in the one-dimensional direction around the light emitting portion is used. Although the structure is adopted, the point is that light propagation in directions other than the one-dimensional direction should be suppressed / prevented. The light refraction index may be different so that the above light does not propagate.

【0020】[0020]

【発明の効果】上記説明したごとく、本発明に係るレー
ザー素子によれば、発光部を励起することによって、反
転分布状態が容易に形成され、前記点状領域が共振器ミ
ラーとなって、共振方向へレーザー光を発振するので、
小型レーザーとして有効に機能する。
As described above, according to the laser element of the present invention, the population inversion state is easily formed by exciting the light emitting portion, and the point region becomes a resonator mirror to cause resonance. Since it oscillates laser light in the direction,
It works effectively as a small laser.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)は本発明に係るレーザ素子の要部構成例を
示す断面図、 (b)は図1 (a)の要部構成例における所定
波長の光を部分的に伝播する点状領域配例の平面図。
1A is a cross-sectional view showing a configuration example of a main part of a laser device according to the present invention, and FIG. 1B is a point where light of a predetermined wavelength is partially propagated in the configuration example of a main part of FIG. 1A. FIG.

【符号の説明】[Explanation of symbols]

1…点状領域(格子点) 1a,1b,1c,1d,1e,1f,
1g…点状領域(格子点)配列 2…発光部
1 ... Point-like regions (lattice points) 1a, 1b, 1c, 1d, 1e, 1f,
1g ... Array of dots (lattice points) 2 ... Light emitting part

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも一次元方向に周辺部とは屈折
率の異なる点状領域が1μm 以下のピッチで配置され所
定波長の光を部分的に伝播するレーザー共振器と、前記
レーザー共振器の一次元方向の所定位置に配設された所
定波長で発光する発光部とを具備して成ることを特徴と
するレーザー素子。
1. A laser resonator in which point-like regions having a refractive index different from that of a peripheral portion in at least a one-dimensional direction are arranged at a pitch of 1 μm or less, and partially propagate light of a predetermined wavelength, and a primary of the laser resonator. A laser device, comprising: a light emitting section which is disposed at a predetermined position in the original direction and emits light at a predetermined wavelength.
【請求項2】 点状領域および発光部がポリシランから
成ることを特徴とする請求項1記載のレーザー素子。
2. The laser device according to claim 1, wherein the dot-shaped region and the light emitting portion are made of polysilane.
JP23504193A 1993-09-21 1993-09-21 Laser element Expired - Fee Related JP3323872B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23504193A JP3323872B2 (en) 1993-09-21 1993-09-21 Laser element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23504193A JP3323872B2 (en) 1993-09-21 1993-09-21 Laser element

Publications (2)

Publication Number Publication Date
JPH0794819A true JPH0794819A (en) 1995-04-07
JP3323872B2 JP3323872B2 (en) 2002-09-09

Family

ID=16980211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23504193A Expired - Fee Related JP3323872B2 (en) 1993-09-21 1993-09-21 Laser element

Country Status (1)

Country Link
JP (1) JP3323872B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6002522A (en) * 1996-06-11 1999-12-14 Kabushiki Kaisha Toshiba Optical functional element comprising photonic crystal
JP2002091344A (en) * 2000-09-14 2002-03-27 Canon Inc Display device
JP2005328040A (en) * 2004-04-12 2005-11-24 Canon Inc Stacked three-dimensional photonic crystal, light-emitting device, and image display unit

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6002522A (en) * 1996-06-11 1999-12-14 Kabushiki Kaisha Toshiba Optical functional element comprising photonic crystal
JP2002091344A (en) * 2000-09-14 2002-03-27 Canon Inc Display device
JP4724281B2 (en) * 2000-09-14 2011-07-13 キヤノン株式会社 Display device
JP2005328040A (en) * 2004-04-12 2005-11-24 Canon Inc Stacked three-dimensional photonic crystal, light-emitting device, and image display unit
JP4642527B2 (en) * 2004-04-12 2011-03-02 キヤノン株式会社 LAMINATED 3D PHOTONIC CRYSTAL, LIGHT EMITTING ELEMENT AND IMAGE DISPLAY DEVICE

Also Published As

Publication number Publication date
JP3323872B2 (en) 2002-09-09

Similar Documents

Publication Publication Date Title
US6975664B1 (en) Article comprising a two-dimensional photonic crystal coupler and method of making the same
US7778305B2 (en) Mirror structure and laser device comprising such a mirror structure
Berger et al. Photonic band gaps and holography
US6959127B2 (en) Optical device
JP2006259064A (en) Method and device for intensifying electric field with surface plasmon
US5448586A (en) Pumping arrangements for arrays of planar optical devices
JP2005309295A (en) Element, device, and system for optical amplification
US20050169343A1 (en) Polarization control of vertical diode lasers by monolithically integrated surface grating
JP3798053B2 (en) Cavity for solid-state microlaser with optimized efficiency and microlaser using it
JPH0794819A (en) Laser element
JP3053273B2 (en) Semiconductor pumped solid-state laser
JP3243772B2 (en) Surface emitting semiconductor laser
JP3940553B2 (en) Upconversion optical element
JP2001507516A (en) Radiation emitting device
WO2006103850A1 (en) Waveguide element and laser generator
US20040233962A1 (en) Surface emitting laser
JP2007292970A (en) Multimode optical fiber and optical module
JP2686219B2 (en) Photon band structure mirror
JP2004021220A (en) Manufacture method of plane waveguide type diffraction grating element
JP2006332137A (en) Light-emitting device
JPH04352484A (en) Method of forming optical waveguide
JP2817174B2 (en) Semiconductor laser
Obuchi et al. Direct fabrication of surface relief grating for integrated waveguide tunable dye lasers
JPH0566314A (en) Formation of optical waveguide
JPH0566439A (en) Light wavelength conversion device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020618

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090628

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090628

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100628

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100628

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110628

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120628

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120628

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130628

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees