JPH0794396A - X-ray projection aligner - Google Patents
X-ray projection alignerInfo
- Publication number
- JPH0794396A JPH0794396A JP5237591A JP23759193A JPH0794396A JP H0794396 A JPH0794396 A JP H0794396A JP 5237591 A JP5237591 A JP 5237591A JP 23759193 A JP23759193 A JP 23759193A JP H0794396 A JPH0794396 A JP H0794396A
- Authority
- JP
- Japan
- Prior art keywords
- mirror
- ray
- optical system
- mask
- rays
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70058—Mask illumination systems
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、X線リソグラフィー等
に用いられるX線投影露光装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an X-ray projection exposure apparatus used for X-ray lithography and the like.
【0002】[0002]
【従来の技術】近年、半導体集積回路素子の微細化に伴
い、光の回折限界によって制限される光学系の解像力を
向上させるために、従来の紫外線(波長193〜436
nm)に代わって、これより波長の短い軟X線(波長5
〜20nm)を使用した投影リソグラフィー技術が開発
されている。この技術に使用されるX線投影露光装置は
主としてX線源、照明光学系、マスク、結像光学系、ウ
ェファーステージ等により構成される。2. Description of the Related Art In recent years, with the miniaturization of semiconductor integrated circuit elements, in order to improve the resolution of an optical system which is limited by the diffraction limit of light, conventional ultraviolet rays (wavelengths 193 to 436) are used.
nm) instead of soft X-rays (wavelength 5)
˜20 nm) has been developed. The X-ray projection exposure apparatus used in this technique is mainly composed of an X-ray source, an illumination optical system, a mask, an imaging optical system, a wafer stage and the like.
【0003】X線の波長域では、透明な物質は存在せ
ず、また物質表面での反射率も非常に低いので、レンズ
やミラーなどの通常の光学素子が使用できない。そのた
め、X線用の光学系は、特殊な多層膜をコーティングし
た多層膜ミラーや、X線の全反射を利用した斜入射ミラ
ー等により構成されている。X線源には、放射光光源
(Synchrotron Radiation Source)またはレーザープラ
ズマX線源等の、強力な軟X線の得られる光源が使用さ
れる。照明光学系は、反射面に斜め方向から入射したX
線を全反射を利用して反射させる斜入射ミラー、多層膜
の各界面での反射光の位相を一致させて干渉効果により
高い反射率を得る多層膜ミラー、及び所定波長のX線の
みを反射または透過させるフィルター等により構成さ
れ、マスク上を所望の波長のX線で照明する。In the wavelength range of X-rays, since no transparent substance exists and the reflectance on the surface of the substance is very low, ordinary optical elements such as lenses and mirrors cannot be used. Therefore, the X-ray optical system is composed of a multi-layered film mirror coated with a special multi-layered film, a grazing incidence mirror using total reflection of X-rays, and the like. As the X-ray source, a light source capable of obtaining a strong soft X-ray, such as a Synchrotron Radiation Source or a laser plasma X-ray source, is used. The illumination optical system has X incident on the reflecting surface from an oblique direction.
An oblique incidence mirror that reflects rays using total reflection, a multilayer mirror that obtains high reflectance by the interference effect by matching the phases of the reflected light at each interface of the multilayer film, and reflects only X-rays of a predetermined wavelength Alternatively, it is constituted by a filter that transmits light, and the mask is illuminated with X-rays of a desired wavelength.
【0004】マスクは透過型マスクと反射型マスクが知
られている。透過型マスクは、X線を良く透過する物質
からなる薄いメンブレンの上にX線を吸収する物質を所
定の形状に設けることによってパターンを形成したもの
である。一方、反射型マスクは、例えばX線を反射する
多層膜上に反射率の低い部分を所定の形状に設けること
によってパターンを形成したものである。As the mask, a transmissive mask and a reflective mask are known. The transmissive mask has a pattern formed by providing an X-ray absorbing substance in a predetermined shape on a thin membrane made of a substance that transmits X-rays well. On the other hand, the reflective mask has a pattern formed by providing a portion having a low reflectance in a predetermined shape on a multilayer film that reflects X-rays, for example.
【0005】このようなマスク上に形成されたパターン
は、複数の多層膜ミラー等で構成された投影結像光学系
により、フォトレジストが塗布されたウェファー上に結
像されて該レジストに転写される。なお、X線は大気に
吸収されて減衰するので、その光路は全て所定の真空度
に維持されている。The pattern formed on such a mask is imaged on a wafer coated with a photoresist by a projection imaging optical system composed of a plurality of multilayer film mirrors and transferred to the resist. It Since X-rays are absorbed by the atmosphere and attenuated, all the optical paths thereof are maintained at a predetermined degree of vacuum.
【0006】[0006]
【発明が解決しようとする課題】上記のような従来のX
線投影露光装置においては、その照明光学系の設計には
あまり注意が払われていなかった。J.Vac.Sci.Technol.
B8,1509(1990) 及びJ.Vac.Sci.Technol.B7,1648(1989)
には、2枚の同心球面鏡からなるシュバルツシルドミラ
ーを投影結像光学系に用いたX線縮小投影露光の実験が
報告されているが、いずれの場合にも照明光学系は使用
せず、放射光光源から発した略平行な光線でマスクを照
明していた。DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
In the line projection exposure apparatus, much attention has not been paid to the design of the illumination optical system. J.Vac.Sci.Technol.
