JPH0794779A - Sic light emitting device and its manufacture - Google Patents

Sic light emitting device and its manufacture

Info

Publication number
JPH0794779A
JPH0794779A JP23761393A JP23761393A JPH0794779A JP H0794779 A JPH0794779 A JP H0794779A JP 23761393 A JP23761393 A JP 23761393A JP 23761393 A JP23761393 A JP 23761393A JP H0794779 A JPH0794779 A JP H0794779A
Authority
JP
Japan
Prior art keywords
type
sic
substrate
sic layer
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23761393A
Other languages
Japanese (ja)
Inventor
Yukio Watanabe
幸雄 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP23761393A priority Critical patent/JPH0794779A/en
Publication of JPH0794779A publication Critical patent/JPH0794779A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/32257Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic the layer connector connecting to a bonding area disposed in a recess of the surface of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE:To simplify a manufacturing process and suppress heat generation by a method wherein a p-type electrode side SiC layer is formed on the (0001) face of an SiC substrate and an n-type electrode side SiC layer is formed on the (0001) face of the substrate. CONSTITUTION:First, n-type crystal is made to grow on both the main surfaces of a substrate 14. At that time, the growth thickness of an n-type SiC layer 16 on the (0001) face of the substrate 14 is about 15mum and the growth thickness of an n-type SiC layer 17 on the (0001) face is about 5mum. Then, p--type crystal is made to grow. At that time, a p-type SiC layer 18 is made to grow on the (0001) face but no layer is made to grow on the (0001) face. The impurity concentration of the (0001) face is about 2X 10<17> cm<-3> and, on the other hand, the impurity concentration of the (0001) face is as high as an order of 10<19> cm<-3>. With this constitution, a p-n structure is already obtained in the growth substrate after the crystal growth and it is not necessary to polish both the main surfaces after the crystal growth. Therefore, a manufacturing process can be simplified and a production cost can be reduced and heat generation can be suppressed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、SiC基板の両面に
濃度が異なる同一導電型のSiC層が同時に形成された
SiC発光素子及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a SiC light emitting device in which SiC layers of the same conductivity type having different concentrations are simultaneously formed on both sides of a SiC substrate, and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来の技術をSiC青色発光ダイオード
を例に説明する。
2. Description of the Related Art A conventional technique will be described by taking a SiC blue light emitting diode as an example.

【0003】SiC青色発光ダイオードは、6H型もし
くは4H型のSiC単結晶基板上に6H型の結晶を成長
させることにより作製される。SiC発光素子の製造で
A SiC blue light emitting diode is manufactured by growing a 6H type crystal on a 6H type or 4H type SiC single crystal substrate. In the manufacture of SiC light emitting device

【外3】 が使用される。ディッピング法を用いた液相エピタキシ
ャル成長により、図5(a)に示すように、約500μ
m厚のn型のSiC結晶基板50の両面(Si面及びC
面)にAlと窒素をドープしたn型の発光層11を成長
し、続いてAlをドープしたp型のSiC層52を成長
する。ディッピング法では、通常基板50の両面に結晶
層が成長するためこの段階では、pnp構造となる。
[Outside 3] Is used. By liquid phase epitaxial growth using the dipping method, as shown in FIG.
Both sides of the n-type SiC crystal substrate 50 of m thickness (Si surface and C
On the surface, the n-type light emitting layer 11 doped with Al and nitrogen is grown, and then the p-type SiC layer 52 doped with Al is grown. In the dipping method, a crystal layer usually grows on both surfaces of the substrate 50, so that a pnp structure is formed at this stage.

【0004】そのため、次に、図5(b)に示すよう
に、主面とする反対の面をダイアモンド研磨粉を用いて
研磨し、100〜400μmの厚みになるよう片側の成
長層51,52を除去する。次に、基板50の表面を洗
浄処理した後、文献「春季応用物理学会予稿集、29a
−W−1,P586(1985)」に記載されているよ
うに、p型のSiC層52上にAl−Si電極53、n
型のSiC結晶基板50側にNi電極14を形成する。
又は、特開平2−196421号公報に記載されている
ように、p型のSiC層52上にTi−Al、n型のS
iC結晶基板50側にNi電極54を形成する。
Therefore, as shown in FIG. 5 (b), the surface opposite to the main surface is then polished with diamond polishing powder to grow the growth layers 51, 52 on one side to a thickness of 100 to 400 μm. To remove. Next, after cleaning the surface of the substrate 50, the document "Spring Society of Applied Physics, 29a"
-W-1, P586 (1985) ", the Al-Si electrode 53, n is formed on the p-type SiC layer 52.
The Ni electrode 14 is formed on the side of the SiC crystal substrate 50 of the mold.
Alternatively, as described in JP-A-2-196421, Ti-Al and n-type S are formed on the p-type SiC layer 52.
A Ni electrode 54 is formed on the iC crystal substrate 50 side.

