JPH0794215A - Charging degree measuring meter of zinc-bromine battery - Google Patents

Charging degree measuring meter of zinc-bromine battery

Info

Publication number
JPH0794215A
JPH0794215A JP5240824A JP24082493A JPH0794215A JP H0794215 A JPH0794215 A JP H0794215A JP 5240824 A JP5240824 A JP 5240824A JP 24082493 A JP24082493 A JP 24082493A JP H0794215 A JPH0794215 A JP H0794215A
Authority
JP
Japan
Prior art keywords
light
electrolytic solution
battery
zinc
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5240824A
Other languages
Japanese (ja)
Inventor
Yuji Hashiguchi
裕司 橋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP5240824A priority Critical patent/JPH0794215A/en
Publication of JPH0794215A publication Critical patent/JPH0794215A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To easily measure the charging degree without troublesome operations by making pipes for an electrolytic liquid supply and discharge transparent ones and measuring the light refractive index of the electrolytic liquid by a light receiving unit whose installation angle and installation position can be finely controlled. CONSTITUTION:An electrolytic liquid 5 is circulated from a positive electrode side tank and a negative electrode side tank through a pipeline 12 by an electrolytic liquid pump. The pipeline is composed of a transparent pipe and the alteration of the refractive index of the electrolytic liquid, which corresponds to the charging degree, is measured by refracting laser beam radiated by a laser oscillator 21 of a light emitting unit near the pipeline 12 and receiving the laser beam by laser light receiver 22 of a light receiving unit. For that, the light receiver 22 is supported by a movable body and its installation position and installation angle are finely controlled, so that the charging degree of zinc- bromine batteries is easily measured without toublesome operations, such as temperature correction of the electrolytic liquid.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は亜鉛−臭素電池における
電解液の充電深度を測定する充電深度計に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a charge depth meter for measuring the charge depth of an electrolytic solution in a zinc-bromine battery.

【0002】[0002]

【従来の技術】亜鉛−臭素電池は、正極活物質に臭素、
負極活物質に亜鉛を用いた2次電池であり、電力需要の
昼と夜のアンバランスを解消させるために夜間の余剰電
力を電池に貯蔵し、需要の多い昼間に放出するピークカ
ット用の電池である。現在は電力貯蔵用として大容量の
電池が開発されている。
2. Description of the Related Art A zinc-bromine battery is a positive electrode active material containing bromine,
It is a secondary battery that uses zinc as the negative electrode active material. It is a battery for peak cut that stores surplus power at night in the battery to eliminate unbalanced power demand between day and night, and discharges it during daytime when demand is high. Is. Currently, a large capacity battery is being developed for power storage.

【0003】この亜鉛−臭素電池の化学反応は、The chemical reaction of this zinc-bromine battery is

【0004】[0004]

【化1】充電時……正極:2Br-→Br2+2e-,負
極:Zn+++2e-→Zn 放電時……正極:2Br-←Br2+2e-,負極:Zn
+++2e-←Zn で表される。
[Chemical Formula 1] During charging: positive electrode: 2Br → Br 2 + 2e , negative electrode: Zn ++ + 2e → Zn During discharging: positive electrode: 2Br ← Br 2 + 2e , negative electrode: Zn
It is represented by ++ + 2e ← Zn.

【0005】電解液は電池本体と別置きにした正極側の
タンクから充放電時にポンプで循環される。そして正極
で発生した臭素は電解液に添加した臭素錯化剤(四級ア
ミン)と反応して、オイル状の沈澱物となってタンクへ
戻され、放電時はポンプでセル内へ送り込まれて還元さ
れる。電解液の成分は、3mol/lのZnBr2に液
の抵抗を下げるために約2mol/lのNH4Cl等の
塩を添加し、更に負極亜鉛のデンドライトを防止して均
一な電着を促進させる為のPb、Sn、四級アンモニウ
ム塩類、1mol/lの臭素錯化剤を添加してある。正
極と負極の間にはセパレータを用い、正極で発生した臭
素が負極へ拡散して亜鉛が自己放電することを抑制して
いる。
The electrolyte solution is circulated by a pump at the time of charging / discharging from a positive electrode side tank separately provided from the battery body. Then, the bromine generated at the positive electrode reacts with the bromine complexing agent (quaternary amine) added to the electrolytic solution to form an oil-like precipitate that is returned to the tank and pumped into the cell during discharge. Be reduced. The electrolyte is composed of 3 mol / l ZnBr 2 with about 2 mol / l salt such as NH 4 Cl in order to reduce the resistance of the solution, and further prevents the negative electrode zinc dendrite to promote uniform electrodeposition. To this end, Pb, Sn, quaternary ammonium salts, and 1 mol / l of a bromine complexing agent are added. A separator is used between the positive electrode and the negative electrode to prevent bromine generated in the positive electrode from diffusing into the negative electrode and causing self-discharge of zinc.

【0006】図6は上記亜鉛−臭素電池の作動原理を説
明する概要図であり、図中の1は正極側タンクであって
該正極側タンク1内に正極電解液2と臭素錯化合物3と
が貯蔵されている。4は負極側タンクであって該負極側
タンク4内に負極電解液5が貯蔵されている。そして正
極電解液2は正極側ポンプ6の駆動に伴って、四方切換
弁7及び配管8を経由して図中の矢印に示した如く電池
本体の正極マニホールド9から単セル内を流通し、配管
10を経由して正極側タンク1に還流する一方、負極電
解液5は負極側ポンプ11の駆動に伴って、配管12及
び電池本体の負極マニホールド13からセパレータ14
に隔てられた単セル内を流通して配管15から負極側タ
ンク4に還流する。16は電池本体を構成する中間電
極、17は同集電電極、18はプラス側電極端子、19
はマイナス側電極端子である。
FIG. 6 is a schematic diagram for explaining the operating principle of the above zinc-bromine battery. In FIG. 6, reference numeral 1 denotes a positive electrode side tank in which a positive electrode electrolyte solution 2 and a bromine complex compound 3 are contained. Are stored. Reference numeral 4 denotes a negative electrode side tank, in which the negative electrode electrolyte solution 5 is stored. The positive electrode electrolyte 2 flows through the four-way switching valve 7 and the pipe 8 from the positive electrode manifold 9 of the battery main body along with the driving of the positive electrode side pump 6 in the unit cell, as shown by the arrow in the figure, and the pipe While flowing back to the positive electrode side tank 1 via 10, the negative electrode electrolyte solution 5 is driven by the negative electrode side pump 11 from the pipe 12 and the negative electrode manifold 13 of the battery body to the separator 14
It flows through the unit cell separated by and flows back from the pipe 15 to the negative electrode side tank 4. Reference numeral 16 is an intermediate electrode constituting the battery main body, 17 is the current collecting electrode, 18 is a positive side electrode terminal, 19
Is a negative electrode terminal.