B8,1509 (1990) and J.Vac.Sci.Technol.B7,1648 (1989)
Describes an experiment of X-ray reduction projection exposure using a Schwarzschild mirror consisting of two concentric spherical mirrors in a projection imaging optical system. In any case, the illumination optical system was not used and The mask was illuminated with light rays emitted from a light source that were substantially parallel to each other.
【0007】一般に、光学系の解像力は結像系の性能だ
けでなく物体(リソグラフィーの場合はマスク)の照明
の仕方に左右される。即ち、物体が平行光で照明された
場合(コヒーレント照明という。)には、図3に示すよ
うに、光学系の伝達関数(OTF)はNA/λ(NAは
結像系の出射側開口数、λは照明光の波長)で決まる空
間周波数までは一定の値を示すが、この空間周波数を越
えると0になってしまい解像されない。一方、物体が結
像系の入射側開口数を満たすような発散角を持つ光線で
照明された場合(インコヒーレント照明という。)に
は、OTFは空間周波数が高くなるに従い徐々に低下す
るが、2NA/λの空間周波数まで0にはならない。従
って、像のコントラストは低下するものの、インコヒー
レント照明の場合の方が高い空間周波数のパターンまで
解像することができる。Generally, the resolving power of an optical system depends not only on the performance of the imaging system but also on the way of illuminating an object (mask in the case of lithography). That is, when an object is illuminated with parallel light (referred to as coherent illumination), as shown in FIG. 3, the transfer function (OTF) of the optical system is NA / λ (NA is the exit-side numerical aperture of the imaging system). , Λ shows a constant value up to the spatial frequency determined by the wavelength of the illumination light), but when it exceeds this spatial frequency, it becomes 0 and is not resolved. On the other hand, when the object is illuminated with a light ray having a divergence angle that satisfies the incident side numerical aperture of the imaging system (referred to as incoherent illumination), the OTF gradually decreases as the spatial frequency increases, It does not become zero up to a spatial frequency of 2NA / λ. Therefore, although the contrast of the image is reduced, it is possible to resolve even a pattern having a higher spatial frequency in the case of incoherent illumination.
【0008】しかしながら、上記のような従来の技術で
は、マスクは略平行光で照明されているため、結像系の
解像力が上記のような理由により制限されるという重大
な問題点があった。J.Vac.Sci.Technol.B9,3184(1991)
には、レーザープラズマX線源から発したX線を多層膜
をコーティングした球面鏡で約45度の入射角で反射さ
せて、マスクを照明する方法について述べられている。
しかしながら、球面鏡をこのように斜め入射で使用する
と大きな非点収差を生じてしまうので、マスク上の2次
元パターンの一方の方向に対しては、ある程度の発散角
をもつ照明が行えても、それに垂直な方向のパターンに
対しては、平行な照明になってしまう。従って、光学系
の解像力に異方性が生じるという問題点がある。However, in the above conventional technique, since the mask is illuminated by substantially parallel light, there is a serious problem that the resolving power of the image forming system is limited due to the above reasons. J.Vac.Sci.Technol.B9,3184 (1991)
Describes a method of illuminating a mask by reflecting X-rays emitted from a laser plasma X-ray source with a spherical mirror coated with a multilayer film at an incident angle of about 45 degrees.
However, when a spherical mirror is used at such an oblique incidence, a large astigmatism occurs, so even if illumination with a certain divergence angle can be performed in one direction of the two-dimensional pattern on the mask, Illumination is parallel to the pattern in the vertical direction. Therefore, there is a problem that the resolution of the optical system becomes anisotropic.
【0009】球面鏡の代わりに楕円鏡を用いれば非点収
差を除去できるが、これは光軸上のごく狭い範囲だけで
ある。楕円鏡は軸外で大きな収差を持つので、均一な照
明を行うことは困難である。リソグラフィーでは、マス
ク上のある程度の大きさの範囲を照明しなければならな
いので、このような照明系では適切な照明ができないと
いう問題点がある。If an elliptical mirror is used instead of the spherical mirror, astigmatism can be eliminated, but this is only in a very narrow range on the optical axis. Since the elliptical mirror has a large off-axis aberration, it is difficult to perform uniform illumination. In lithography, it is necessary to illuminate a range of a certain size on a mask, and thus there is a problem that proper illumination cannot be performed by such an illumination system.
【0010】また、このような一枚の多層膜ミラーによ
る照明は、光軸が大きく曲がってしまうので光学系の配
置が複雑で調整が困難になるという問題点もある。さら
に、楕円鏡は非球面形状であるので、球面鏡と比べてそ
の加工が著しく困難である。そのため現在の加工技術で
はX線の波長で使用するのに充分な加工精度を実現する
ことができないという問題点がある。In addition, the illumination by such a single multilayer film mirror has a problem that the arrangement of the optical system is complicated and the adjustment is difficult because the optical axis is largely bent. Further, since the elliptical mirror has an aspherical shape, its processing is extremely difficult as compared with the spherical mirror. Therefore, there is a problem in that the current processing technology cannot realize the processing accuracy sufficient for using the X-ray wavelength.