【0005】次に、ワイアボンディングパッド部及び導
電性接着剤などを塗布する部分を残し、ホトレジスト工
程を用いてパターニング除去し高温で熱処理する。その
後、パターニングに沿って200〜300μm角の素子
に分離し、図6に示すような従来から使用されているス
テム55に導電性接着剤56を用いて、上述したように
して形成された素子57をマウントし、Auワイヤ58
を用いてワイアボンディングを行う。この場合に、光の
吸収が少ないn型結晶基板側を上にマウントすることに
より効率良く光を取り出すことができる。
Next, the wire bonding pad portion and the portion to which the conductive adhesive is applied are left, and the patterning is removed using a photoresist process, followed by heat treatment at a high temperature. After that, the pattern is separated into elements of 200 to 300 μm square according to the patterning, and the element 57 formed as described above by using the conductive adhesive 56 on the conventionally used stem 55 as shown in FIG. Mount the Au wire 58
Wire bonding is performed using. In this case, light can be efficiently extracted by mounting the n-type crystal substrate side, which absorbs less light, on top.

【0006】[0006]

【発明が解決しようとする課題】以上説明したように、
従来のSiC発光素子の構造においては、光の吸収が少
ないSiC結晶は一般的に低キャリア濃度であり、真に
透明な基板を用いようとすると、その基板のキャリア濃
度は1016cm-3台以下となる。
As described above,
In the structure of a conventional SiC light emitting device, an SiC crystal that absorbs little light generally has a low carrier concentration, and when a truly transparent substrate is used, the carrier concentration of the substrate is 10 16 cm −3 . It becomes the following.

【0007】そのため、これに最適な電極形成条件で電
極を形成した場合でも、その接触抵抗は数十オームとな
り、通電電流による大きな電圧降下と熱が発生する。こ
の発熱は、発光素子をモジュール化しようとする場合、
特に大きな障害となっていた。
Therefore, even when the electrodes are formed under the optimum electrode forming conditions, the contact resistance is several tens of ohms, and a large voltage drop and heat are generated due to the applied current. This heat is generated when the light emitting element is modularized.
It was a particularly big obstacle.

【0008】そこで、この発明は、上記に鑑みてなされ
たものであり、その目的とするところは、製造工程の簡
略化ならびに発熱を低減することができるSiC発光素
子及びその製造方法を提供することにある。
Therefore, the present invention has been made in view of the above, and an object thereof is to provide a SiC light emitting device and a manufacturing method thereof, which can simplify the manufacturing process and reduce heat generation. It is in.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、請求項1記載の発明は、第1導電型のSiC基板の
(0001)面に液相成長により形成された第1導電型
の第1のSiC層と、
In order to achieve the above object, the present invention according to claim 1 provides a first conductivity type SiC substrate formed by liquid phase growth on a (0001) plane of a first conductivity type SiC substrate. A first SiC layer,

【外4】 iC層と同時に液相成長により形成された第1導電型の
第2のSiC層と液相成長により第1のSiC層上にの
み形成された第2導電型のSiC層とから構成される。
[Outside 4] The first conductivity type second SiC layer formed by liquid phase growth at the same time as the iC layer and the second conductivity type SiC layer formed only on the first SiC layer by liquid phase growth.

【0010】請求項2記載の発明は、第1導電型のSi
C基板の(0001)面に第1導電
According to a second aspect of the invention, the first conductivity type Si is used.
First conductivity on (0001) plane of C substrate

【外5】 くかつ高濃度の第1導電型の第2のSiC層とを、液相
成長により同時に形成する工程と、第1のSiC層上に
のみ第2導電型のSiC層を液相成長により形成する工
程とから構成される。
[Outside 5] A step of simultaneously forming a low-concentration high-concentration second-conductivity-type second SiC layer by liquid-phase growth, and forming a second-conductivity-type SiC layer only on the first SiC layer by liquid-phase growth It consists of a process and.

【0011】[0011]

【作用】発光素子を形成するSiC基板の主面を(00
01)面とした場合及び、(0
The main surface of the SiC substrate forming the light emitting element is (00
If it is a (01) plane and (0)

【外6】 図3及び図4に示す結果が得られた。この関係から、同
一成長時間では(000
[Outside 6] The results shown in FIGS. 3 and 4 were obtained. From this relationship, (000

【外7】 てはキャリア濃度が高くなることが明らかとなった。こ
れは、n型不純物に限らず、p型の不純物に関しても同
様な傾向を示した。
[Outside 7] It became clear that the carrier concentration increased. This shows a similar tendency not only for n-type impurities but also for p-type impurities.