【0007】一般にこのような亜鉛−臭素電池への充電
電力量は、充電装置に設けた電力量計の目盛により確認
している。この充電電力量とは、電流と電圧の各平均値
に充電時間を乗じることによって求められる。
[0007] Generally, the amount of electric power charged to such a zinc-bromine battery is confirmed by the scale of an electric power meter provided in the charging device. The charging electric energy is obtained by multiplying each average value of current and voltage by the charging time.

【0008】又、亜鉛−臭素電池の放電時における電池
の残存容量は、上記充電電力量に電池の効率を乗じて、
これから放電装置の電力量計の目盛を差し引いた残りの
電力量として求められる。他方で前記電解液の電導度が
充電深度によって変化することを利用して、電解液の電
導度を測定することによって充電深度を求める方法も知
られている。
The remaining capacity of the zinc-bromine battery at the time of discharging is calculated by multiplying the charging electric energy by the battery efficiency.
From this, the scale of the watt-hour meter of the discharge device is subtracted to obtain the remaining amount of power. On the other hand, there is also known a method of obtaining the charging depth by measuring the conductivity of the electrolytic solution by utilizing the fact that the conductivity of the electrolytic solution changes depending on the charging depth.

【0009】[0009]

【発明が解決しようとする課題】しかしながらこのよう
な亜鉛−臭素電池において、通常の充放電装置の電力量
計に依存した充電電力量と放電電力量の確認手段では、
亜鉛−臭素電池の充電深度を簡単にチェックすることが
できず、放電時における電池の残存容量とか充電時にお
ける充電完了までの時間を簡便に求めることが出来ない
という課題があった。
However, in such a zinc-bromine battery, the means for confirming the amount of charging power and the amount of discharging power depending on the power meter of the usual charging / discharging device is
There is a problem that the depth of charge of the zinc-bromine battery cannot be easily checked, and the remaining capacity of the battery at the time of discharging and the time until the completion of charging at the time of charging cannot be easily obtained.

【0010】例えば充電時の充電電力量とか放電時の残
存容量は、前記したように充放電装置に付設された電力
量計の目盛を基準として演算により求めているため、操
作及び演算が煩瑣であり、特に電池が不規則な充放電運
転パターンに基づいて使用されている場合には、演算に
よって残存容量と充電電力量を求めることは困難であ
る。更に亜鉛−臭素電池が自己放電量が多くなるような
運転パターンに基づいて使用されている場合には、この
自己放電量が充放電装置の電力量計にカウントされない
ため、正確な充電電力量と残存容量を確認することがで
きない。
For example, since the charging power amount at the time of charging or the remaining capacity at the time of discharging is calculated by using the scale of the watt hour meter attached to the charging / discharging device as a reference as described above, the operation and the calculation are complicated. However, particularly when the battery is used based on an irregular charging / discharging operation pattern, it is difficult to calculate the remaining capacity and the charging power amount by calculation. Furthermore, when the zinc-bromine battery is used based on an operation pattern in which the self-discharge amount increases, this self-discharge amount is not counted by the watt-hour meter of the charging / discharging device, and therefore the accurate charging power amount and The remaining capacity cannot be confirmed.

【0011】従って亜鉛−臭素電池の充電深度を簡単に
チェックする方法がないため、電池が消耗した際の充電
時にあとどのくらい充電すれば満充電(Full Charge)
になるかが推測出来ず、そのまま充電を継続することに
よって過充電(Over Charge)になってしまい、電池の
性能や寿命に多大な悪影響を及ぼす惧れがある。
Therefore, since there is no simple method for checking the depth of charge of a zinc-bromine battery, when the battery is exhausted, how much more should be charged to full charge (Full Charge)
There is a possibility that it will be overcharged by continuing to charge as it is, and it will have a great adverse effect on the performance and life of the battery.

【0012】又、放電時においても電池の残存容量が不
明な場合には、あとどのくらいで放電が終了するのかわ
からず、従って電池をポータブル機器用の電源として使
用した際の機器の使用可能時間を推定することができず
に作業上での支障が生じてしまうという難点がある。
Further, when the remaining capacity of the battery is unknown even at the time of discharging, it is not known how long the discharging will end, and therefore, the usable time of the device when the battery is used as the power source for the portable device is determined. However, there is a problem that the work cannot be estimated and a problem occurs in the work.

【0013】更に上気亜鉛−臭素電池には、通常充電深
度計が付設されていないため、負荷標準化電池として所
定電流を所定時間だけ充電する使用形態では特に問題は
ないが、一般のユーザ向けの電池として転用する場合に
は、過充電を防止するとともにユーザが電池の充電状態
を一目で確認することができる充電深度計を付設するこ
とが要求される。
Further, since the above zinc-bromine battery is not usually provided with a charge depth meter, there is no particular problem in a usage mode in which a predetermined current is charged for a predetermined time as a load standardization battery, but for general users. When diverted as a battery, it is required to attach a charging depth meter that prevents overcharging and allows the user to check the charging state of the battery at a glance.