【0011】本発明は、このような従来の問題点に鑑み
てなされたもので、マスクのインコヒーレント照明が可
能であり、そのため結像系の性能を最大限に発揮させる
ことのできる照明光学系を有するX線投影露光装置を提
供することを目的とする。The present invention has been made in view of such conventional problems, and it is possible to perform incoherent illumination of a mask, and therefore, the illumination optical system that can maximize the performance of the image forming system. It is an object of the present invention to provide an X-ray projection exposure apparatus having
【0012】[0012]
【課題を解決するための手段】そのため、本発明は第一
に「少なくとも、X線源と、該X線源から発するX線を
マスク上に照射する照明光学系と、前記マスク上に形成
されたパターンの像をウェファー上に投影結像する投影
光学系と、からなるX線投影露光装置において前記照明
光学系を構成するミラーのうち、少なくとも一つのミラ
ーが球面形状を有する基板面にX線反射多層膜を形成し
てなる球面ミラーであって、該球面ミラーへの入射X線
が略垂直に入射する位置に該球面ミラーが設けられ、か
つ該球面ミラーの集光点近傍に配置したマスク上に集束
する反射X線の発散角が前記投影光学系の入射側開口数
と略一致するような曲率半径及び外径を該球面ミラーが
有することを特徴とするX線投影露光装置(請求項
1)」を提供する。Therefore, the first aspect of the present invention is to provide "at least an X-ray source, an illumination optical system for irradiating the mask with X-rays emitted from the X-ray source, and an illumination optical system formed on the mask. In the X-ray projection exposure apparatus, a projection optical system that projects and forms an image of the pattern on a wafer is formed. At least one of the mirrors that constitutes the illumination optical system is an X-ray on a substrate surface having a spherical shape. A spherical mirror formed by forming a reflective multilayer film, wherein the spherical mirror is provided at a position where an incident X-ray to the spherical mirror is incident substantially vertically, and the mask is arranged in the vicinity of a condensing point of the spherical mirror. An X-ray projection exposure apparatus characterized in that the spherical mirror has a radius of curvature and an outer diameter such that the divergence angle of the reflected X-ray focused on the upper surface of the projection optical system is substantially equal to the numerical aperture on the incident side of the projection optical system. 1) ”is provided.
【0013】また、本発明は第二に「前記X線源がシン
クロトロン放射光光源であり、前記照明光学系が少なく
とも、平面基板にX線反射多層膜を形成してなる第1及
び第2の平面ミラーと前記球面ミラーとからなり、該第
1の平面ミラーが前記放射光光源から出射したX線を前
記放射光光源の電子ビームの軌道面に対して略垂直な方
向に反射する位置に設けられ、前記球面ミラーが該第1
の平面ミラーによる反射X線を略垂直に反射する位置に
設けられ、かつ、前記第2の平面ミラーが該球面ミラー
による反射X線を前記放射光光源からの出射光と略平行
な方向に反射する位置に設けられていることを特徴とす
る請求項1記載のX線投影露光装置(請求項2)」を提
供する。Further, the present invention is secondly "the X-ray source is a synchrotron radiation light source, and the illumination optical system comprises at least an X-ray reflection multilayer film formed on a flat substrate. At a position where the first plane mirror reflects X-rays emitted from the radiation light source in a direction substantially perpendicular to the orbital plane of the electron beam of the radiation light source. The spherical mirror is provided
Is provided at a position that reflects the reflected X-rays from the plane mirror in a substantially vertical direction, and the second plane mirror reflects the reflected X-rays from the spherical mirror in a direction substantially parallel to the light emitted from the radiation light source. The X-ray projection exposure apparatus according to claim 1 (claim 2) "is provided.
【0014】[0014]
【作用】以下、本発明にかかるX線投影露光装置につい
て、図面を引用して説明するが本発明は、図面に記載さ
れたX線投影露光装置に限定されるものではない。本発
明にかかるX線投影露光装置の照明光学系では、例え
ば、図2に示すように、球面形状の基板にX線を反射す
る多層膜を形成してなる球面多層膜ミラー(球面ミラ
ー)1を用いる。そして、該球面ミラー1を、該球面ミ
ラー1への入射X線が略垂直に入射する位置に設けてい
る。The X-ray projection exposure apparatus according to the present invention will be described below with reference to the drawings, but the present invention is not limited to the X-ray projection exposure apparatus shown in the drawings. In the illumination optical system of the X-ray projection exposure apparatus according to the present invention, for example, as shown in FIG. 2, a spherical multilayer mirror (spherical mirror) 1 formed by forming a multilayer film that reflects X-rays on a spherical substrate. To use. Then, the spherical mirror 1 is provided at a position where incident X-rays on the spherical mirror 1 are incident substantially vertically.
【0015】ところで、斜入射で球面鏡により光線を反
射すると、入射面内とそれに垂直な面内の二つの焦点を
持つので、当然それらの位置は一致しない。即ち、非点
収差を生じる。しかし、略垂直入射で球面鏡により光線
を反射した場合には、入射面内の集光点と入射面に垂直
な面内の集光点とが略一致し、球面の曲率半径をrとす
ると、f=r/2の距離に焦点2を結ぶ。即ち非点収差
を生じることがない。By the way, when a light ray is reflected by a spherical mirror at an oblique incidence, it has two focal points in the plane of incidence and in the plane perpendicular thereto, and therefore their positions do not coincide. That is, astigmatism occurs. However, when a light ray is reflected by a spherical mirror at a substantially normal incidence, the converging point in the incident plane and the converging point in the plane perpendicular to the incident plane substantially match, and the radius of curvature of the spherical surface is r, Focus 2 at a distance of f = r / 2. That is, astigmatism does not occur.