【0012】本発明は、図3及び図4に示す成長速度の
差及び不純物添加量とキャリア濃度の関係から、第1導
電型の基板の(0001)面に形成する第1導電型の第
1のSiC層の成長厚みを十分厚くすることにより、主
面と反対側の面すなわち(0
According to the present invention, the first conductivity type first layer formed on the (0001) plane of the first conductivity type substrate is considered from the relationship between the growth rate difference and the impurity addition amount and the carrier concentration shown in FIGS. By sufficiently increasing the growth thickness of the SiC layer, the surface opposite to the main surface, that is, (0

【外8】 SiC層を形成するとともに、(0001)面に形成す
る第2の層の成長厚みを
[Outside 8] In addition to forming the SiC layer, the growth thickness of the second layer formed on the (0001) plane

【外9】 ャリア濃度の第2のSiC層に第1導電型の電極を形成
することで、接触抵抗を低減することができる。
[Outside 9] By forming the electrode of the first conductivity type on the second SiC layer having a carrier concentration, the contact resistance can be reduced.

【0013】[0013]

【実施例】以下、本発明の詳細を図示の実施例によって
説明する。
The details of the present invention will be described below with reference to the illustrated embodiments.

【0014】図1は本発明の一実施例に係わるSiC青
色LEDのエピタキシャル成長工程を示す図であり、図
2は成長工程を実施する装置を示す図である。
FIG. 1 is a diagram showing an epitaxial growth process of a SiC blue LED according to an embodiment of the present invention, and FIG. 2 is a diagram showing an apparatus for carrying out the growth process.

【0015】図2において、10は高周波コイル、11
は石英管、12は黒鉛ルツボ、13はSi融液、14は
SiC基板、15は黒鉛よりなる基板保持具である。
In FIG. 2, 10 is a high frequency coil, and 11
Is a quartz tube, 12 is a graphite crucible, 13 is a Si melt, 14 is a SiC substrate, and 15 is a substrate holder made of graphite.

【0016】結晶成長時には黒鉛ルツボ12を高周波に
より1750℃程度に加熱しSiを溶融する。この時、
黒鉛ルツボ12にはルツボ底部から上部に向かって5d
eg/cmの割合で温度が高くなるように高周波コイル
10の位置を調整する。Si融液13中にはn型結晶成
長の場合は、窒化珪素を2×10-4wt%、アルミニウ
ムを0.9at%、p型結晶成長の場合はアルミニウム
1.4at%を不純物として混入する。基板14は(0
001)面を下にして融液面にたいして並行に低速で回
転させながらディップする。
During crystal growth, the graphite crucible 12 is heated to about 1750 ° C. by high frequency to melt Si. At this time,
The graphite crucible 12 has 5d from the bottom to the top.
The position of the high frequency coil 10 is adjusted so that the temperature rises at a rate of eg / cm. In the Si melt 13, 2 × 10 −4 wt% of silicon nitride, 0.9 at% of aluminum in the case of n-type crystal growth, and 1.4 at% of aluminum in the case of p-type crystal growth are mixed as impurities. . The substrate 14 is (0
The dip is performed while rotating the 001) surface downward and parallel to the melt surface at a low speed.

【0017】n型結晶成長の場合には、Si融液13の
高温部に一定時間浸漬し、続いて低温部に約1時間浸漬
する。成長終了後、基板14をSi融液13の液面より
上部に引上げ冷却する。この時の(0001)面のn型
のSiC層16の成長厚みは
In the case of n-type crystal growth, the Si melt 13 is immersed in the high temperature part for a certain period of time, and subsequently, immersed in the low temperature part for about 1 hour. After the growth is completed, the substrate 14 is pulled up above the liquid surface of the Si melt 13 and cooled. At this time, the growth thickness of the n-type SiC layer 16 on the (0001) plane is

【外10】 であった(図1(a))。[Outside 10] Was (Fig. 1 (a)).

【0018】続いて、p型結晶成長の場合には、n型の
場合と同様に、Si融液13の高温部に一定時間浸漬
し、その後低温部に約15分間浸漬する。成長終了後、
基板14をSi融液13の液面より上部に引上げ冷却す
る。この時、(0001)面に
Subsequently, in the case of p-type crystal growth, as in the case of n-type crystal growth, the Si melt 13 is immersed in the high temperature part for a certain time and then in the low temperature part for about 15 minutes. After growth,
The substrate 14 is pulled above the liquid surface of the Si melt 13 and cooled. At this time, on the (0001) plane

【外11】 起こらなかった(図1(b))。[Outside 11] It did not happen (Fig. 1 (b)).