【0014】上記に問題点に対処して、本出願人は先に
特願平4−211893号により、図7に示す充電深度
計を提案した。即ち、負極電解液5の送り側配管12を
透明塩化ビニール管体で構成し、この配管12を挟む両
側に発光ユニットとしてのレーザ発振器21と、受光ユ
ニットとしてのレーザ受光器22を配備する。図示例で
は、配管12の中心点O1とレーザ発振器21の発振中
心O2との間に所定長のオフセット量Fを持たせ、且つ
レーザ発振器21とレーザ受光器22とは所定の光屈折
角θ1を持たせて配置してある。上記各種センサとして
キーエンスの超小型レーザ判別センサLX2シリーズを
用いている。
In response to the above problems, the present applicant previously proposed a charging depth meter shown in FIG. 7 in Japanese Patent Application No. 4-211893. That is, the sending side pipe 12 of the negative electrode electrolyte 5 is made of a transparent vinyl chloride pipe body, and a laser oscillator 21 as a light emitting unit and a laser light receiver 22 as a light receiving unit are arranged on both sides of the pipe 12 sandwiched therebetween. In the illustrated example, an offset amount F having a predetermined length is provided between the center point O 1 of the pipe 12 and the oscillation center O 2 of the laser oscillator 21, and the laser oscillator 21 and the laser receiver 22 have a predetermined optical refraction angle. It is placed with θ 1 . As the above various sensors, Keyence's ultra-small laser discrimination sensor LX2 series is used.

【0015】このような状態を維持したまま電池本体に
対する充放電を実施した際には、先ず定常状態におい
て、図中の矢印Xに示したようにレーザ発振器21から
発せられるレーザの光屈折角をθ1とすると、電池の充
電が進行するにつれて上記の光屈折角がθ1から次第に
変化する。これに伴ってレーザ受光器22の受光量も低
下して、該レーザ受光器22からのアナログ出力が次第
に減少する。
When charging and discharging the battery main body while maintaining such a state, first, in a steady state, the light refraction angle of the laser emitted from the laser oscillator 21 is indicated by the arrow X in the figure. When θ 1 is set, the above-described light refraction angle gradually changes from θ 1 as the battery is charged. Along with this, the amount of light received by the laser receiver 22 also decreases, and the analog output from the laser receiver 22 gradually decreases.

【0016】即ち、電解液の充電深度が増大すると、負
極側電解液中の亜鉛イオンが減少し、亜鉛イオン濃度の
低下に応じて電解液の比重が下がる。そして比重が下が
ることによって配管12内を透過する光の屈折率が変化
する。
That is, as the depth of charge of the electrolytic solution increases, the zinc ions in the negative electrode side electrolytic solution decrease, and the specific gravity of the electrolytic solution decreases as the zinc ion concentration decreases. Then, as the specific gravity decreases, the refractive index of the light passing through the pipe 12 changes.

【0017】しかしながら上記の光屈折角θ1は、電解
液の種類とか温度に対応して変化するものであり、これ
らの条件に応じてレーザ受光器22の取付角度及び位置
を最適な状態に調整する必要がある。
However, the above-mentioned light refraction angle θ 1 changes depending on the type of electrolyte and temperature, and the mounting angle and position of the laser receiver 22 are adjusted to an optimum state according to these conditions. There is a need to.

【0018】そこで本発明は上記の点に鑑みてなされた
ものであり、煩瑣な操作を必要とせずに亜鉛−臭素電池
の充電深度を容易に測定可能とし、且つ受光ユニットの
配設位置と取付角度を容易に調整することができる充電
深度計を提供することを目的とするものである。
Therefore, the present invention has been made in view of the above points, and makes it possible to easily measure the depth of charge of a zinc-bromine battery without requiring a complicated operation, and to arrange and mount the light receiving unit. An object of the present invention is to provide a charging depth meter whose angle can be easily adjusted.

【0019】[0019]

【課題を解決するための手段】本発明は上記目的を達成
するために、充放電時に電池本体と別置きにした正極側
タンク及び負極側タンクから電解液がポンプで循環さ
れ、充電時に正極で発生した臭素が電解液に添加した臭
素錯化剤と反応して正極側タンクへ戻されるとともに、
放電時は該電解液がポンプで電池本体内へ送り込まれて
還元されるようにした亜鉛−臭素電池において、先ず請
求項1として、電池本体に電解液を給排する配管として
透明な管体を採用し、該配管に近接する部位の一方側に
発光ユニットを配置するとともに、該配管に近接する部
位の他方側で上記発光ユニットに対応する位置に電解液
の光屈折角を測定する受光ユニットを配置し、且つ電解
液の種類等に応じて受光ユニット側の取付角度及び取付
位置の微調整機構を付設した充電深度計の構成にしてあ
る。
In order to achieve the above-mentioned object, the present invention is to circulate an electrolyte solution by a pump from a positive electrode side tank and a negative electrode side tank separately placed from a battery main body at the time of charging / discharging, and at the positive electrode at the time of charging. The generated bromine reacts with the bromine complexing agent added to the electrolytic solution and is returned to the positive tank,
In a zinc-bromine battery in which the electrolytic solution is pumped into the battery body to be reduced at the time of discharging, first of all, as claimed in claim 1, a transparent tubular body is used as a pipe for supplying and discharging the electrolytic solution to the battery body. A light-receiving unit for arranging the light-emitting unit on one side of the portion close to the pipe and measuring the light refraction angle of the electrolytic solution at a position corresponding to the light-emitting unit on the other side of the portion close to the pipe. The charging depth meter is arranged and is provided with a mechanism for finely adjusting the mounting angle and the mounting position of the light receiving unit depending on the type of the electrolyte.

【0020】又、請求項2として、発光ユニットが支持
された固定ベースと、該固定ベースに固定されていると
ともに電解液用の透明配管が支持された取付ベースと、
上記固定ベースに設けられた円環状の溝内に摺動自在に
嵌合され、先端部に受光ユニットが支持された可動体
と、上記固定ベースに穿設された透孔の外方から挿通さ
れて、可動体及び受光ユニットを溝に沿って一定長だけ
移動させる角度調節用の螺子部材とを具備して成る充電
深度計の構成にしてある。
Further, according to claim 2, a fixed base supporting the light emitting unit, and a mounting base fixed to the fixed base and supporting a transparent pipe for an electrolytic solution,
The movable body is slidably fitted in an annular groove provided on the fixed base and has a light receiving unit supported at its tip, and is inserted from the outside of a through hole formed in the fixed base. Thus, the charging depth meter is configured to include an angle adjusting screw member that moves the movable body and the light receiving unit along the groove by a predetermined length.