【0016】本発明では、このように球面ミラー1を略
垂直入射の配置で用い、マスク9はその集光点の近傍に
配置したので、マスク上のパターンは円錐形状に等方的
な広がり角を持って集束する光線によって照明される。
また、このときの光束の広がり角θが結像光学系の入射
側開口数に等しくなるように、球面ミラー1の曲率半径
及び外径を設定している。In the present invention, since the spherical mirror 1 is used in the arrangement of substantially vertical incidence and the mask 9 is arranged in the vicinity of the converging point, the pattern on the mask has a conical shape and an isotropic spread angle. It is illuminated by a beam of light that is focused on.
Further, the radius of curvature and the outer diameter of the spherical mirror 1 are set so that the spread angle θ of the light flux at this time becomes equal to the numerical aperture on the incident side of the imaging optical system.
【0017】即ち、本発明によれば、インコヒーレント
照明の条件が満たされるので、結像光学系の解像力を最
大限に発揮させることができる。また、楕円鏡を用いた
場合と比べて軸外の収差が小さいために、より広い範囲
を均一に照明することができる。また、本発明(請求項
2)では、例えば、図1に示すように、放射光光源から
のX線を、まず第1の平面多層膜ミラー(平面ミラー)
3により、その進行方向を上方(または下方)へ略直角
に曲げて、これを球面ミラー1で略垂直に反射したの
ち、第2の平面多層膜ミラー(平面ミラー)4で略直角
に曲げて水平な方向へ戻して、マスク9を照明する。That is, according to the present invention, since the condition of incoherent illumination is satisfied, the resolving power of the imaging optical system can be maximized. Further, since off-axis aberrations are smaller than in the case of using an elliptical mirror, it is possible to uniformly illuminate a wider range. Further, in the present invention (claim 2), for example, as shown in FIG.
3, the traveling direction is bent upward (or downward) at a substantially right angle, and the spherical mirror 1 reflects the light substantially at a right angle, and then the second plane multilayer film mirror (flat mirror) 4 bends at a substantially right angle. The mask 9 is illuminated by returning to the horizontal direction.
【0018】即ち、本発明(請求項2)によれば、照明
光(X線)の光軸を放射光光源から出射するX線の光軸
と一致させることができるので、その後に続く結像光学
系もこの軸上に配置すれば良く、光学系全体の配置が単
純になり調整が容易になる。なお、放射光光源からのX
線は電子蓄積リング中の電子ビームの軌道面内に偏光し
ており、また、一般に多層膜ミラーは45゜付近の入射
角では入射面(入射光線と反射面の法線を含む平面)に
垂直な方向に偏光したX線しか反射しない。従って、一
般的には、平面多層膜ミラーによりX線を直角に曲げる
方向は、水平方向ではなく垂直方向にする。(放射光光
源の電子ビームの軌道面は、一般に水平面内にある)以
下、実施例により本発明を更に具体的に説明するが、本
発明は実施例に限定されるものではない。That is, according to the present invention (Claim 2), the optical axis of the illumination light (X-ray) can be made coincident with the optical axis of the X-ray emitted from the radiant light source. The optical system can also be arranged on this axis, which simplifies the arrangement of the entire optical system and facilitates adjustment. X from the synchrotron radiation source
The line is polarized in the plane of the electron beam orbit in the electron storage ring, and in general, the multilayer mirror is perpendicular to the plane of incidence (the plane including the normal to the incident ray and the reflecting surface) at an incident angle near 45 °. Only X-rays polarized in different directions are reflected. Therefore, generally, the direction in which the X-ray is bent at a right angle by the plane multilayer mirror is not the horizontal direction but the vertical direction. (The orbital plane of the electron beam of the synchrotron radiation source is generally in the horizontal plane) The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to the examples.
【0019】[0019]
【実施例】図1は本発明にかかるX線縮小投影露光装置
の光学系配置図である。光源には放射光光源の電子蓄積
リング6に設けられた偏向磁石(図示せず)から発した
放射光ビームを用いた。光源の発光点の大きさは直径約
2mm、発散角は上下左右とも±1mradである。1 is a layout view of an optical system of an X-ray reduction projection exposure apparatus according to the present invention. A radiation beam emitted from a deflection magnet (not shown) provided in the electron storage ring 6 of the radiation light source was used as the light source. The size of the light emitting point of the light source is about 2 mm in diameter, and the divergence angle is ± 1 mrad in all directions.
【0020】放射光ビームはX線から可視光までの連続
なスペクトルを持っているので、まず、厚さ1μmのB
e(ベリリウム)フィルター7を透過させて、紫外線以
上の長波長成分と、BeのK吸収端である112Å以下
の短波長成分をフィルターの吸収により除去した。次
に、入射角86度の水平偏向ミラー8で放射光ビームを
反射させた。このミラーは合成石英を平滑な平面に加工
したものであり、X線を全反射するが、このとき、全反
射臨界角の小さい短波長のX線は反射せずに除去され
る。以上のフィルター7と偏向ミラー8は、このように
露光に用いる波長134Å付近の軟X線のみを取り出す
ためのものである。Since the synchrotron radiation beam has a continuous spectrum from X-rays to visible light, first of all, B having a thickness of 1 μm is used.
After passing through the e (beryllium) filter 7, a long wavelength component of ultraviolet rays or more and a short wavelength component of 112 Å or less, which is the K absorption edge of Be, were removed by absorption of the filter. Next, the emitted light beam was reflected by the horizontal deflection mirror 8 having an incident angle of 86 degrees. This mirror is made by processing synthetic quartz into a smooth flat surface and totally reflects X-rays. At this time, short-wavelength X-rays having a small total reflection critical angle are removed without being reflected. The filter 7 and the deflecting mirror 8 are for extracting only the soft X-rays around the wavelength 134Å used for the exposure as described above.