【0019】n型のSiC層成長後のC−V法による不
純物濃度判定では、(0001)面
In the impurity concentration determination by the CV method after the growth of the n-type SiC layer, the (0001) plane

【外12】 物濃度は1019cm-3台と考えられる高い値を示した。
また、続いて成長を行なったp型のSiC層の不純物濃
度は(0001)面で5×1018cm-3程度であ
[Outside 12] The substance concentration showed a high value which was considered to be 10 19 cm -3 .
The impurity concentration of the subsequently grown p-type SiC layer is about 5 × 10 18 cm −3 on the (0001) plane.

【外13】 まであった。[Outside 13] It was.

【0020】最後に、従来と同様にして、n型の電極を
n型のSiC層17上に形成し、p型の電極をp型のS
iC層18上に形成し、図6に示すように素子化されて
SiC青色LEDが得られる。
Finally, as in the conventional method, an n-type electrode is formed on the n-type SiC layer 17, and a p-type electrode is formed as a p-type S layer.
It is formed on the iC layer 18 and formed into a device as shown in FIG. 6 to obtain a SiC blue LED.

【0021】上記実施例によれば、成長基板は成長後に
おいて既にpn構造を成しており、成長後において主面
と反対側の面を研磨する必要がないため、製造が簡略化
されて生産コストを下げることができる。また、n型の
電極を形成する側の不純物濃度が高く、接触抵抗を低減
することができるため、通電電流による大きな電圧降下
及び発熱を低減できる。
According to the above embodiment, since the growth substrate has already formed the pn structure after the growth, and it is not necessary to polish the surface opposite to the main surface after the growth, the production is simplified and the production is performed. The cost can be reduced. Further, since the impurity concentration on the side where the n-type electrode is formed is high and the contact resistance can be reduced, it is possible to reduce a large voltage drop and heat generation due to the applied current.

【0022】[0022]

【発明の効果】以上説明したように、この発明によれ
ば、SiC基板の(0001)面にp型
As described above, according to the present invention, the p-type is formed on the (0001) plane of the SiC substrate.

【外14】 成するようにしたので、n型電極側のSiC層をp型電
極側のSiC層に比べて薄くかつ高濃度にp型電極側の
SiC層と同時に形成することが可能となる。
[Outside 14] Since it is formed, the SiC layer on the n-type electrode side can be formed simultaneously with the SiC layer on the p-type electrode side in a thinner and higher concentration than the SiC layer on the p-type electrode side.

【0023】この結果、n型電極側のSiC層を研磨す
ることなくn型電極の形成が可能となり、製造工程を簡
略化することができる。さらに、n型電極側のSiC層
が高濃度であるため、n型電極との接触抵抗が小さくな
り、接触部における発熱を低減することが可能となる。
As a result, the n-type electrode can be formed without polishing the SiC layer on the n-type electrode side, and the manufacturing process can be simplified. Furthermore, since the concentration of the SiC layer on the n-type electrode side is high, the contact resistance with the n-type electrode is small, and it is possible to reduce heat generation at the contact portion.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例に係わるSiC発光素子の
製造工程を示す図である。
FIG. 1 is a diagram showing a manufacturing process of a SiC light emitting device according to an embodiment of the present invention.

【図2】図1に示す工程を実施する装置の概略を示す図
である。
FIG. 2 is a schematic view of an apparatus for performing the process shown in FIG.

【図3】SiC基板の面方位におけるSiC結晶の成長
速度と成長厚さの関係を示す図である。
FIG. 3 is a diagram showing a relationship between a growth rate and a growth thickness of a SiC crystal in a plane orientation of a SiC substrate.

【図4】SiC基板の面方位におけるSiC結晶のn型
不純物添加量と不純物濃度の関係を示す図である。
FIG. 4 is a diagram showing the relationship between the amount of n-type impurities added to the SiC crystal and the impurity concentration in the plane direction of the SiC substrate.

【図5】従来のSiC発光素子の製造工程を示す図であ
る。
FIG. 5 is a diagram showing a manufacturing process of a conventional SiC light emitting device.

【図6】製品化されたSiC発光素子の概略構成を示す
図である。
FIG. 6 is a diagram showing a schematic configuration of a commercialized SiC light emitting device.