【0021】更に請求項3として、電解液用の透明配管
の一方側に発光ユニットを配置するとともに、該透明配
管の他方側で上記発光ユニットに対応する位置に受光ユ
ニットを配置し、発光ユニットから平行光を配管の中央
部に照射して、配管の屈折率,電解液の屈折率,平行光
の幅及び配管を通過した光の焦点距離の変化に応じて電
解液の充電深度を測定する充電深度計を提供する。又、
上記受光ユニットを配置する位置を変更することによっ
て深度計の出力を調整するようにしてある。
Further, according to claim 3, the light emitting unit is arranged on one side of the transparent pipe for the electrolytic solution, and the light receiving unit is arranged on the other side of the transparent pipe at a position corresponding to the light emitting unit. Charging by irradiating the central part of the pipe with parallel light and measuring the depth of charge of the electrolyte according to changes in the refractive index of the pipe, the refractive index of the electrolyte, the width of the parallel light, and the focal length of the light passing through the pipe. Provide a depth meter. or,
The position of the light receiving unit is changed to adjust the output of the depth gauge.

【0022】[0022]

【作用】かかる請求項1記載の充電深度計によれば、発
光ユニットから発せられる光が透明体で成る配管に投射
され、予め設定された屈折経路に沿って電解液内を透過
して受光ユニットに受け止められる一方、電解液の充電
深度が増大するのに伴って負極側電解液中の亜鉛イオン
が減少し、亜鉛イオン濃度の低下に応じて電解液の比重
が下がり、配管内を透過する光の屈折率が変化して、発
光ユニットから発せられる光の屈折角は電池の充電が進
行するにつれて次第に変化し、これに伴って受光ユニッ
トの受光量も低下する。この時に電解液の種類等に応じ
て受光ユニット側の取付角度及び取付位置を微調整する
ことにより、発光ユニットと受光ユニットによる電解液
の光屈折角の変化に対処することが可能となり、受光ユ
ニットの受光量の変化から電池の充電深度が求められ
る。
According to the charge depth meter of the present invention, the light emitted from the light emitting unit is projected onto the pipe made of a transparent material, and the light is transmitted through the electrolyte solution along a preset refraction path. On the other hand, as the depth of charge of the electrolyte increases, the zinc ions in the negative electrolyte decrease, and the specific gravity of the electrolyte decreases as the zinc ion concentration decreases, and the light that passes through the piping The refractive index of the light is changed, and the refraction angle of the light emitted from the light emitting unit gradually changes as the charging of the battery progresses, and accordingly, the amount of light received by the light receiving unit also decreases. At this time, by finely adjusting the mounting angle and the mounting position on the light receiving unit side according to the type of electrolyte, it is possible to cope with the change in the light refraction angle of the electrolyte by the light emitting unit and the light receiving unit. The charge depth of the battery can be obtained from the change in the amount of received light.

【0023】請求項2記載の充電深度計によれば、電解
液の種類とか温度に対応して変化する光屈折角に応じて
角度調節用の螺子部材を回動操作することにより、受光
ユニットが可動体とともに一定長だけ移動し、光屈折角
の大きさに応じて該受光ユニットの取付角度が微調整さ
れる。
According to the charge depth meter of the second aspect, the light receiving unit can be operated by rotating the angle adjusting screw member in accordance with the light refraction angle which changes depending on the type of electrolyte and the temperature. It moves with the movable body by a certain length, and the mounting angle of the light receiving unit is finely adjusted according to the magnitude of the light refraction angle.

【0024】更に請求項3記載の充電深度計によれば、
電解液用の透明配管の一方側に配置された発光ユニット
から平行光を配管の中央部に照射することにより、配管
がレンズの一種として機能して、発光ユニットから照射
した光の焦点距離が変化して受光ユニットに受け止めら
れ、この時に配管の屈折率,電解液の屈折率,平行光の
幅及び配管を通過した光の焦点距離の変化に応じて電解
液の充電深度が測定可能であり、上記受光ユニットを配
置する位置を変更することによって深度計の出力が調整
される。
Further, according to the charge depth meter of claim 3,
By irradiating the central part of the pipe with parallel light from the light emitting unit arranged on one side of the transparent pipe for electrolyte, the pipe functions as a kind of lens, and the focal length of the light emitted from the light emitting unit changes. Then, it is received by the light receiving unit, and at this time, the depth of charge of the electrolytic solution can be measured according to changes in the refractive index of the pipe, the refractive index of the electrolytic solution, the width of the parallel light, and the focal length of the light passing through the pipe. The output of the depth meter is adjusted by changing the position where the light receiving unit is arranged.

【0025】[0025]

【実施例】以下に本発明にかかる亜鉛−臭素電池の充電
深度計の一実施例を説明する。本実施例の基本的理念
は、前記図7で説明したように電池の充電深度によって
電解液の光屈折率が変化する性質を利用して、亜鉛−臭
素電池における電解液の配管系の任意位置に、該配管内
を流れる電解液の光屈折率を測定するための光学的セン
サを配備した構成において、受光器側の配設位置と角度
調整を容易に行うことができる充電深度計を実現するこ
とが大きな特徴となっている。
EXAMPLE An example of the depth-of-charge meter for a zinc-bromine battery according to the present invention will be described below. The basic idea of this example is to utilize the property that the photorefractive index of the electrolytic solution changes depending on the charging depth of the battery as described in FIG. 7, and to use the arbitrary position of the electrolytic solution piping system in the zinc-bromine battery. In addition, in a configuration in which an optical sensor for measuring a photorefractive index of an electrolytic solution flowing in the pipe is provided, a charging depth meter capable of easily adjusting an arrangement position and an angle on a light receiver side is realized. That is a major feature.