【0021】次の3枚の多層膜ミラーが照明光学系5を
構成する。まず、入射角46度の第1の平面多層膜ミラ
ー(平面ミラー)3により放射光ビームを上方に折り曲
げ、入射角2度の球面多層膜ミラー(球面ミラー)1に
より略垂直に反射した後、入射角46度の第2の平面多
層膜ミラー(平面ミラー)4により放射光ビームを水平
方向に折り曲げた。The following three multi-layered film mirrors constitute the illumination optical system 5. First, the radiated light beam is bent upward by the first plane multilayer film mirror (plane mirror) 3 having an incident angle of 46 degrees, and is reflected substantially vertically by the spherical multilayer film mirror (spherical mirror) 1 having an incident angle of 2 degrees. The emitted light beam was bent in the horizontal direction by the second plane multilayer mirror (plane mirror) 4 having an incident angle of 46 degrees.
【0022】第1の平面ミラー3へ入射する放射光ビー
ムの光軸と第2の平面ミラー4で反射したビームの光軸
は一致するように各ミラーを配置した。このような配置
にすることで、予め結像光学系(ここではシュバルツシ
ルドミラー)10の光軸を水平偏向ミラー8で折り曲げ
られた放射光ビームの光軸に一致するように調整してお
き、その後この光軸に一致するよう照明光学系5を調整
することができる。The respective mirrors are arranged so that the optical axis of the radiation light beam incident on the first plane mirror 3 and the optical axis of the beam reflected by the second plane mirror 4 coincide with each other. With such an arrangement, the optical axis of the imaging optical system (here, the Schwarzschild mirror) 10 is adjusted in advance so that it coincides with the optical axis of the emitted light beam bent by the horizontal deflection mirror 8. Then, the illumination optical system 5 can be adjusted so as to coincide with this optical axis.
【0023】照明光学系5の多層膜ミラーにおいて、X
線を反射するための多層膜にはMo(モリブデン)/S
i(シリコン)多層膜を用いた。多層膜の周期長は、そ
れぞれのミラーの入射角に合わせて、中心波長134Å
のX線を反射するように最適化した。本実施例におい
て、球面ミラー1の曲率半径は3.6 mであり、その焦点
距離fは1.8 mである。放射光光源の発光点から球面ミ
ラー1までの距離aは13mであるので、球面多層膜ミ
ラー1で反射した放射光ビームは次の式(1)で決まる
距離b=2.1 m先で集束する。In the multilayer mirror of the illumination optical system 5, X
Mo (molybdenum) / S is used for the multilayer film to reflect the lines.
An i (silicon) multilayer film was used. The cycle length of the multilayer film is adjusted to the center wavelength of 134Å according to the incident angle of each mirror.
Was optimized to reflect X-rays. In this embodiment, the spherical mirror 1 has a radius of curvature of 3.6 m and a focal length f of 1.8 m. Since the distance a from the light emitting point of the synchrotron radiation source to the spherical mirror 1 is 13 m, the radiant light beam reflected by the spherical multilayer film mirror 1 is focused at a distance b = 2.1 m ahead determined by the following equation (1).
【0024】 1/a + 1/b = 1/f ・・・(1) この集光点位置には、次の式(2)で決まる倍率m=0.
16で縮小された光源の像が形成される。 m=b/a ・・・(2) また、この位置に集束する放射光ビームの発散角は、光
源からの発散角をθ1として、次の式(3)で決まるθ
2 で与えられる。1 / a + 1 / b = 1 / f (1) At this focus point position, a magnification m = 0.0 determined by the following equation (2).
An image of the reduced light source is formed at 16. m = b / a (2) Further, the divergence angle of the radiation beam focused on this position is determined by the following equation (3), where θ 1 is the divergence angle from the light source.
Given in 2 .
【0025】 sinθ2 = sinθ1 /m ・・・(3) 放射光光源からのX線の発散角θ1 は1mradなの
で、sinθ2 は0.00625 となる。このようにして形成
された光源の像の位置に、透過型のX線マスク9を配置
した。これは、厚さ0.1 μmのSiN(シリコンナイト
ライド)のメンブレンの上に、厚さ0.2 μmのAu
(金)のパターンが形成されたものである。Sin θ 2 = sin θ 1 / m (3) Since the divergence angle θ 1 of the X-ray from the synchrotron radiation source is 1 mrad, sin θ 2 is 0.00625. A transmission type X-ray mask 9 was placed at the position of the image of the light source formed in this way. This consists of a 0.2 μm thick Au film on a 0.1 μm thick SiN (silicon nitride) membrane.
The pattern of (gold) is formed.
【0026】マスク9を透過したX線は、縮小倍率1/
32のシュバルツシルドミラー10によりウェファー1
1上に結像する。ウェファー11には、X線に感光する
フォトレジストが塗布されており、マスク9上のパター
ンは1/32に縮小されて、レジストパターンに転写さ
れる。シュバルツシルドミラーは2枚の同心球面からな
る結像光学系であり、その反射面にはMo/Si多層膜
が形成されている。このシュバルツシルドミラー10の
開口数(NA)は、ウェファー側で0.2 であり、λ/2
NAで決まる回折限界の解像力は0.03μmである。シュ
バルツシルドミラー10のマスク側の開口数は0.2 /3
2=0.00625 であるので、上記の照明光学系5によって
マスク9を照明するX線の発散角はこの値と一致してお
り、インコヒーレント照明の条件が満たされている。The X-ray transmitted through the mask 9 has a reduction ratio of 1 /.
