JPH0566314A - Formation of optical waveguide - Google Patents

Formation of optical waveguide

Info

Publication number
JPH0566314A
JPH0566314A JP22797391A JP22797391A JPH0566314A JP H0566314 A JPH0566314 A JP H0566314A JP 22797391 A JP22797391 A JP 22797391A JP 22797391 A JP22797391 A JP 22797391A JP H0566314 A JPH0566314 A JP H0566314A
Authority
JP
Japan
Prior art keywords
optical waveguide
laser beam
amorphous layer
single crystal
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22797391A
Other languages
Japanese (ja)
Inventor
Junichi Suzuki
順一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP22797391A priority Critical patent/JPH0566314A/en
Publication of JPH0566314A publication Critical patent/JPH0566314A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To provide the method for formation of an optical waveguide with which a high light power is obtainable from a small stimulating light power. CONSTITUTION:This method includes a stage for forming an amorphous layer 2 on the surface of a substrate 1 consisting of a single crystal, a stage for irradiating the part to be formed with the optical waveguide of the amorphous layer 2 with a laser beam and scanning the substrate and the laser beam relatively at a high speed along the optical waveguide to melt the optical waveguide, a stage for gradually weakening the power of the laser beam in the state of the high-speed scanning to crystallize the neighborhood of the lower part of the amorphous layer to a single crystal, and a stage for further weakening the power of the laser beam in the state of the high-speed scanning to crystallize the entire part of the optical waveguide to the single crystal.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,光導波路の形成方法に
関し,更に詳しくは波長可変固体レ―ザを用いて励起パ
ワ―発振閾値の低減をはかった光導波路の形成方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming an optical waveguide, and more particularly to a method for forming an optical waveguide using a wavelength tunable solid-state laser to reduce the excitation power oscillation threshold.

【0002】[0002]

【従来の技術】光ICや光センサ等の基本素子として使
用される光導波路は,周囲を低屈折率の媒質で取囲まれ
た領域の中を,光(電磁波)がその境界面で全反射を繰
り返しながら伝搬する様な光伝送器である。この様な光
導波路の材質として広い蛍光スペクトル(λ=700〜
1100nm)を有するTi:Al23 を用いれば広
帯域可変波長レ―ザを実現することができる。
2. Description of the Related Art In an optical waveguide used as a basic element of an optical IC or an optical sensor, light (electromagnetic waves) is totally reflected at the boundary surface in a region surrounded by a medium having a low refractive index. It is an optical transmitter that propagates while repeating. As a material for such an optical waveguide, a wide fluorescence spectrum (λ = 700-
A wide band variable wavelength laser can be realized by using Ti: Al 2 O 3 having a wavelength of 1100 nm).

【0003】図2は光導波路を用いた可変波長レ−ザ装
置の構成例を示す図である。励起光源(図示せず)から
の励起光10は球面を有する波長選択性のあるミラ−
(例えば500nm付近の波長は透過するが700〜1
000nm付近の波長は反射する)11を介してレ―ザ
媒質(Ti:Al2 3 )からなる光導波路12に入射
し,その光導波路の反対側から出射して前記波長選択性
を有するミラ―11と同様の機能を有する球面ミラ−1
3を透過する。励起光によりレ―ザ媒質(Ti:Al2
3 )内部で発生した蛍光(波長;650〜1000n
m)は球面ミラ―13で反射し,更に第1共振器14で
反射して逆の道を辿り,ハ―フミラ―11で反射した光
は波長選択素子15を通り,第2共振器ミラ―16で反
射する。従って第1,第2共振器ミラ−11,16間は
波長選択素子15により選択された波長(例えば700
nm)の光のみが往復する。ここで発振の為にはレ―ザ
媒質内での励起光のパワ―密度がある閾値を越える必要
がある。そして高い光パワ―密度を得るためにはTi:
Al2 3 を光導波路構造にすると小さな励起光パワ―
で高光パワ―密度を得ることが可能である。
FIG. 2 is a diagram showing an example of the configuration of a variable wavelength laser device using an optical waveguide. Excitation light 10 from an excitation light source (not shown) has a wavelength-selective mirror having a spherical surface.
(For example, wavelengths near 500 nm are transmitted, but 700 to 1
(A wavelength near 000 nm is reflected) 11 and enters an optical waveguide 12 made of a laser medium (Ti: Al 2 O 3 ), and emits from the opposite side of the optical waveguide to produce a mirror having the wavelength selectivity. -11 Spherical mirror with the same function as -1
Through 3. Laser medium (Ti: Al 2
O 3 ) Fluorescence generated inside (wavelength: 650-1000n
m) is reflected by the spherical mirror 13, further reflected by the first resonator 14 and follows the opposite path, and the light reflected by the half mirror 11 passes through the wavelength selection element 15 and is transmitted through the second resonator mirror. Reflects at 16. Therefore, the wavelength between the first and second resonator mirrors 11 and 16 is selected by the wavelength selection element 15 (for example, 700
(nm) only reciprocates. Here, for oscillation, the power density of the excitation light in the laser medium must exceed a certain threshold. And in order to obtain high optical power density, Ti:
When Al 2 O 3 is used as an optical waveguide structure, it has a small pumping power.
It is possible to obtain high optical power density.