【0026】図1(A)(B)は本発明の第1実施例に
かかる充電深度計を示すものであり、その構造及び動作
に関して以下に説明する。即ち、25は固定ベースであ
り、この固定ベース25に取付ベース26が螺子止めさ
れ、この取付ベース26に螺子止めされたサドル27内
に中心点O1を有する電解液を給排する配管12が支持
されている。そして固定ベース25の一端で且つ配管1
2に近接する部位の一方側に、発光ユニットとしてのレ
ーザ発振器21が配置されている。
1A and 1B show a charge depth meter according to the first embodiment of the present invention, and the structure and operation thereof will be described below. That is, 25 is a fixed base, the mounting base 26 to the fixed base 25 is screwed, the pipe 12 for supplying and discharging electrolyte having a center point O 1 to the screw has been saddle 27 to the mounting base 26 It is supported. And at one end of the fixed base 25 and the pipe 1
A laser oscillator 21 as a light emitting unit is arranged on one side of a portion close to 2.

【0027】上記固定ベース25には、点O1を中心と
する円環状の溝28が設けられていて、この溝28内に
可動体29が摺動自在に嵌合されており、該可動体29
の先端部で且つ配管12に近接する部位の他方側に、受
光ユニットとしてのレーザ受光器22がダイ30に支持
された状態として配置されている。上記可動体29には
長穴29aが開口されていて、この長穴29a内に固定
ベース25側に突設されたピン31が嵌合されており、
従って長穴29aの周長分だけ可動体29が摺動可能と
なっている。
The fixed base 25 is provided with an annular groove 28 centered on the point O 1 , and a movable body 29 is slidably fitted in the groove 28. 29
A laser receiver 22 as a light receiving unit is disposed on the other side of the tip end of the and adjacent to the pipe 12 in a state of being supported by the die 30. An elongated hole 29a is opened in the movable body 29, and a pin 31 protruding from the fixed base 25 side is fitted in the elongated hole 29a.
Therefore, the movable body 29 is slidable by the circumference of the slot 29a.

【0028】従って溝28と可動体29及び螺子32に
より受光ユニットとしてのレーザ受光器22の微調整機
構が構成される。
Therefore, the groove 28, the movable body 29 and the screw 32 constitute a fine adjustment mechanism of the laser receiver 22 as a light receiving unit.

【0029】図1(B)のA−A線に沿う断面図である
図2に示したように、上記固定ベース25に穿設された
透孔25aの外方から角度調節用の螺子32がコマ33
の介在下で挿通され、この螺子32の挿入方向中途部に
取り付けられたスプリングピン34が上記可動体29に
係止されている。従って角度調節用の螺子32を回動操
作することによって螺子32がコマ33の作用で直線運
動に変換されて、可動体29及びレーザ受光器22を溝
28に沿って一定長だけ移動させることが可能となって
いる。
As shown in FIG. 2 which is a sectional view taken along the line AA of FIG. 1B, an angle adjusting screw 32 is provided from the outside of the through hole 25a formed in the fixed base 25. Top 33
The spring pin 34, which is inserted under the interposition of the screw 32 and is attached in the middle of the screw 32 in the insertion direction, is locked to the movable body 29. Therefore, by rotating the angle adjusting screw 32, the screw 32 is converted into a linear motion by the action of the top 33, and the movable body 29 and the laser receiver 22 can be moved along the groove 28 by a certain length. It is possible.

【0030】かかる構成によれば、電解液の種類とか温
度に対応して変化する光屈折角θ1に応じてレーザ受光
器22の取付角度を変更する場合には、角度調節用の螺
子32を回動操作することによってコマ33の作用で該
螺子32が直線運動に変換され、この螺子32に取り付
けられたスプリングピン34の動きによってレーザ受光
器22が図1(A)の実線から破線に示したように可動
体29とともに一定長だけ移動し、図中の角度αに相当
する分だけ前記光屈折角θ1の大きさに応じてレーザ受
光器22の取付角度を微調整することができる。尚、調
整範囲は通常20°±10°とする。
According to this structure, when the mounting angle of the laser receiver 22 is changed according to the light refraction angle θ 1 which changes depending on the type of electrolyte and the temperature, the screw 32 for angle adjustment is used. The screw 32 is converted into a linear motion by the action of the top 33 by the turning operation, and the laser receiver 22 is shown from the solid line to the broken line in FIG. 1A by the movement of the spring pin 34 attached to the screw 32. As described above, the mounting angle of the laser receiver 22 can be finely adjusted according to the magnitude of the light refraction angle θ 1 by moving the movable body 29 by a certain length and corresponding to the angle α in the figure. The adjustment range is usually 20 ° ± 10 °.

【0031】上記の操作に際して、電解液が配管12内
に満ちている状態でレーザ受光器22を動かして最もピ
ークが大きく出る角度で該レーザ受光器22の移動を停
止する。
In the above operation, the laser receiver 22 is moved with the electrolyte filled in the pipe 12, and the movement of the laser receiver 22 is stopped at the angle at which the maximum peak appears.

【0032】図3は上記レーザ受光器22によるアナロ
グ出力値の変化をプロットしたグラフであり、同図によ
れば、頭初5Vであったアナログ出力値が充電の進行に
伴って次第に低下して、3時間の充電で該アナログ出力
値が約3.5Vとなり、その後放電を行うことにより、
該レーザ光の屈折角が次第に元に戻り、放電3時間でレ
ーザ受光器22の出力値が略5Vに復元した。従って配
管12内を透過する光の屈折率から電池の充電深度を求
めることができる。
FIG. 3 is a graph plotting the change in the analog output value by the laser receiver 22. According to FIG. 3, the analog output value at the beginning of 5 V gradually decreases as the charging progresses. By charging for 3 hours, the analog output value becomes about 3.5V, and then discharging,
The refraction angle of the laser light gradually returned to the original value, and the output value of the laser light receiver 22 was restored to about 5 V within 3 hours of discharging. Therefore, the charge depth of the battery can be obtained from the refractive index of the light passing through the pipe 12.