Wafer 1 with 32 Schwarzschild mirrors
Image on 1. A photoresist sensitive to X-rays is applied to the wafer 11, and the pattern on the mask 9 is reduced to 1/32 and transferred to the resist pattern. The Schwarzschild mirror is an imaging optical system composed of two concentric spherical surfaces, and a Mo / Si multilayer film is formed on its reflecting surface. The numerical aperture (NA) of this Schwarzschild mirror 10 is 0.2 on the wafer side, and λ / 2.
The diffraction-limited resolution determined by NA is 0.03 μm. The numerical aperture on the mask side of the Schwarzschild mirror 10 is 0.2 / 3
Since 2 = 0.00625, the divergence angle of the X-ray that illuminates the mask 9 with the illumination optical system 5 matches this value, and the condition for incoherent illumination is satisfied.
【0027】このようなX線縮小投影露光装置により露
光実験を行った。レジストにはPMMA(ポリメチルメ
タクリレート)を用いた。1.6 μmラインアンドスペー
スのパターンのマスクを用いて露光を行ったところ、い
ずれの方向のパターンに対しても、回折限界に近い寸法
の0.05μmのラインアンドスペースのレジストパターン
が得られた。An exposure experiment was conducted using such an X-ray reduction projection exposure apparatus. PMMA (polymethylmethacrylate) was used for the resist. When exposure was performed using a mask having a 1.6 μm line-and-space pattern, a 0.05-μm line-and-space resist pattern having a dimension close to the diffraction limit was obtained for patterns in either direction.
【0028】[0028]
【比較例】比較のために、図4に示すような簡易型の照
明光学系を用いた露光実験を行った。ここでは、水平偏
向ミラー18が曲率半径36mの緩い球面になってお
り、その入射面(ここでは水平面)内の焦点にマスク9
が設置されている。水平偏向ミラー18への放射光ビー
ムの入射角は実施例と同じ86度である。このように球
面鏡を斜入射の配置で用いると、大きな非点収差を生じ
る。この場合は、水平面内の光線はマスク9上で集光
し、その発散角はシュバルツシルドミラー10のマスク
側開口数と一致してインコヒーレント照明の条件を満た
すが、垂直面内の光線はほぼ平行にマスク9を照明する
のでコヒーレント照明となる。Comparative Example For comparison, an exposure experiment using a simple illumination optical system as shown in FIG. 4 was conducted. Here, the horizontal deflection mirror 18 is a gentle spherical surface having a radius of curvature of 36 m, and the mask 9 is placed at the focal point in the incident surface (here, the horizontal surface).
Is installed. The angle of incidence of the emitted light beam on the horizontal deflection mirror 18 is 86 degrees, which is the same as in the embodiment. When the spherical mirror is used in the oblique incidence arrangement as described above, large astigmatism occurs. In this case, the light rays in the horizontal plane are condensed on the mask 9, and the divergence angle thereof coincides with the mask side numerical aperture of the Schwarzschild mirror 10 and satisfies the condition of incoherent illumination, but the light rays in the vertical plane are almost the same. Since the mask 9 is illuminated in parallel, coherent illumination is achieved.
【0029】このような配置で同様の露光実験を行った
ところ、垂直方向のラインアンドスペースパターンでは
0.05μmまで解像できたが、水平方向のラインアンドス
ペースパターンでは0.15μmは解像したが、0.1 μmは
解像しなかった。以上の結果から、X線縮小投影露光装
置において、照明光学系の開口数を結像光学系の入射側
開口数に一致させることが回折限界の解像力を得るため
に重要であることが判った。When a similar exposure experiment was carried out with such an arrangement, it was found that the line and space pattern in the vertical direction was
Although the resolution was up to 0.05 μm, 0.15 μm was resolved in the horizontal line and space pattern, but 0.1 μm was not resolved. From the above results, it was found that in the X-ray reduction projection exposure apparatus, it is important to match the numerical aperture of the illumination optical system with the numerical aperture on the incident side of the imaging optical system in order to obtain the diffraction limit resolution.
【0030】なお、本実施例においては透過型のX線マ
スクを用いたが、本発明はこれに限定されることはな
く、反射型のX線マスクを用いた場合にも同様の効果が
得られることはいうまでもない。Although a transmissive X-ray mask is used in this embodiment, the present invention is not limited to this, and the same effect can be obtained when a reflective X-ray mask is used. It goes without saying that it will be done.
【0031】[0031]
【発明の効果】以上のように本発明によれば、マスク上
のパターンを結像光学系の入射側開口数に等しい等方的
な発散角を有するX線で照明することができるので、結
像光学系の回折限界の解像力を得ることができる。ま
た、楕円鏡のような非球面ミラーを使用した場合と比べ
ると、本発明では球面ミラーを用いるので、X線の波長
域においても充分な形状精度をもつミラーを従来の技術
で容易に製造することできる。また、楕円鏡のように軸
外で急速に収差が拡大することがないので、比較的大き
な照明領域を得ることができる。As described above, according to the present invention, the pattern on the mask can be illuminated with X-rays having an isotropic divergence angle equal to the numerical aperture on the incident side of the imaging optical system. It is possible to obtain a diffraction-limited resolution of the image optical system. Further, as compared with the case of using an aspherical mirror such as an elliptic mirror, since the present invention uses a spherical mirror, a mirror having sufficient shape accuracy even in the X-ray wavelength range can be easily manufactured by the conventional technique. You can do it. Further, since the aberration does not rapidly expand off-axis unlike the elliptic mirror, a relatively large illumination area can be obtained.