【0004】[0004]

【発明が解決しようとする課題】従来,Ti:Al2
3 をレ―ザ媒質としたものとしては図3で示す様なロッ
ド型のものが知られている。小さな励起光パワ―で高光
パワ―密度を得る為には狭い領域に励起光を閉じこめる
必要があるが,ロッド型はバルク状の素材を加工して作
製している為,励起光の狭領域化には限界がある。T
i:Al2 3 の光導波路を形成する為には図4に示す
様にTi:Al2 3 のパタ―ニングされた単結晶膜で
コアを作製し,その単結晶膜を低屈折率で光吸収のない
物質で覆ったクラッド層構造にする必要があるが,その
様な試みがなされた例はない。
Conventionally, Ti: Al2O
3The laser medium shown in Fig. 3 is used as a laser medium.
Do type is known. High light with small excitation light power
Confine excitation light to a narrow area to obtain power density
Although it is necessary, the rod type is made by processing a bulk material.
Since it is manufactured, there is a limit to narrowing the excitation light region. T
i: Al2O3In order to form the optical waveguide of
Like Ti: Al2O 3With a patterned single crystal film of
The core is made and its single crystal film has a low refractive index and no light absorption
It is necessary to have a clad layer structure covered with a material,
No such attempt has been made.

【0005】本発明は上記従来技術の問題を解決するた
めになされたもので,Al2 3 の単結晶基板上にT
i:Al2 3 からなるアモルファス層を作製し,この
アモルファス層の導波路とすべき部分のみを単結晶化
し,小さな励起光パワ―で高光パワ―を得ることが可能
な光導波路の形成方法を提供することを目的とする。
[0005] The present invention has been made in order to solve the above, T on a single crystal substrate of Al 2 O 3
i: A method of forming an optical waveguide in which an amorphous layer made of Al 2 O 3 is prepared, and only the portion of the amorphous layer to be used as a waveguide is single-crystallized to obtain a high optical power with a small pumping optical power. The purpose is to provide.

【0006】[0006]

【課題を解決するための手段】上記課題を解決する為
に,本発明は,単結晶からなる基板の表面にアモルファ
ス層を形成する工程と,前記アモルファス層の光導波路
を形成すべき部分にレ―ザビ―ムを照射して,前記光導
波路に沿って前記基板とレ―ザビ―ムを相対的に高速ス
キャンし,前記光導波路を溶融する工程と,前記高速ス
キャンの状態で前記レ―ザビ―ムのパワ―を徐々に弱め
て前記アモルファス層の下部付近を単結晶化する工程
と,前記高速スキャンの状態で前記レ―ザビ―ムのパワ
―を更に弱めて光導波路全体を単結晶化する工程を含む
ことを特徴とするものである。
In order to solve the above-mentioned problems, the present invention provides a step of forming an amorphous layer on a surface of a substrate made of a single crystal, and a step of forming an amorphous layer on a portion where an optical waveguide is to be formed. The step of irradiating the beam to relatively quickly scan the substrate and the laser beam along the optical waveguide to melt the optical waveguide; and the laser beam in the high-speed scanning state. -A step of gradually weakening the power of the beam to single crystallize the lower vicinity of the amorphous layer, and further weakening the power of the laser beam in the state of the high-speed scan to single crystal the entire optical waveguide It is characterized by including a step of performing.

【0007】[0007]

【作用】Ti:Al2 3 を薄膜化して光導波路構造と
しているので極めて狭い領域に励起光を閉じこめること
ができ,小さな励起光パワ―で高光パワ―密度が得られ
る。
[Function] Since the optical waveguide structure is formed by thinning Ti: Al 2 O 3 , the excitation light can be confined in an extremely narrow area, and a high optical power density can be obtained with a small excitation light power.

【0008】[0008]

【実施例】図1(a)〜(d)は本発明の光導波路の概
略製造工程を示す斜視図である。工程に従って説明す
る。 工程(a)(a図参照)単結晶Al2 3 基板(以下,
単に基板という)1の表面に厚さ数μm程度のアモルア
ァス状のTi:Al23 層(以下アモルファス層とい
う)2をスパッタ等の手段により形成する。
1 (a) to 1 (d) are perspective views showing a schematic manufacturing process of an optical waveguide of the present invention. It demonstrates according to a process. Step (a) (See FIG. A) Single crystal Al 2 O 3 substrate (hereinafter,
An amorphous Ti: Al 2 O 3 layer (hereinafter referred to as an amorphous layer) 2 having a thickness of several μm is formed on the surface of a substrate 1 by a method such as sputtering.

【0009】工程(b) 基板1の前記アモルファス層
2側の端部からレ―ザビ―ム3を照射して,光導波路と
すべき部分に沿ってレ―ザビ―ム3と基板1を相対的に
高速スキャンする。 工程(c)(c図参照…図はb図のX−X断面の状態を
示している)アモルァス層(Aで示す部分)2を溶解す
るとともに光導波路の底部である基板1の一部もわずか
に溶解する(Bで示す部分)。次に,レ―ザパワ―を徐
々に弱めながら単結晶基板1上のアモルファス層2の一
部(Bで示す部分)を単結晶化する(この時光導波路の
表面はTi:Al2 3 層は融体の状態になってい
る)。 工程(d)更に徐々にレ―ザパワ―を弱めて光導波路全
体(B´で示す部分)のTi:Al2 3 層を単結晶化
する。更に光導波路を含む基板1上にアモルファス状の
Ti:Al2 3 をスパッタ等により形成する。これに
より単結晶からなる光導波路は屈折率の小さな部材で囲
まれた状態となる。なお,本実施例については単結晶基
板としてAl2 3 を用い,アモルファス層としてT
i:Al2 3 を用いたが,本実施例に限ることなく他
の材質であってもよい。
Step (b) The amorphous layer of the substrate 1
The laser beam 3 is radiated from the end on the 2 side, and the
The laser beam 3 and the substrate 1 are relatively moved along the portion to be
Scan at high speed. Step (c) (Refer to Figure c ... The figure shows the state of the XX cross section of Figure b)
(Shown) dissolve the amorphous layer (the part indicated by A) 2
And the substrate 1 that is the bottom of the optical waveguide is also slightly
Dissolved in (part indicated by B). Next, gradually release the laser power.
One of the amorphous layers 2 on the single crystal substrate 1 while weakening each other
The portion (the portion indicated by B) is made into a single crystal (at this time, the optical waveguide
The surface is Ti: Al2O 3The layers are in the melt
). Step (d) Gradually weaken the laser power and reduce the entire optical waveguide.
Ti: Al of the body (portion indicated by B ')2O3Single crystal layer
To do. Furthermore, an amorphous material is formed on the substrate 1 including the optical waveguide.
Ti: Al2O3Are formed by sputtering or the like. to this
The optical waveguide made of a single crystal is surrounded by a member with a small refractive index.
It will be in a state of being caught. In addition, the single crystal substrate is used in this example.
Al as a plate2O3Using T as an amorphous layer
i: Al2O3However, the present invention is not limited to this example, and other
The material may be.

【0010】[0010]

【発明の効果】以上詳細に説明したように,本発明によ
ればアモルファス膜とレ―ザを用いてTi:Al2 3
からなる光導波路を形成するのでバルクの場合に比較し
て極めて小さく形成することができ,小さな励起光パワ
―で高光パワ―密度を得ることができる。
As described in detail above, according to the present invention, an amorphous film and a laser are used to form Ti: Al 2 O 3
Since an optical waveguide consisting of is formed, it can be made extremely small compared to the case of a bulk, and a high optical power density can be obtained with a small excitation light power.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の光導波路の概略製造工程を示す斜視図
である。
FIG. 1 is a perspective view showing a schematic manufacturing process of an optical waveguide of the present invention.