【0033】図4は本発明の第2実施例を説明するため
の概要図であり、この第2実施例の場合には配管12を
レンズの一種とみたてて、レーザ発振器21から照射し
たレーザ光の焦点距離の変化に応じて電解液の充電深度
を測定することを特徴としている。
FIG. 4 is a schematic diagram for explaining the second embodiment of the present invention. In the case of the second embodiment, the laser beam emitted from the laser oscillator 21 is regarded as the pipe 12 as a kind of lens. The feature is that the depth of charge of the electrolyte is measured according to the change of the focal length of light.

【0034】図示例では配管12が透明な塩化ビニール
を用いて構成され、外半径r0を16mm,内半径ri
13mmとして、レーザ発振器21から発せられる7m
m幅(2×B)のレーザ光を配管12の中央部に照射す
る。この時の受光角をθとすると、
In the illustrated example, the pipe 12 is made of transparent vinyl chloride, and the outer radius r 0 is 16 mm and the inner radius r i is 13 mm.
Laser light of m width (2 × B) is applied to the central portion of the pipe 12. If the acceptance angle at this time is θ,

【0035】[0035]

【数1】 [Equation 1]

【0036】 ここでαp;配管12の屈折率,αE;電解液5の屈折率 B;配管12の中心からのレーザ光幅(=3.5mm) である。配管12内に存在する電解液5の屈折率は、充
電深度が0%の時に1.45であり、充電深度が100
%の時には1.39であることが実験的に確認されてい
るので、上式にr0=16,ri=13,αp=1.54
5,αE0=1.45,αE100=1.39,B=3.5
を代入すると、充電深度が0%の時にはθ0が約7.7
°,充電深度が100%の時にはθ100が約6.7°と
なる。
Here, α p is the refractive index of the pipe 12, α E is the refractive index of the electrolyte solution B, and the laser beam width from the center of the pipe 12 (= 3.5 mm). The refractive index of the electrolytic solution 5 existing in the pipe 12 is 1.45 when the charging depth is 0%, and the charging depth is 100.
It has been experimentally confirmed that it is 1.39 when%, so r 0 = 16, r i = 13, α p = 1.54 in the above equation.
5, α E 0 = 1.45, α E100 = 1.39, B = 3.5
Substituting, θ 0 is about 7.7 when the charging depth is 0%.
Θ, θ 100 is about 6.7 ° when the charging depth is 100%.

【0037】そして配管12を通過したレーザ光の焦点
距離Lは、 L=B/sinθ となり、充電深度が0%の時の焦点距離L0は26.3
mm,充電深度が100%の時の焦点距離L100は2
9.9mmとなる。
The focal length L of the laser light passing through the pipe 12 is L = B / sin θ, and the focal length L 0 when the charging depth is 0% is 26.3.
mm, the focal length L 100 when the depth of charge is 100% is 2
It becomes 9.9 mm.

【0038】又、図5に示したようにレーザ受光器22
の受光スリットの幅lを1mmとすると、このレーザ受
光器22を配管12の中心点O1から22.6mmの位
置に取り付けると、実線で示したようにレーザ光の集光
幅が1mmとなり、充電深度が100%の時には図中の
破線で示したように、この位置での集光幅が約1.7m
mとなる。従って充電深度0%の状態をセンサ出力5v
に設定しておくことにより、充電深度100%の時の出
力は (1/1.7)×4+1≒3.35V となる。
Further, as shown in FIG.
If the width 1 of the light receiving slit of 1 is 1 mm, and the laser receiver 22 is attached to the position of 22.6 mm from the center point O 1 of the pipe 12, the converging width of the laser light becomes 1 mm as shown by the solid line, When the charging depth is 100%, the light collecting width at this position is about 1.7 m as shown by the broken line in the figure.
m. Therefore, the sensor output is 5v when the charging depth is 0%.
By setting to 1, the output when the charging depth is 100% is (1 / 1.7) × 4 + 1≈3.35V.

【0039】このようにレーザ受光器22の設置する位
置を適宜変更することによってセンサ出力を容易に調整
することができる。
Thus, the sensor output can be easily adjusted by appropriately changing the position where the laser receiver 22 is installed.

【0040】このようにして第2実施例では配管12を
レンズの一種とみたてて、レーザ発振器21から照射し
たレーザ光の焦点距離の変化に応じて電解液の充電深度
を測定することが出来る。
In this way, in the second embodiment, the pipe 12 is regarded as a kind of lens, and the charge depth of the electrolytic solution can be measured according to the change in the focal length of the laser beam emitted from the laser oscillator 21. .

【0041】[0041]

【発明の効果】以上説明したように、本発明の請求項1
記載の充電深度計によれば、発光ユニットから発せられ
る光が予め設定された屈折経路に沿って電解液内を透過
して受光ユニットに受け止められ、電解液の充電深度が
増大するのに伴って発光ユニットから発せられる光の屈
折角が次第に変化するので、受光ユニットの受光量の変
化から電池の充電深度を容易に求めることができる。そ
して電解液の種類等に応じて受光ユニット側の取付角度
及び取付位置を微調整することにより、電解液の光屈折
角の変化にも容易に対処することができて、正確な充電
深度を求めることができる。
As described above, according to the first aspect of the present invention.
According to the charge depth meter described, the light emitted from the light emitting unit is received by the light receiving unit by passing through the electrolyte along the preset refraction path, and as the charge depth of the electrolyte increases. Since the refraction angle of the light emitted from the light emitting unit gradually changes, the charging depth of the battery can be easily obtained from the change in the amount of light received by the light receiving unit. By finely adjusting the mounting angle and mounting position on the light receiving unit side according to the type of electrolyte, it is possible to easily deal with changes in the photorefractive angle of the electrolyte, and obtain an accurate charging depth. be able to.

【0042】請求項2記載の充電深度計によれば、角度
調節用の螺子部材を回動操作することによって電解液の
種類とか温度に対応して変化する光屈折角に応じて受光
ユニットを一定長だけ移動することが可能となり、光屈
折角の変化に対して容易に対処することができる。
According to the second aspect of the present invention, by rotating the angle adjusting screw member, the light receiving unit is fixed according to the type of electrolyte or the light refraction angle that changes depending on the temperature. It is possible to move for a long distance, and it is possible to easily cope with a change in the light refraction angle.