【0032】また、本発明(請求項2)によれば、少な
くとも3枚の多層膜ミラーからなる照明光学系は、その
入射側と出射側の光軸が一致しているため、光学系全体
の配置が単純化されて光学系の位置調整が容易になる。
さらに、放射光をX線の光源に用いたX線縮小投影露光
においては、放射光の電子蓄積リングから放射状に多数
のビームラインが設置され、各ビームラインにそれぞれ
露光装置を設置することができる。従って、1台の電子
蓄積リングにより多数の露光装置を設置することが可能
となり、高価な放射光光源を有効に活用することができ
る。Further, according to the present invention (claim 2), since the optical axes of the incident side and the outgoing side of the illumination optical system composed of at least three multilayer film mirrors coincide with each other, The arrangement is simplified and the position adjustment of the optical system is facilitated.
Further, in X-ray reduction projection exposure using synchrotron radiation as a light source for X-rays, a large number of beam lines are radially installed from the electron storage ring of the radiant light, and an exposure device can be installed in each beam line. . Therefore, it is possible to install a large number of exposure devices with one electron storage ring, and it is possible to effectively use an expensive radiation light source.
【図1】は本発明の実施例であるX線縮小投影露光装置
の光学系配置図である。FIG. 1 is an optical system layout diagram of an X-ray reduction projection exposure apparatus that is an embodiment of the present invention.
【図2】は本発明にかかる球面多層膜ミラーによる垂直
入射の反射例を示す図である。FIG. 2 is a diagram showing an example of vertical incidence reflection by the spherical multilayer mirror according to the present invention.
【図3】はインコヒーレント照明とコヒーレント照明の
場合のOTFの違いを示す図である。FIG. 3 is a diagram showing a difference in OTF between incoherent illumination and coherent illumination.
【図4】は本発明の比較例である簡易型照明系によるX
線縮小投影露光装置の光学系配置図である。FIG. 4 shows X by a simplified illumination system which is a comparative example of the present invention.
It is an optical system layout of a line reduction projection exposure apparatus.
1・・・ 球面多層膜ミラー(球面ミラー) 2・・・ 球面ミラーの焦点 3・・・ 第1の平面多層膜ミラー(平面ミラー) 4・・・ 第2の平面多層膜ミラー(平面ミラー) 5・・・ 照明光学系 6・・・ 放射光光源の電子蓄積リング 7・・・ Beフィルター 8、18・・水平偏向ミラー 9・・・ マスク 10・・ シュバルツシルドミラー(結像光学系の一
例) 11・・ ウェファー 以 上1 ... Spherical multilayer mirror (spherical mirror) 2 ... Focus of spherical mirror 3 ... First flat multilayer mirror (flat mirror) 4 ... Second flat multilayer mirror (flat mirror) 5 ... Illumination optical system 6 ... Electron storage ring of synchrotron radiation source 7 ... Be filter 8, 18 ... Horizontal deflection mirror 9 ... Mask 10 ... Schwarzschild mirror (an example of imaging optical system ) 11. Wafer and above
Claims (2)
するX線をマスク上に照射する照明光学系と、前記マス
ク上に形成されたパターンの像をウェファー上に投影結
像する投影光学系と、からなるX線投影露光装置におい
て、 前記照明光学系を構成するミラーのうち、少なくとも一
つのミラーが球面形状を有する基板面にX線反射多層膜
を形成してなる球面ミラーであって、該球面ミラーへの
入射X線が略垂直に入射する位置に該球面ミラーが設け
られ、かつ該球面ミラーの集光点近傍に配置したマスク
上に集束する反射X線の発散角が前記投影光学系の入射
側開口数と略一致するような曲率半径及び外径を該球面
ミラーが有することを特徴とするX線投影露光装置。1. An X-ray source, an illumination optical system for irradiating a mask with X-rays emitted from the X-ray source, and a projection for projecting an image of a pattern formed on the mask onto a wafer. An X-ray projection exposure apparatus comprising an optical system, wherein at least one of the mirrors constituting the illumination optical system is a spherical mirror having an X-ray reflection multilayer film formed on a substrate surface having a spherical shape. The spherical mirror is provided at a position where the incident X-rays are incident on the spherical mirror substantially vertically, and the divergence angle of the reflected X-rays focused on the mask arranged near the focal point of the spherical mirror is An X-ray projection exposure apparatus, wherein the spherical mirror has a radius of curvature and an outer diameter that are substantially the same as the numerical aperture on the incident side of the projection optical system.