【図2】光導波路を用いた一般的な可変波長レ−ザ装置
の構成例を示す図である。
FIG. 2 is a diagram showing a configuration example of a general variable wavelength laser device using an optical waveguide.

【図3】光導波路(ロッド型)の従来例を示す図であ
る。
FIG. 3 is a diagram showing a conventional example of an optical waveguide (rod type).

【図4】光導波路の構成を示す図である。FIG. 4 is a diagram showing a configuration of an optical waveguide.

【符号の説明】[Explanation of symbols]

1 単結晶基板(Al2 3 ) 2 アモルファス層(Ti:Al2 3 1 Single crystal substrate (Al 2 O 3 ) 2 Amorphous layer (Ti: Al 2 O 3 )

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 単結晶からなる基板の表面にアモルファ
ス層を形成する工程と,前記アモルファス層の光導波路
を形成すべき部分にレ―ザビ―ムを照射して,前記光導
波路に沿って前記基板とレ―ザビ―ムを相対的に高速ス
キャンし,前記光導波路を溶融する工程と,前記高速ス
キャンの状態で前記レ―ザビ―ムのパワ―を徐々に弱め
て前記アモルファス層の下部付近を単結晶化する工程
と,前記高速スキャンの状態で前記レ―ザビ―ムのパワ
―を更に弱めて光導波路全体を単結晶化する工程を含む
ことを特徴とする光導波路の形成方法。
1. A step of forming an amorphous layer on a surface of a substrate made of a single crystal, and a portion of the amorphous layer where an optical waveguide is to be formed is irradiated with a laser beam, and the amorphous layer is irradiated along the optical waveguide. A step of relatively high-speed scanning the substrate and the laser beam to melt the optical waveguide, and gradually weakening the power of the laser beam in the state of the high-speed scanning, near the lower portion of the amorphous layer. And a step of monocrystallizing the entire optical waveguide by further weakening the power of the laser beam in the state of the high speed scan.
JP22797391A 1991-09-09 1991-09-09 Formation of optical waveguide Pending JPH0566314A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22797391A JPH0566314A (en) 1991-09-09 1991-09-09 Formation of optical waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22797391A JPH0566314A (en) 1991-09-09 1991-09-09 Formation of optical waveguide

Publications (1)

Publication Number Publication Date
JPH0566314A true JPH0566314A (en) 1993-03-19

Family

ID=16869162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22797391A Pending JPH0566314A (en) 1991-09-09 1991-09-09 Formation of optical waveguide

Country Status (1)

Country Link
JP (1) JPH0566314A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7562420B2 (en) 2004-10-15 2009-07-21 Newfrey Llc Clip

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7562420B2 (en) 2004-10-15 2009-07-21 Newfrey Llc Clip

Similar Documents

Publication Publication Date Title
US6041071A (en) Electro-optically tunable external cavity mirror for a narrow linewidth semiconductor laser
US7142280B2 (en) Extended chiral defect structure apparatus and method
EP1475678B2 (en) Method for producing a hologram by picosecond laser
JP2002268105A (en) Integrated optical switching device and method for switching light
JPS63205984A (en) Surface emitting type semiconductor laser
Gawali et al. Photonic crystal spatial filtering in broad aperture diode laser
JP4122386B2 (en) Terahertz wave generator or terahertz wave amplifier
EP1267183A2 (en) A method for producing optical waveguides, optical waveguides and frequency converting devices
JPH0566314A (en) Formation of optical waveguide
JP2003215376A (en) Method for manufacturing waveguide
JP3940553B2 (en) Upconversion optical element
US20020093995A1 (en) Electro-optically tunable external cavity mirror for a narrow linewidth semiconductor laser
JPH04352484A (en) Method of forming optical waveguide
JP3323872B2 (en) Laser element
JPH05283774A (en) Pulse light source device
JPS62269125A (en) Optical logical operation element
JPH08307004A (en) Semiconductor laser and method of manufacture
JPH07225404A (en) Optical bistable element and its driving method
JPH01134984A (en) Semiconductor laser device
JPH02241075A (en) Semiconductor laser
Garmire Optical waveguides for laser gyro applications
JP2003215377A (en) Method for manufacturing waveguide
JPH0414024A (en) Secondary higher harmonic generation device
JP2931116B2 (en) Tunable laser device
JP2001021772A (en) Laser diode module