【0043】更に請求項3記載の充電深度計によれば、
電解液用の透明配管の一方側に配置された発光ユニット
から平行光を配管の中央部に照射することにより、配管
がレンズの一種として機能して発光ユニットから照射し
た光の焦点距離が変化して受光ユニットに受け止めら
れ、且つ上記受光ユニットを配置する位置を変更するこ
とによって深度計の出力を調整可能として、配管及び電
解液の屈折率,平行光の幅及び配管を通過した光の焦点
距離の変化に応じて電解液の充電深度を求めることがで
きる。
Further, according to the charge depth meter of claim 3,
By irradiating the central part of the pipe with parallel light from the light emitting unit arranged on one side of the transparent pipe for the electrolytic solution, the pipe functions as a kind of lens to change the focal length of the light emitted from the light emitting unit. The output of the depth meter can be adjusted by changing the position where the light receiving unit is placed, and the output of the depth meter can be adjusted. The refractive index of the pipe and the electrolyte, the width of the parallel light, and the focal length of the light passing through the pipe. The charge depth of the electrolytic solution can be determined according to the change of

【0044】本発明では充電深度の判別には光学的セン
サを使用しているため、電位が高い電池に適用する場合
にも絶縁対策を留意する必要がなく、電解液の温度補正
等の煩瑣な操作は不要である。特に電池の放電時におい
ても電池の残存容量が容易に推定できるので、ポータブ
ル機器用の電源として使用した際の電池の使用可能時間
が明確となり、作業遂行がスムーズになるという効果が
得られる。
In the present invention, since an optical sensor is used for determining the depth of charge, it is not necessary to pay attention to insulation measures even when applied to a battery having a high electric potential, and it is troublesome to correct the temperature of the electrolytic solution. No operation is necessary. In particular, since the remaining capacity of the battery can be easily estimated even when the battery is discharged, the usable time of the battery when used as a power source for a portable device becomes clear, and the work can be smoothly performed.

【0045】更にポンプの稼働中であっても電池の充放
電状態をリアルタイムで測定可能であり、亜鉛−臭素電
池を一般のユーザ向けの電池として転用する場合に、過
充電を防止するとともにユーザが電池の充電状態を一目
で確認することができる充電深度計を簡単に付設するこ
とが出来る。
Furthermore, it is possible to measure the charge / discharge state of the battery in real time even while the pump is in operation. When the zinc-bromine battery is diverted as a battery for general users, overcharging is prevented and the user can It is possible to easily attach a charging depth meter that can check the charging status of the battery at a glance.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1(A)は本発明の第1実施例を示す装置の
正面図。図1(B)は同側面図。
FIG. 1A is a front view of an apparatus showing a first embodiment of the present invention. FIG. 1B is a side view of the same.

【図2】図1(B)のA−A線に沿う断面図。FIG. 2 is a cross-sectional view taken along the line AA of FIG.

【図3】受光ユニットによるアナログ出力値の変化をプ
ロットしたグラフ。
FIG. 3 is a graph in which a change in analog output value by the light receiving unit is plotted.

【図4】本発明の第2実施例を説明するための概要図。FIG. 4 is a schematic diagram for explaining a second embodiment of the present invention.

【図5】本発明の第2実施例の他の実施態様を説明する
ための概要図。
FIG. 5 is a schematic diagram for explaining another embodiment of the second embodiment of the present invention.

【図6】亜鉛−臭素電池の作動原理を説明する概要図。FIG. 6 is a schematic diagram illustrating the operating principle of a zinc-bromine battery.

【図7】発光ユニットと受光ユニットを用いた電解液の
充電深度測定原理を説明する概要図。
FIG. 7 is a schematic diagram illustrating a principle of measuring a depth of charge of an electrolytic solution using a light emitting unit and a light receiving unit.

【符号の説明】[Explanation of symbols]

1…正極側タンク 2…正極電解液 3…臭素錯化物 4…負極側タンク 5…負極電解液 6…正極側ポンプ 8,10,12,15…配管 9…正極マニホールド 11…負極側ポンプ 14…セパレータ 16…中間電極 17…集電電極 21…レーザ発振器 22…レーザ受光器 25…固定ベース 26…取付ベース 27…サドル 28…溝 29…可動体 32…螺子 34…スプリングピン DESCRIPTION OF SYMBOLS 1 ... Positive electrode side tank 2 ... Positive electrode electrolytic solution 3 ... Bromine complex compound 4 ... Negative electrode side tank 5 ... Negative electrode electrolytic solution 6 ... Positive electrode side pump 8, 10, 12, 15 ... Piping 9 ... Positive electrode manifold 11 ... Negative side pump 14 ... Separator 16 ... Intermediate electrode 17 ... Current collecting electrode 21 ... Laser oscillator 22 ... Laser receiver 25 ... Fixed base 26 ... Mounting base 27 ... Saddle 28 ... Groove 29 ... Movable body 32 ... Screw 34 ... Spring pin

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 充放電時に電池本体と別置きにした正極
側タンク及び負極側タンクから電解液がポンプで循環さ
れ、充電時に正極で発生した臭素が電解液に添加した臭
素錯化剤と反応して正極側タンクへ戻されるとともに、
放電時は該電解液がポンプで電池本体内へ送り込まれて
還元されるようにした亜鉛−臭素電池において、 電池本体に電解液を給排する配管として透明な管体を採
用し、該配管に近接する部位の一方側に発光ユニットを
配置するとともに、該配管に近接する部位の他方側で上
記発光ユニットに対応する位置に電解液の光屈折角を測
定する受光ユニットを配置し、且つ電解液の種類等に応
じて受光ユニット側の取付角度及び取付位置の微調整機
構を付設したことを特徴とする亜鉛−臭素電池の充電深
度計。
1. An electrolyte solution is circulated by a pump from a positive electrode side tank and a negative electrode side tank separately placed from a battery main body during charging / discharging, and bromine generated in the positive electrode during charging reacts with a bromine complexing agent added to the electrolytic solution. And then returned to the positive side tank,
In a zinc-bromine battery in which the electrolytic solution is pumped into the battery body for reduction during discharge, a transparent tube is used as the piping for supplying and discharging the electrolytic solution to the battery body. The light emitting unit is arranged on one side of the adjacent portion, and the light receiving unit for measuring the light refraction angle of the electrolytic solution is arranged on the other side of the portion adjacent to the pipe at a position corresponding to the light emitting unit, and the electrolytic solution is arranged. A charging depth meter for a zinc-bromine battery, which is provided with a fine adjustment mechanism for the mounting angle and mounting position on the light receiving unit side according to the type of the.
【請求項2】 発光ユニットが支持された固定ベース
と、該固定ベースに固定されているとともに電解液用の
透明配管が支持された取付ベースと、上記固定ベースに
設けられた円環状の溝内に摺動自在に嵌合され、先端部
に受光ユニットが支持された可動体と、上記固定ベース
に穿設された透孔の外方から挿通されて、可動体及び受
光ユニットを溝に沿って一定長だけ移動させる角度調節
用の螺子部材とを具備して成る亜鉛−臭素電池の充電深
度計。
2. A fixed base supporting the light emitting unit, a mounting base fixed to the fixed base and supporting a transparent pipe for an electrolytic solution, and an annular groove provided in the fixed base. Is slidably fitted to the movable body, and the light receiving unit is supported at the tip of the movable body, and the movable body and the light receiving unit are inserted along the groove by being inserted from the outside of the through hole formed in the fixed base. A charge depth meter for a zinc-bromine battery, comprising a screw member for adjusting an angle for moving a fixed length.
【請求項3】 電解液用の透明配管の一方側に発光ユニ
ットを配置するとともに、該透明配管の他方側で上記発
光ユニットに対応する位置に受光ユニットを配置し、発
光ユニットから平行光を配管の中央部に照射して、配管
の屈折率,電解液の屈折率,平行光の幅及び配管を通過
した光の焦点距離の変化に応じて電解液の充電深度を測
定することを特徴とする亜鉛−臭素電池の充電深度計。
3. A light emitting unit is arranged on one side of a transparent pipe for an electrolytic solution, and a light receiving unit is arranged on the other side of the transparent pipe at a position corresponding to the light emitting unit, and parallel light is piped from the light emitting unit. It is characterized in that the depth of charge of the electrolytic solution is measured in accordance with changes in the refractive index of the pipe, the refractive index of the electrolytic solution, the width of parallel light, and the focal length of the light passing through the pipe by irradiating the central part of Charge depth meter for zinc-bromine batteries.
【請求項4】 上記受光ユニットを配置する位置を変更
することによって深度計の出力を調整するようにした請
求項3記載の亜鉛−臭素電池の充電深度計。
4. The charge depth meter for a zinc-bromine battery according to claim 3, wherein the output of the depth meter is adjusted by changing the position where the light receiving unit is arranged.
JP5240824A 1993-09-28 1993-09-28 Charging degree measuring meter of zinc-bromine battery Pending JPH0794215A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5240824A JPH0794215A (en) 1993-09-28 1993-09-28 Charging degree measuring meter of zinc-bromine battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5240824A JPH0794215A (en) 1993-09-28 1993-09-28 Charging degree measuring meter of zinc-bromine battery

Publications (1)

Publication Number Publication Date
JPH0794215A true JPH0794215A (en) 1995-04-07

Family

ID=17065248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5240824A Pending JPH0794215A (en) 1993-09-28 1993-09-28 Charging degree measuring meter of zinc-bromine battery

Country Status (1)

Country Link
JP (1) JPH0794215A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015138684A (en) * 2014-01-23 2015-07-30 和之 豊郷 Magnesium power generation cell system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015138684A (en) * 2014-01-23 2015-07-30 和之 豊郷 Magnesium power generation cell system

Similar Documents

Publication Publication Date Title
CN100448100C (en) Nickel-hydride battery life determining method and life determining apparatus
US8766642B2 (en) Electrochemical cell
CN101425698B (en) Battery pack, method of charging secondary battery and battery charger
US5949219A (en) Optical state-of-charge monitor for batteries
US7459884B2 (en) Remaining capacity calculation method for secondary battery, and battery pack
JP5515524B2 (en) Secondary battery deterioration state determination system and secondary battery deterioration state determination method
US20130099794A1 (en) Degradation determination device and degradation determination method for lithium ion secondary battery
CN101322280A (en) Battery pack, electronic device and method for detecting remaining quantity in battery
WO2008053969A1 (en) Abnormality detecting device for storage element, abnormality detecting method for storage element, abnormality detecting program for storage element, and computer-readable recording medium containing abnormality detecting program for storage element is recorded
JP2008134060A (en) Abnormality detection device of electric storage device, abnormality detection method of electric storage device, and abnormality detection program
KR20140053590A (en) Apparatus and method for estimating state of charging of battery
JP2013037857A (en) Redox flow cell
JP2015225787A (en) Redox flow battery system and method for controlling redox flow battery system
JPH0794215A (en) Charging degree measuring meter of zinc-bromine battery
JP3022571B2 (en) Redox flow battery and method of measuring charge / discharge depth of redox flow battery
JPH05190210A (en) Method of requiring state of charging of zinc-bromine battery and charging method
US5608325A (en) Method of recalibrating a battery energy management processor
JPH0660917A (en) Detection for electrolyte of sinc-bromine battery and measuring method for charge depth
KR20180116988A (en) A system for calculating the state of charge of a lfp battery for car and method thereof
JPH06260217A (en) Measuring method for charging depth of zinc-bromine battery
JPH0620726A (en) Measuring method for charging depth of zinc-bromine battery
KR101438937B1 (en) Method for measuring residual capacity of lithium sulfur battery
JPH08185890A (en) Control method for battery used as drive source for moving body
JPH04144076A (en) Capacitance meter for zn-br battery
US20140170519A1 (en) Flow Battery System and Method Thereof