【符号の説明】[Explanation of symbols]

10 高周波コイル 11 石英管 12 黒鉛ルツボ 13 Si融液 14 SiC基板 15 基板保持具 16 (0001)面上に成長したn型SiC層 17 高濃度n型SiC層 18 p型SiC層 10 High-frequency coil 11 Quartz tube 12 Graphite crucible 13 Si melt 14 SiC substrate 15 Substrate holder 16 n-type SiC layer grown on (0001) plane 17 High-concentration n-type SiC layer 18 p-type SiC layer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 第1導電型のSiC基板の(0001)
面に液相成長により形成された第1導電型の第1のSi
C層と、 【外1】 SiC層と同時に液相成長により形成された第1導電型
の第2のSiC層と、 液相成長により第1のSiC層上にのみ形成された第2
導電型のSiC層とを有することを特徴とするSiC発
光素子。
1. A (0001) SiC substrate of the first conductivity type.
Conductive type first Si formed on the surface by liquid phase growth
Layer C and [External 1] A second SiC layer of the first conductivity type formed by liquid phase growth at the same time as the SiC layer, and a second SiC layer formed only on the first SiC layer by liquid phase growth
A SiC light-emitting device comprising a conductive type SiC layer.
【請求項2】 第1導電型のSiC基板の(0001)
面に第1導電型の第 【外2】 高濃度の第1導電型の第2のSiC層とを、液相成長に
より同時に形成する工程と、 第1のSiC層上にのみ第2導電型のSiC層を液相成
長により形成する工程とを有することを特徴とするSi
C発光素子の製造方法。
2. A (0001) of a first conductivity type SiC substrate.
The surface of the first conductivity type [External 2] A step of simultaneously forming a high concentration first conductivity type second SiC layer by liquid phase growth, and a step of forming a second conductivity type SiC layer only on the first SiC layer by liquid phase growth. Si characterized by having
C Light emitting device manufacturing method.
JP23761393A 1993-09-24 1993-09-24 Sic light emitting device and its manufacture Pending JPH0794779A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23761393A JPH0794779A (en) 1993-09-24 1993-09-24 Sic light emitting device and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23761393A JPH0794779A (en) 1993-09-24 1993-09-24 Sic light emitting device and its manufacture

Publications (1)

Publication Number Publication Date
JPH0794779A true JPH0794779A (en) 1995-04-07

Family

ID=17017916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23761393A Pending JPH0794779A (en) 1993-09-24 1993-09-24 Sic light emitting device and its manufacture

Country Status (1)

Country Link
JP (1) JPH0794779A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014196437A1 (en) * 2013-06-08 2014-12-11 エルシード株式会社 METHOD FOR PRODUCING SiC MATERIAL AND SiC MATERIAL LAMINATE

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014196437A1 (en) * 2013-06-08 2014-12-11 エルシード株式会社 METHOD FOR PRODUCING SiC MATERIAL AND SiC MATERIAL LAMINATE

Similar Documents

Publication Publication Date Title
JP6547047B2 (en) Light emitting device
JP3399392B2 (en) Semiconductor light emitting device and method of manufacturing the same
JPH076971A (en) Synthetic semiconductor and its controlled doping
CN104878449B (en) β-Ga2O3Base monocrystal substrate
TW200826322A (en) LED and manufacture method thereof
JPH06105797B2 (en) Semiconductor substrate and manufacturing method thereof
KR20060101499A (en) Method for manufacturing compound semiconductor substrate
JPH06244457A (en) Manufacture of light emitting diode
JP3171270B2 (en) Semiconductor device
JPH0794779A (en) Sic light emitting device and its manufacture
JP2009190918A (en) Method for manufacturing nitride semiconductor substrate and method for manufacturing nitride semiconductor device
JPH0537018A (en) Compound semiconductor single crystal
KR0166989B1 (en) Improved semiconductor material and method for controlling switching speed of devices formed therein
JPH0925198A (en) Epitaxial coated semiconductor wafer and its preparation
JP2001127309A (en) SiC/Si HETORO STRUCTURE SEMICONDUCTOR SWITCH AND MANUFACTURING METHOD THEREFOR
US3669763A (en) Traveling solvent method of growing silicon carbide crystals and junctions utilizing yttrium as the solvent
JP2000223719A (en) Semiconductor device
JPS60236243A (en) Manufacture of semiconductor device
JP3116495B2 (en) Manufacturing method of light emitting diode
JPS63117425A (en) Manufacture of semiconductor device
JPH06244455A (en) Manufacture of light emitting diode
CN104882519A (en) Semiconductor multilayer structure and semiconductor element
JP3644011B2 (en) Compound semiconductor crystal doping method
JP3251667B2 (en) Semiconductor device
JP3523412B2 (en) Manufacturing method of GaP: N light emitting diode