であり、前記照明光学系が少なくとも、平面基板にX線
反射多層膜を形成してなる第1及び第2の平面ミラーと
前記球面ミラーとからなり、該第1の平面ミラーが前記
放射光光源から出射したX線を前記放射光光源の電子ビ
ームの軌道面に対して略垂直な方向に反射する位置に設
けられ、前記球面ミラーが該第1の平面ミラーによる反
射X線を略垂直に反射する位置に設けられ、かつ、前記
第2の平面ミラーが該球面ミラーによる反射X線を前記
放射光光源からの出射光と略平行な方向に反射する位置
に設けられていることを特徴とする請求項1記載のX線
投影露光装置。2. The X-ray source is a synchrotron radiation light source, and the illumination optical system includes at least first and second flat mirrors and a spherical mirror in which an X-ray reflective multilayer film is formed on a flat substrate. And the first plane mirror is provided at a position for reflecting the X-ray emitted from the radiation light source in a direction substantially perpendicular to the orbital plane of the electron beam of the radiation light source, and the spherical mirror The second plane mirror is provided at a position that reflects the reflected X-rays from the first plane mirror substantially perpendicularly, and the second plane mirror makes the reflected X-rays from the spherical mirror substantially parallel to the emitted light from the radiation light source. The X-ray projection exposure apparatus according to claim 1, wherein the X-ray projection exposure apparatus is provided at a position that reflects in the direction.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23759193A JP3189528B2 (en) | 1993-09-24 | 1993-09-24 | X-ray projection exposure equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23759193A JP3189528B2 (en) | 1993-09-24 | 1993-09-24 | X-ray projection exposure equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0794396A true JPH0794396A (en) | 1995-04-07 |
JP3189528B2 JP3189528B2 (en) | 2001-07-16 |
Family
ID=17017594
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23759193A Expired - Fee Related JP3189528B2 (en) | 1993-09-24 | 1993-09-24 | X-ray projection exposure equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3189528B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6207605B1 (en) | 1997-07-31 | 2001-03-27 | Sanyo Petrochemical Co., Ltd. | High silica content zeolite-based catalyst |
US6999172B2 (en) | 2001-10-26 | 2006-02-14 | Canon Kabushiki Kaisha | Optical apparatus |
JP2008538452A (en) * | 2005-04-20 | 2008-10-23 | カール・ツァイス・エスエムティー・アーゲー | Projection exposure system, method for producing a microstructured component with the aid of such a projection exposure system, polarization optical element adapted for use in such a system |
CN109270095B (en) * | 2018-11-01 | 2023-08-15 | 中国工程物理研究院激光聚变研究中心 | ICF implosion process four-channel imaging system |
-
1993
- 1993-09-24 JP JP23759193A patent/JP3189528B2/en not_active Expired - Fee Related
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6207605B1 (en) | 1997-07-31 | 2001-03-27 | Sanyo Petrochemical Co., Ltd. | High silica content zeolite-based catalyst |
US6999172B2 (en) | 2001-10-26 | 2006-02-14 | Canon Kabushiki Kaisha | Optical apparatus |
JP2008538452A (en) * | 2005-04-20 | 2008-10-23 | カール・ツァイス・エスエムティー・アーゲー | Projection exposure system, method for producing a microstructured component with the aid of such a projection exposure system, polarization optical element adapted for use in such a system |
JP2012060178A (en) * | 2005-04-20 | 2012-03-22 | Carl Zeiss Smt Gmbh | Projection exposure system, method for manufacturing configuration member of microstructure by assistance of the same, and polarization optical element adapted to be used in the same |
US8854606B2 (en) | 2005-04-20 | 2014-10-07 | Carl Zeiss Smt Gmbh | Projection exposure system, method for manufacturing a micro-structured structural member by the aid of such a projection exposure system and polarization-optical element adapted for use in such a system |
CN109270095B (en) * | 2018-11-01 | 2023-08-15 | 中国工程物理研究院激光聚变研究中心 | ICF implosion process four-channel imaging system |
Also Published As
Publication number | Publication date |
---|---|
JP3189528B2 (en) | 2001-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR0137348B1 (en) | Refflection and refraction optical system and projection exposure apparatus using the same | |
KR100221678B1 (en) | Ringfield lithography | |
JP3284045B2 (en) | X-ray optical apparatus and device manufacturing method | |
US5241423A (en) | High resolution reduction catadioptric relay lens | |
US5136413A (en) | Imaging and illumination system with aspherization and aberration correction by phase steps | |
US5089913A (en) | High resolution reduction catadioptric relay lens | |
US6072852A (en) | High numerical aperture projection system for extreme ultraviolet projection lithography | |
US5669708A (en) | Optical element, production method of optical element, optical system, and optical apparatus | |
US6014252A (en) | Reflective optical imaging system | |
JP6221159B2 (en) | collector | |
JP4353640B2 (en) | Wafer container with gas screen for extreme ultraviolet lithography | |
JPH11249313A (en) | Annular surface reduction projection optical system | |
WO2004010224A2 (en) | Projection objective for a projection exposure apparatus | |
US6225027B1 (en) | Extreme-UV lithography system | |
US6611574B2 (en) | Illumination system with reduced heat load | |
US6210865B1 (en) | Extreme-UV lithography condenser | |
TWI270120B (en) | Illumination optical system and exposure apparatus | |
US9720327B2 (en) | Optical system of a microlithographic projection exposure apparatus | |
US20040218164A1 (en) | Exposure apparatus | |
JPH0536588A (en) | Scanning ring field reduction projecting device | |
JP3189528B2 (en) | X-ray projection exposure equipment | |
US7292316B2 (en) | Illumination optical system and exposure apparatus having the same | |
JP3392034B2 (en) | Illumination device and projection exposure apparatus using the same | |
JPH07244199A (en) | Projective exposure method and device | |
White et al. | Soft x-ray projection lithography: experiments and practical printers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |