JPH0794198A - Current collector for high temperature fuel cell and manufacture thereof - Google Patents

Current collector for high temperature fuel cell and manufacture thereof

Info

Publication number
JPH0794198A
JPH0794198A JP6177172A JP17717294A JPH0794198A JP H0794198 A JPH0794198 A JP H0794198A JP 6177172 A JP6177172 A JP 6177172A JP 17717294 A JP17717294 A JP 17717294A JP H0794198 A JPH0794198 A JP H0794198A
Authority
JP
Japan
Prior art keywords
current collector
plating
film
metal
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6177172A
Other languages
Japanese (ja)
Inventor
Hideto Koide
秀人 小出
Yoshiyuki Someya
喜幸 染谷
Motoaki Andou
基朗 安藤
Toshihiko Yoshida
利彦 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEKIYU SANGYO KASSEIKA CENTER
Tonen General Sekiyu KK
Japan Petroleum Energy Center JPEC
Original Assignee
SEKIYU SANGYO KASSEIKA CENTER
Petroleum Energy Center PEC
Tonen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEKIYU SANGYO KASSEIKA CENTER, Petroleum Energy Center PEC, Tonen Corp filed Critical SEKIYU SANGYO KASSEIKA CENTER
Priority to JP6177172A priority Critical patent/JPH0794198A/en
Publication of JPH0794198A publication Critical patent/JPH0794198A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Abstract

PURPOSE:To decrease the capability of stress generation, prevent the peeling off of a plating film, reduce contact resistance with an anode, and stabilize the output of a fuel cell over a long period of time without any change with time by almost equalizing the thermal expansion coefficient of a current collecting base with that of a composite plating film. CONSTITUTION:An electroless plating thin film and an electrolytic plating (metal/ceramic) composite film are stacked in that order on one side of a current collector base made of a perovskite structure composite oxide. A current collector is obtained by forming a metallic thin film by electroless plating on one side of a current collector base made of a perovskite structure composite oxide, then forming a metal/ceramic composite film by electrolytic plating from a plating solution in which a ceramic is dispersed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、接触抵抗が小さく、経
時的に安定で、被膜の剥離することのない新規な高温型
燃料電池用集電体及びこのものを簡単に効率よく製造す
る方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel current collector for a high temperature fuel cell, which has a low contact resistance, is stable over time, and does not peel off a coating, and a method for easily and efficiently producing the same. Regarding

【0002】[0002]

【従来の技術】高温型燃料電池の集電体としては、耐熱
合金、酸化物セラミックス、金属/セラミックス複合体
などが使用されている。この酸化物セラミックスとして
は、一般式:(La1-xxa(Cr1-yM′yb3 (式中のMはマグネシウムを除くアルカリ土類金属、
M′は遷移金属、0<x≦0.5、0<y≦0.5、
0.95≦a/b≦1.05である)で表わされ、主と
してペロブスカイト構造からなるランタンクロマイト系
酸化物に代表されるペロブスカイト構造型複合酸化物が
多用されているが、このものは還元側で用いると酸素の
脱離が起こり、表面が高抵抗になるという欠点がある。
2. Description of the Related Art As current collectors for high temperature fuel cells, heat resistant alloys, oxide ceramics, metal / ceramic composites and the like are used. As the oxide ceramics, the general formula: (La 1-x M x ) a (Cr 1-y M 'y) b O 3 ( alkaline earth metals excluding M magnesium in the formula,
M ′ is a transition metal, 0 <x ≦ 0.5, 0 <y ≦ 0.5,
0.95 ≦ a / b ≦ 1.05), and a perovskite structure type composite oxide represented by a lanthanum chromite type oxide mainly composed of a perovskite structure is often used. If it is used on the side, desorption of oxygen occurs and the surface has a high resistance.

【0003】このため、これまではプラズマ溶射、無電
解めっき、真空蒸着、スパッタリング、イオンプレーテ
ィングなどでアノード側にNi、Co、Crなどの金属
の被覆膜を形成し、接触抵抗を低下させ高抵抗化を防止
している。しかしながら、プラズマ溶射は、基板に30
0℃以上の高温がかかり、しかも温度分布のばらつきが
生じるために微小なクラックが発生しやすいし、また真
空蒸着、スパッタリング、イオンプレーティングなどの
真空プロセスを要するものは、工程が複雑で、しかも高
温型燃料電池用集電体のような複雑な形状・構造のもの
への全面被覆は極めて困難であるし、また無電解めっき
は、製造工程が簡単なものの、膜中に存在するPやBの
ため応力が強く膜が剥離しやすいという欠点がある。
For this reason, conventionally, a coating film of a metal such as Ni, Co or Cr is formed on the anode side by plasma spraying, electroless plating, vacuum deposition, sputtering, ion plating or the like to lower the contact resistance. Prevents high resistance. However, plasma spraying can cause 30
A high temperature of 0 ° C. or higher is applied, and since the temperature distribution varies, minute cracks are likely to occur, and those requiring a vacuum process such as vacuum deposition, sputtering, and ion plating have complicated steps, and It is extremely difficult to cover the entire surface of a complex shape / structure such as a current collector for a high temperature fuel cell, and electroless plating has a simple manufacturing process, but P and B existing in the film Therefore, there is a drawback that the stress is strong and the film is easily peeled off.

【0004】[0004]

【発明が解決しようとする課題】本発明は、このような
従来の高温型燃料電池用金属/セラミックス複合被覆集
電体のもつ欠点を克服し、接触抵抗が小さく、経時的に
安定で、被膜の剥離することのない高温型燃料電池用金
属/セラミックス複合被覆集電体を提供することを目的
としてなされたものである。
DISCLOSURE OF THE INVENTION The present invention overcomes the drawbacks of the conventional metal / ceramic composite coated current collector for a high temperature type fuel cell, has a small contact resistance, is stable over time, and has a coating film. The present invention has been made for the purpose of providing a metal / ceramic composite-coated current collector for high-temperature fuel cells, which does not peel off.

【0005】[0005]

【課題を解決するための手段】本発明者らは、前記の好
ましい特性を有する高温型燃料電池用金属/セラミック
ス複合被覆集電体を開発するために種々研究を重ねた結
果、被膜の剥がれの生じないように主たる被膜を金属/
セラミックス複合膜としてベースと熱膨張特性を合わせ
るとともに、膜形成法としてペロブスカイト構造型酸化
物の損傷の極めて小さく、工程が簡潔で、しかも全面に
被覆可能なめっき法を用い、さらに前記めっき法の欠点
を防止するために、セラミックスとのごく界面だけ無電
解めっきを施し、その上にさらに電解めっきを施して複
合被覆膜の大部分を占める金属/セラミックス複合膜を
形成させるという特有の工夫をすることにより、その目
的を達成しうることを見出し、この知見に基づいて本発
明をなすに至った。
The inventors of the present invention have conducted various studies to develop a metal / ceramic composite coated current collector for a high temperature fuel cell having the above-mentioned preferable characteristics, and as a result, the film peeling has been confirmed. Main coating is metal /
The ceramic composite film has the same thermal expansion characteristics as the base, and the film formation method uses a plating method that is extremely small in damage to the perovskite structure type oxide, has a simple process, and can cover the entire surface. In order to prevent this, a special measure is taken in which electroless plating is applied only to the interface with the ceramics, and then electrolytic plating is further applied to form a metal / ceramics composite film that occupies most of the composite coating film. As a result, the inventors have found that the object can be achieved, and have completed the present invention based on this finding.

【0006】すなわち、本発明は、ペロブスカイト構造
型複合酸化物からなる集電体ベースの一方の面に無電解
めっき金属薄膜及び電解めっき(金属/セラミックス)
複合膜をその順序に積層させたことを特徴とする高温型
燃料電池用集電体を提供するものである。好ましい態様
として、(2)ペロブスカイト構造型複合酸化物が一般
式(I): (A1-xxa(Cr1-yM′yb (I) (式中のAはLa又はY、Mはマグネシウムを除くアル
カリ土類金属、M′は遷移金属、0<x≦0.5、0<
y≦0.5、0.8≦a≦1.2、0.8≦b≦1.2
である)で表わされ、主としてペロブスカイト構造から
なるものである上記(1)項記載の高温型燃料電池用集
電体、(3)上記一般式(I)中のAで示される金属が
Laである上記(2)項記載の高温型燃料電池用集電
体、(4)ペロブスカイト構造型複合酸化物が一般式
(II): (A1-xA′xa(Cr1-yyb3 (II) (式中のAはLa又はY、A′はSr又はCa、BはF
e、Ni、Co、Mg、Mn、Zn、Cu、Al、P
d、V、Ir、Mo、Li及びWの中から選ばれた少な
くとも1種の金属、0<x≦0.3、0<y≦0.3、
0.95≦a/b≦1.05である)で表わされ、主と
してペロブスカイト構造からなるものである上記(1)
項記載の高温型燃料電池用集電体、(5)上記一般式
(II)中のAで示される金属がLaである上記(4)
項記載の高温型燃料電池用集電体、が挙げられる。本発
明の集電体は、ペロブスカイト構造型複合酸化物からな
る集電体ベースの一方の面に無電解めっきにより金属薄
膜を形成させたのち、セラミックスを混入させためっき
液を用いた電解めっきにより金属/セラミックス複合膜
を形成させることにより製造することができる。このよ
うに、本発明は、また、(6)ペロブスカイト構造型複
合酸化物からなる集電体ベースの一方の面に無電解めっ
きにより金属薄膜を形成させたのち、セラミックスを混
入させためっき液を用いた電解めっきにより金属/セラ
ミックス複合膜を形成させることを特徴とする高温型燃
料電池用集電体の製造方法を提供するものである。
That is, according to the present invention, an electroless plated metal thin film and electrolytic plating (metal / ceramics) are formed on one surface of a current collector base made of a perovskite structure type composite oxide.
It is intended to provide a current collector for a high temperature fuel cell, which is characterized in that a composite membrane is laminated in that order. In a preferred embodiment, (2) the perovskite structure type composite oxide is represented by the general formula (I): (A 1-x M x ) a (Cr 1-y M ' y ) b O 3 (I) (A in the formula is La or Y, M is an alkaline earth metal except magnesium, M'is a transition metal, 0 <x ≦ 0.5, 0 <
y ≦ 0.5, 0.8 ≦ a ≦ 1.2, 0.8 ≦ b ≦ 1.2
And (3) the metal represented by A in the general formula (I) above is La, which is mainly composed of a perovskite structure. And (4) a perovskite structure type composite oxide having the general formula (II): (A 1-x A ′ x ) a (Cr 1-y B y ) b O 3 (II) (A in the formula is La or Y, A ′ is Sr or Ca, and B is F.
e, Ni, Co, Mg, Mn, Zn, Cu, Al, P
at least one metal selected from d, V, Ir, Mo, Li and W, 0 <x ≦ 0.3, 0 <y ≦ 0.3,
0.95 ≦ a / b ≦ 1.05), which is mainly composed of a perovskite structure (1)
(5) The metal of A in the general formula (II) is La, (4)
And a current collector for a high temperature fuel cell described in the item. The current collector of the present invention comprises a metal thin film formed by electroless plating on one surface of a current collector base made of a perovskite structure type composite oxide, and then electrolytic plating using a plating solution mixed with ceramics. It can be manufactured by forming a metal / ceramics composite film. Thus, according to the present invention, (6) a metal thin film is formed by electroless plating on one surface of a current collector base made of a perovskite structure type composite oxide, and then a plating solution mixed with ceramics is used. It is intended to provide a method for producing a current collector for a high temperature fuel cell, which is characterized in that a metal / ceramic composite film is formed by the electroplating used.

【0007】本発明においては、集電体のベースの材料
としてペロブスカイト構造型複合酸化物が用いられ、こ
のものは好ましくは一般式(I): (A1-xxa(Cr1-yM′yb3 (I) (式中のAはLa又はY、Mはマグネシウムを除くアル
カリ土類金属、M′は遷移金属、0<x≦0.5、0<
y≦0.5、0.8≦a≦1.2、0.8≦b≦1.2
である)、特に一般式(II): (A1-xA′xa(Cr1-yyb3 (II) (式中のAはLa又はY、A′はSr又はCa、BはF
e、Ni、Co、Mg、Mn、Zn、Cu、Al、P
d、V、Ir、Mo、Li及びWの中から選ばれた少な
くとも1種の金属、0<x≦0.3、0<y≦0.3、
0.95≦a/b≦1.05である)で表わされ、主と
してペロブスカイト構造からなるもの、中でも特にこれ
らの式中のAで示される金属がLaであるものである。
In the present invention, a perovskite structure type composite oxide is used as a base material of the current collector, which is preferably represented by the general formula (I): (A 1-x M x ) a (Cr 1- y M ′ y ) b O 3 (I) (A in the formula is La or Y, M is an alkaline earth metal except magnesium, M ′ is a transition metal, 0 <x ≦ 0.5, 0 <
y ≦ 0.5, 0.8 ≦ a ≦ 1.2, 0.8 ≦ b ≦ 1.2
In particular, in the general formula (II): (A 1-x A ′ x ) a (Cr 1- y By ) b O 3 (II) (A in the formula is La or Y, A ′ is Sr or Ca and B are F
e, Ni, Co, Mg, Mn, Zn, Cu, Al, P
at least one metal selected from d, V, Ir, Mo, Li and W, 0 <x ≦ 0.3, 0 <y ≦ 0.3,
0.95 ≦ a / b ≦ 1.05) and is mainly composed of a perovskite structure, and in particular, the metal represented by A in these formulas is La.

【0008】本発明においては、先ず、このベースの一
方の面に無電解めっきにより金属薄膜が施される。無電
解めっきにおいては、該めっきにおける常法に従い、ベ
ースのアルカリ脱脂処理、フッ酸などによるエッチング
処理などの予備処理を施すのが好ましい。さらに、好ま
しくはこのような予備処理が施されたベースに対しPd
等の触媒金属のめっきによる活性化処理を施すのが望ま
しい。無電解めっきは、実際的には、ベースを所望金属
のめっき浴に入れて無電解めっきを行い金属薄膜を形成
させる。このめっき浴としては、例えばNiSO4・6
2O、NaH2PO2・H2O、乳酸、酢酸ナトリウム及
びコハク酸ジナトリウムの組成を有する浴などが好まし
い。また、無電解めっきの金属材料としては、Ni、C
o、Cuなどが好ましい。無電解めっきで形成されため
っき被膜の膜厚は、通常20μm以下、好ましくは5μ
m以下である。無電解めっきにより密着性が良好で、均
一な膜厚の被膜が得られる。
In the present invention, first, a metal thin film is applied to one surface of the base by electroless plating. In the electroless plating, it is preferable to perform a pretreatment such as an alkali degreasing treatment on the base and an etching treatment with hydrofluoric acid according to a conventional method for the plating. Further, it is preferable that Pd be added to the base which has been subjected to such pretreatment.
It is desirable to carry out an activation treatment by plating with a catalytic metal such as. In electroless plating, practically, the base is placed in a plating bath of a desired metal and electroless plating is performed to form a metal thin film. As the plating bath, for example, NiSO 4 · 6
H 2 O, NaH 2 PO 2 · H 2 O, lactate, etc. bath having a composition of sodium acetate and disodium succinate are preferred. Further, as the metal material for electroless plating, Ni, C
O, Cu and the like are preferable. The thickness of the plating film formed by electroless plating is usually 20 μm or less, preferably 5 μm
m or less. Adhesion is good by electroless plating, and a film having a uniform film thickness can be obtained.

【0009】次いで無電解めっきにより形成された金属
薄膜上に、セラミックスを混入させためっき液を用いた
電解めっきで金属/セラミックス複合膜が形成される。
実際的には、無電解めっきにより金属薄膜が設けられた
ベースを、セラミックス粉末を混入させた所望金属のめ
っき浴に入れ、電解めっきが行われる。このめっき浴と
しては、応力が最も小さくなるため、スルファミン酸
浴、例えばNi(NH2SO32、H3BO3及びセラミ
ックス粉末の組成を有する浴などが好ましい。また、電
解めっきの金属材料としては、Ni、Co、Cr、Z
n、Ti等の遷移金属や、Ru、Rh、Pd、Pt等の
貴金属が好ましい。セラミックス材料としては、ジルコ
ニア、セリア、マグネシア、イットリア、アルミナなど
が好ましく、その含有量はめっき膜の容量に対し、20
〜70容量%の範囲が好ましい。電解めっきで形成され
ためっき被膜の膜厚は、剥離しないものであれば特に制
限はないが、20〜100μm程度が好ましい。
Next, a metal / ceramic composite film is formed on the metal thin film formed by electroless plating by electrolytic plating using a plating solution containing ceramics.
Practically, electrolytic plating is carried out by placing a base provided with a metal thin film by electroless plating in a plating bath of a desired metal mixed with ceramic powder. As the plating bath, a sulfamic acid bath, for example, a bath having a composition of Ni (NH 2 SO 3 ) 2 , H 3 BO 3 and ceramic powder, etc., is preferable because the stress is the smallest. Further, as the metal material for electrolytic plating, Ni, Co, Cr, Z
Transition metals such as n and Ti and noble metals such as Ru, Rh, Pd and Pt are preferable. As the ceramic material, zirconia, ceria, magnesia, yttria, alumina and the like are preferable, and the content thereof is 20 with respect to the capacity of the plating film.
The range of ˜70% by volume is preferred. The thickness of the plating film formed by electrolytic plating is not particularly limited as long as it does not peel off, but is preferably about 20 to 100 μm.

【0010】本発明方法においては、めっきしない他方
の面はマスキング処理が施されている。このマスキング
処理としては、例えばテープマスキング、ゴム系材料に
よるマスキング技術などが用いられる。
In the method of the present invention, the other surface not plated is masked. As the masking process, for example, tape masking, masking technology using a rubber material, or the like is used.

【0011】[0011]

【実施例】次に実施例により本発明をさらに詳細に説明
するが、本発明はこれらの例によってなんら限定される
ものではない。 実施例1 La0.8Sr0.2Cr0.9Co0.13の組成のランタンク
ロマイト系複合酸化物からなる5cm四方、厚さ6mm
の集電体ベース板(溝を片面のみに設けたもの)の片側
平面にテープマスキングを施し、10g/l濃度の水酸
化ナトリウム水溶液中に入れ、50℃で5分間アルカリ
脱脂したのち、47%濃度のフッ酸水溶液により室温で
3分間エッチング処理し、さらに室温で1分間超音波洗
浄した。次いで、これを50℃で5分間保持したのち、
1分間湯洗し、SnCl2 6g/l、水酸化ナトリウ
ム 23g/l、酒石酸 39g/l、NaCN 18
5g/l及びチオ尿素 55g/lの組成の水溶液中に
浸してセンシタイジングを行い、Snを表面に分散させ
たのち、PdCl2 2g/l、38%塩酸 4ml/
l、28%水酸化アンモニウム 160ml/l、塩化
アンモニウム 27g/l及びNaH2PO2・H2
10g/lの組成の水溶液中に浸してPdを表面に担持
させた。この工程を2度繰り返してPd活性化処理を施
した。
EXAMPLES The present invention will be described in more detail by way of examples, which should not be construed as limiting the invention thereto. Example 1 5 cm square and 6 mm thick made of a lanthanum chromite complex oxide having a composition of La 0.8 Sr 0.2 Cr 0.9 Co 0.1 O 3.
After tape-masking one side of the current collector base plate (having a groove only on one side), it was placed in a 10 g / l concentration sodium hydroxide aqueous solution and alkali degreased at 50 ° C. for 5 minutes, then 47% Etching treatment was performed for 3 minutes at room temperature with a hydrofluoric acid solution having a concentration, and then ultrasonic cleaning was performed for 1 minute at room temperature. Then, after holding this at 50 ° C. for 5 minutes,
Washed with hot water for 1 minute, SnCl 2 6 g / l, sodium hydroxide 23 g / l, tartaric acid 39 g / l, NaCN 18
After sensitizing by immersing in an aqueous solution having a composition of 5 g / l and thiourea 55 g / l, Sn was dispersed on the surface, PdCl 2 2 g / l, 38% hydrochloric acid 4 ml /
1, 28% ammonium hydroxide 160 ml / l, ammonium chloride 27 g / l and NaH 2 PO 2 · H 2 O
Pd was supported on the surface by immersing it in an aqueous solution having a composition of 10 g / l. This process was repeated twice to perform Pd activation treatment.

【0012】このようにして活性化されたランタンクロ
マイト系ベース板を、硫酸ニッケル20g/l、次亜リ
ン酸ナトリウム 10g/l及び酢酸ナトリウム 5g
/lの組成をもつpH6.0のめっき浴中に浸せきし、
90℃で4分間無電解Niめっき処理を施した。次い
で、得られたNi薄膜めっきベース板を、スルファミン
酸ニッケル 450g/l、H3BO3 30g/l及び
ZrO2 250g/lの組成をもつpH4.0のめっ
き浴中に浸せきし、2.0A/dm2の電流密度下に、
50℃で120分間電解Ni/ZrO2めっき処理を施
し、膜厚50μmのめっき被膜を形成させた。次いで、
上記テープマスキングをそのためのテープを剥離するな
どして除去することにより解除した。さらに室温で1分
間防錆処理後、乾燥した。このようにして得られた集電
体の各部位の熱膨張係数は、ランタンクロマイト系ベー
スで11.0×10-6/K、複合めっき膜で11.2×
10-6/Kと同等であった。
The lanthanum chromite base plate thus activated was treated with nickel sulfate 20 g / l, sodium hypophosphite 10 g / l and sodium acetate 5 g.
Dip it in a plating bath of pH 6.0 having a composition of 1 / l,
An electroless Ni plating treatment was performed at 90 ° C. for 4 minutes. Then, the obtained Ni thin film plated base plate was immersed in a plating bath having a composition of nickel sulfamate (450 g / l), H 3 BO 3 ( 30 g / l) and ZrO 2 ( 250 g / l) and having a pH of 4.0, and 2.0 A. Under the current density of / dm 2 ,
Electrolytic Ni / ZrO 2 plating treatment was applied at 50 ° C. for 120 minutes to form a plating film having a film thickness of 50 μm. Then
The tape masking was released by removing the tape for that purpose. Further, it was rust-proofed at room temperature for 1 minute and then dried. The thermal expansion coefficient of each part of the thus obtained current collector was 11.0 × 10 −6 / K for the lanthanum chromite base and 11.2 × for the composite plating film.
It was equivalent to 10 -6 / K.

【0013】次いで、図1に示すような測定系で、この
ようにして得られた集電体11を、そのめっき処理面側
とアノード電極12(Ni/ZrO2=10/1重量比
の組成及び電極面積16cm2のもの)とを接触面積1
1.2cmで接触させ、かつ接触部に水素ガスを200
cc/minの流速で流し、アノード電極の集電端子に
Ni板を用いて接触抵抗を求めた。その結果を表1に示
す。
Then, in a measurement system as shown in FIG. 1, the current collector 11 thus obtained was treated with the plating surface side and the anode electrode 12 (Ni / ZrO 2 = 10/1 weight ratio composition). And an electrode area of 16 cm 2 )
Contact at 1.2 cm, and hydrogen gas at 200
The flow rate was set to cc / min, and the contact resistance was obtained by using a Ni plate as the collector terminal of the anode electrode. The results are shown in Table 1.

【0014】[0014]

【表1】 測定終了後、複合めっき膜はベース全面に付着してい
た。
[Table 1] After the measurement was completed, the composite plating film was attached to the entire surface of the base.

【0015】比較例1 無電解Niめっきの処理時間を300分に変え、電解め
っきを行わないこと以外は実施例1と同様にしてめっき
膜厚50μmの無電解Niめっき集電体を作製し、その
接触抵抗を求めた。その結果を表2に示す。
Comparative Example 1 An electroless Ni-plated current collector having a plating film thickness of 50 μm was prepared in the same manner as in Example 1 except that the electroless Ni plating treatment time was changed to 300 minutes and electrolytic plating was not performed. The contact resistance was calculated. The results are shown in Table 2.

【0016】[0016]

【表2】 測定終了後、めっき膜はベースから剥がれていた。[Table 2] After the measurement, the plating film was peeled off from the base.

【0017】比較例2 Niプラズマ溶射膜(膜厚200μm)で表面処理し
た、実施例1のものと同じ組成のランタンクロマイト系
ベースを集電体として用い、この接触抵抗を実施例と同
様にして求めた。その結果を表3に示す。
Comparative Example 2 A lanthanum chromite base having the same composition as that of Example 1 which was surface-treated with a Ni plasma sprayed film (film thickness 200 μm) was used as a current collector, and the contact resistance was the same as in Example. I asked. The results are shown in Table 3.

【0018】[0018]

【表3】 測定終了後、溶射膜にクラックが入っていた。[Table 3] After the measurement was completed, the sprayed film had cracks.

【0019】実施例2 図2の集合様式に従い固体電解質型燃料電池を作製し
た。固体電解質板21にはイットリアを8モル%添加し
たジルコニアである部分安定化ジルコニアからなる50
×50×0.2mmの板状物を用いた。固体電解質板の
酸素通路側はLa 0.8Sr0.2MnO3粉末(平均粒径約
5μm)を有機系バインダーに分散し、面積16cm2
の領域に0.1〜0.2mmの厚さで塗布してカソード
22とし、水素通路側はNi/ZrO2(重量比1/
1)サーメット混合粉末を有機系バインダーに分散し、
カソード同様面積16cm2の領域に0.1〜0.2m
mの厚さで塗布してアノード23とした。各集電体24
は相応する集電体ベース板(溝を片面のみに設けたもの
や溝を両面に設けたもの)を用い実施例1と同様にして
得られたものを用いた。また、アノードと集電体間の接
触抵抗を測定しうるように測定端子25を挿入した。
Example 2 A solid oxide fuel cell was prepared according to the assembly mode shown in FIG.
It was 8 mol% of yttria was added to the solid electrolyte plate 21.
50 consisting of partially stabilized zirconia which is zirconia
A plate-like material having a size of x50x0.2 mm was used. Of solid electrolyte plate
La on the oxygen passage side 0.8Sr0.2MnO3Powder (average particle size approx.
5 μm) dispersed in organic binder, area 16 cm2
Area of 0.1-0.2mm thickness and apply as a cathode
No. 22 and Ni / ZrO on the hydrogen passage side2(Weight ratio 1 /
1) Disperse the cermet mixed powder in an organic binder,
16 cm area similar to cathode2Area of 0.1-0.2m
The anode 23 was coated with a thickness of m. Each current collector 24
Is a corresponding collector base plate (with a groove only on one side)
Or grooves provided on both sides) in the same manner as in Example 1
The obtained one was used. In addition, the contact between the anode and the collector
The measuring terminal 25 was inserted so that the contact resistance could be measured.

【0020】このようにして作製した燃料電池を加熱し
た。室温から350℃までは10℃/minで昇温し、
350℃以上では水素通路側にはアノードの酸化を防止
するため、窒素ガスを流し、10℃/minで1000
℃まで昇温した。その後、1000℃に保持してアノー
ド側に水素、カソード側に酸素を流し、発電を開始し
た。単位セル当りの結果は、出力7.8W、セル抵抗2
5mΩ、アノード−集電体間の接触抵抗1mΩであっ
た。出力及びアノード−集電体間の接触抵抗の経時変化
を表4に示す。
The fuel cell thus manufactured was heated. From room temperature to 350 ° C, heat up at 10 ° C / min,
At 350 ° C or higher, nitrogen gas is flown on the hydrogen passage side to prevent oxidation of the anode, and 1000 ° C is supplied at 10 ° C / min.
The temperature was raised to ° C. Then, the temperature was maintained at 1000 ° C., hydrogen was flown to the anode side and oxygen was flown to the cathode side to start power generation. The result per unit cell is output 7.8W, cell resistance 2
The contact resistance between the anode and the current collector was 5 mΩ and 1 mΩ. Table 4 shows changes over time in the output and the contact resistance between the anode and the current collector.

【0021】[0021]

【表4】 [Table 4]

【0022】比較例3 アノード側集電体として、La0.8Sr0.2Cr0.9Co
0.13基板上にNiプラズマ溶射膜(膜厚200μm)
を形成させたものを用いた以外は実施例2と同様にして
電池を作製するとともに、発電試験を行った。単位セル
当りの結果は、出力7.6W、セル抵抗28mΩ、アノ
ード−集電体間の接触抵抗7mΩであった。出力及びア
ノード−集電体間の接触抵抗の経時変化を表5に示す。
Comparative Example 3 La 0.8 Sr 0.2 Cr 0.9 Co was used as the anode side current collector.
Ni plasma sprayed film (film thickness 200 μm) on 0.1 O 3 substrate
A battery was prepared and a power generation test was conducted in the same manner as in Example 2 except that the battery having the above-mentioned structure was used. The results per unit cell were an output of 7.6 W, a cell resistance of 28 mΩ, and a contact resistance between the anode and the current collector of 7 mΩ. Table 5 shows the changes over time in the output and the contact resistance between the anode and the current collector.

【0023】[0023]

【表5】 [Table 5]

【0024】実施例3 La0.8Sr0.2Cr0.98Co0.023の組成のランタン
クロマイト系複合酸化物からなる20cm四方、厚さ6
mmの各集電体ベース板(溝を片面のみに設けたものや
溝を両面に設けたもの)を、その片側の以下の処理を要
しない表面にテープマスキングを施し、10g/l濃度
の水酸化ナトリウム水溶液中に入れ、50℃で5分間ア
ルカリ脱脂したのち、47%濃度のフッ酸水溶液により
室温で3分間エッチング処理し、さらに室温で1分間超
音波洗浄した。次いで、これを50℃で5分間保持した
のち、1分間湯洗し、SnCl2 6g/l、水酸化ナ
トリウム 23g/l、酒石酸 39g/l、NaCN
185g/l及びチオ尿素 55g/lの組成の水溶
液中に浸してセンシタイジングを行い、Snを表面に分
散させたのち、PdCl2 2g/l、38%塩酸 4
ml/l、28%水酸化アンモニウム 160ml/
l、塩化アンモニウム 27g/l及びNaH 2PO2
2O 10g/lの組成の水溶液中に浸してPdを表
面に担持させた。この工程を2度繰り返してPd活性化
処理を施した。
Example 3 La0.8Sr0.2Cr0.98Co0.02O3Composition of lanterns
20cm square composed of chromite complex oxide, thickness 6
mm current collector base plate (with a groove only on one side or
(Provided with grooves on both sides) requires the following treatment on one side.
The surface not covered with tape masking, 10g / l concentration
In a sodium hydroxide aqueous solution at 50 ° C for 5 minutes.
After degreasing Lucari, with 47% hydrofluoric acid solution
Etch at room temperature for 3 minutes, then at room temperature for more than 1 minute
Sonicated. It was then held at 50 ° C for 5 minutes
After that, rinse with hot water for 1 minute, SnCl2 6g / l, sodium hydroxide
Thorium 23g / l, Tartaric acid 39g / l, NaCN
 Water solution having a composition of 185 g / l and thiourea 55 g / l
Immerse in liquid and perform sensitizing to separate Sn on the surface.
After dispersing, PdCl2 2 g / l, 38% hydrochloric acid 4
ml / l, 28% ammonium hydroxide 160 ml /
1, ammonium chloride 27 g / l and NaH 2PO2
H2The Pd was exposed by immersing it in an aqueous solution having a composition of O 10 g / l.
It was carried on the surface. Repeat this process twice to activate Pd
Treated.

【0025】このようにして活性化されたランタンクロ
マイト系ベース板を、硝酸ニッケル20g/l、次亜リ
ン酸ナトリウム 10g/l及び酢酸ナトリウム 5g
/lの組成をもつpH6.0のめっき浴中に浸せきし、
90℃で4分間無電解Niめっき処理を施した。次い
で、得られたNi薄膜めっきベース板を、スルファミン
酸ニッケル 450g/l、H3BO3 30g/l及び
ZrO2 250g/lの組成をもつpH4.0のめっ
き浴中に浸せきし、2.0A/dm2の電流密度下に、
50℃で120分間電解Ni/ZrO2めっき処理を施
し、膜厚50μmのめっき被膜を形成させた。次いで、
上記テープマスキングをそのためのテープを剥離するな
どして除去することにより解除した。さらに室温で1分
間防錆処理後、乾燥した。このようにして厚さ6mmの
各集電体を作製した。この集電体の各部位の熱膨張係数
は、ランタンクロマイト系ベースで11.0×10-6
K、複合めっき膜で11.2×10-6/Kと同等であっ
た。
The lanthanum chromite base plate thus activated was treated with nickel nitrate 20 g / l, sodium hypophosphite 10 g / l and sodium acetate 5 g.
Dip it in a plating bath of pH 6.0 having a composition of 1 / l,
An electroless Ni plating treatment was performed at 90 ° C. for 4 minutes. Then, the obtained Ni thin film plated base plate was immersed in a plating bath having a composition of nickel sulfamate (450 g / l), H 3 BO 3 ( 30 g / l) and ZrO 2 ( 250 g / l) and having a pH of 4.0, and 2.0 A. Under the current density of / dm 2 ,
Electrolytic Ni / ZrO 2 plating treatment was applied at 50 ° C. for 120 minutes to form a plating film having a film thickness of 50 μm. Then
The tape masking was released by removing the tape for that purpose. Further, it was rust-proofed at room temperature for 1 minute and then dried. In this way, each current collector having a thickness of 6 mm was produced. The coefficient of thermal expansion of each part of this current collector is 11.0 × 10 -6 / lanthan chromite base
K, the composite plating film was equivalent to 11.2 × 10 −6 / K.

【0026】図2の集合様式に従い、上記各集電体24
を用い、固体電解質型燃料電池を作製した。固体電解質
板21にはイットリアを8モル%添加したジルコニアで
ある部分安定化ジルコニアからなる200×200×
0.2mmの板状物を用いた。固体電解質板の酸素通路
側はLa0.8Sr0.2MnO3粉末(平均粒径約5μm)
を有機系バインダーに分散し、面積324cm2の領域
に0.1〜0.2mmの厚さで塗布してカソード22と
し、水素通路側はNi/ZrO2(重量比7/3)サー
メット混合粉末を有機系バインダーに分散し、カソード
同様面積324cm2の領域に0.1〜0.2mmの厚
さで塗布してアノード23とした。また、アノードと集
電体間の接触抵抗を測定しうるように測定端子25を挿
入した。
According to the assembly mode of FIG. 2, each of the current collectors 24 is
Was used to prepare a solid oxide fuel cell. The solid electrolyte plate 21 is made of partially stabilized zirconia, which is zirconia containing 8 mol% of yttria, and is 200 × 200 ×.
A 0.2 mm plate was used. The oxygen passage side of the solid electrolyte plate is La 0.8 Sr 0.2 MnO 3 powder (average particle size of about 5 μm).
Is dispersed in an organic binder and applied in a region of 324 cm 2 to a thickness of 0.1 to 0.2 mm to form the cathode 22, and the hydrogen passage side is Ni / ZrO 2 (weight ratio 7/3) cermet mixed powder. Was dispersed in an organic binder and applied to a region having an area of 324 cm 2 in a thickness of 0.1 to 0.2 mm like the cathode to form an anode 23. Further, a measuring terminal 25 was inserted so that the contact resistance between the anode and the current collector could be measured.

【0027】このようにして作製した燃料電池を加熱し
た。室温から350℃までは1℃/minで昇温し、3
50℃以上では水素通路側にはアノードの酸化を防止す
るため、窒素ガスを流し、1℃/minで1000℃ま
で昇温した。その後、1000℃に保持してアノード側
にプロパンとH2O、カソード側に空気を流し、発電を
開始した。単位セル当りの結果は、出力67W、セル抵
抗1.3mΩ、アノード−集電体間の接触抵抗0.4m
Ωであった。出力及びアノード−集電体間の接触抵抗の
経時変化を表6に示す。
The fuel cell thus produced was heated. Raise the temperature from room temperature to 350 ° C at 1 ° C / min, and
At 50 ° C. or higher, in order to prevent oxidation of the anode on the hydrogen passage side, nitrogen gas was flown and the temperature was raised to 1000 ° C. at 1 ° C./min. Then, the temperature was maintained at 1000 ° C., propane and H 2 O were flown on the anode side, and air was flown on the cathode side to start power generation. Output per unit cell is 67 W, cell resistance 1.3 mΩ, contact resistance between anode and collector 0.4 m
It was Ω. Table 6 shows the changes over time in the output and the contact resistance between the anode and the current collector.

【0028】[0028]

【表6】 測定終了後、複合めっき膜はベース全面に付着してい
た。
[Table 6] After the measurement was completed, the composite plating film was attached to the entire surface of the base.

【0029】これらの結果より、実施例の集電体は、そ
れとアノードとの間の接触抵抗が小さく、しかも経時的
にも変化せず安定で、それを組み込んだ燃料電池の出力
も経時的に安定しているのに対し、比較例の集電体は接
触抵抗が大きく、しかも経時的に変化して次第に増大す
る上に、それを組み込んだ燃料電池の出力は経時的に著
しく低下することが分る。
From these results, the current collector of the example has a small contact resistance between it and the anode, is stable without change over time, and the output of the fuel cell incorporating it is also over time. While stable, the current collector of the comparative example has a large contact resistance, changes with time, and gradually increases, and the output of the fuel cell incorporating the current collector decreases significantly with time. I understand.

【0030】[0030]

【発明の効果】本発明の高温型燃料電池用集電体は、ベ
ースと複合めっき膜との熱膨張特性がほぼ合致している
ので、応力が発生しにくくめっき被膜の剥離するおそれ
がないとともに、アノードとの間の接触抵抗が小さく、
しかも経時的にも変化せず安定である上に、それを組み
込んだ燃料電池の出力を経時的に安定化させうるという
顕著な効果を奏する。また、本発明方法によれば、この
ような特性に優れた集電体を簡単に効率よく得ることが
できる。
In the current collector for a high temperature fuel cell of the present invention, since the thermal expansion characteristics of the base and the composite plating film are substantially the same, stress is unlikely to occur and the plating film is not likely to peel off. , The contact resistance with the anode is small,
Moreover, there is a remarkable effect that the output does not change with time and is stable, and the output of a fuel cell incorporating the same can be stabilized with time. Further, according to the method of the present invention, it is possible to easily and efficiently obtain a current collector excellent in such characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】 集電体とアノード電極間の接触抵抗を求める
ための測定系の模式図。
FIG. 1 is a schematic diagram of a measurement system for determining a contact resistance between a current collector and an anode electrode.

【図2】 固体電解質型燃料電池の集合様式の1例の模
式図。
FIG. 2 is a schematic view of an example of an assembly mode of a solid oxide fuel cell.

【符号の説明】[Explanation of symbols]

11 アノード電極 12 集電体 21 固体電解質板 22 カソード 23 アノード 24 集電体 25 測定端子 11 Anode Electrode 12 Current Collector 21 Solid Electrolyte Plate 22 Cathode 23 Anode 24 Current Collector 25 Measuring Terminal

───────────────────────────────────────────────────── フロントページの続き (72)発明者 安藤 基朗 埼玉県入間郡大井町西鶴ケ岡一丁目3番1 号 東燃株式会社総合研究所内 (72)発明者 吉田 利彦 埼玉県入間郡大井町西鶴ケ岡一丁目3番1 号 東燃株式会社総合研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Motoo Ando Nishitsurugaoka 1-3-1 Oi-cho, Iruma-gun, Saitama Tonen Co., Ltd. Research Institute (72) Toshihiko Yoshida Nishitsurugaoka, Oi-cho, Saitama 1-3-1 Tonen Co., Ltd. Research Institute

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ペロブスカイト構造型複合酸化物からな
る集電体ベースの一方の面に無電解めっき金属薄膜及び
電解めっき(金属/セラミックス)複合膜をその順序に
積層させたことを特徴とする高温型燃料電池用集電体。
1. A high temperature characterized by laminating an electroless plated metal thin film and an electrolytic plated (metal / ceramics) composite film in that order on one surface of a current collector base made of a perovskite structure type composite oxide. Type fuel cell current collector.
【請求項2】 ペロブスカイト構造型複合酸化物からな
る集電体ベースの一方の面に無電解めっきにより金属薄
膜を形成させたのち、セラミックスを混入させためっき
液を用いた電解めっきにより金属/セラミックス複合膜
を形成させることを特徴とする高温型燃料電池用集電体
の製造方法。
2. A metal / ceramics is formed by forming a metal thin film on one surface of a current collector base made of a perovskite structure type complex oxide by electroless plating, and then performing electrolytic plating using a plating solution mixed with ceramics. A method for producing a high temperature fuel cell current collector, which comprises forming a composite film.
JP6177172A 1993-07-30 1994-07-28 Current collector for high temperature fuel cell and manufacture thereof Pending JPH0794198A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6177172A JPH0794198A (en) 1993-07-30 1994-07-28 Current collector for high temperature fuel cell and manufacture thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP19007893 1993-07-30
JP5-190078 1993-07-30
JP6177172A JPH0794198A (en) 1993-07-30 1994-07-28 Current collector for high temperature fuel cell and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH0794198A true JPH0794198A (en) 1995-04-07

Family

ID=26497808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6177172A Pending JPH0794198A (en) 1993-07-30 1994-07-28 Current collector for high temperature fuel cell and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH0794198A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002319415A (en) * 2001-04-20 2002-10-31 Kyocera Corp Solid electrolyte fuel cell and fuel cell
DE10342691A1 (en) * 2003-09-08 2005-04-07 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Stackable high temperature fuel cell has cathode connected to interconnector by electrically conductive ceramic sprung elastic pressure contacts

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002319415A (en) * 2001-04-20 2002-10-31 Kyocera Corp Solid electrolyte fuel cell and fuel cell
DE10342691A1 (en) * 2003-09-08 2005-04-07 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Stackable high temperature fuel cell has cathode connected to interconnector by electrically conductive ceramic sprung elastic pressure contacts
US7897289B2 (en) 2003-09-08 2011-03-01 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Stackable high-temperature fuel cell

Similar Documents

Publication Publication Date Title
US6326096B1 (en) Solid oxide fuel cell interconnector
JP2002289248A (en) Unit cell for fuel cell and solid electrolytic fuel cell
KR102029648B1 (en) Metal sheet for separators of polymer electrolyte fuel cells, and metal sheet for manufacturing the same
JP5614861B2 (en) Process for manufacturing electrodes used in fuel cells
JPWO2003079477A1 (en) Cell unit of solid polymer electrolyte fuel cell
JP3978603B2 (en) Cell plate for solid oxide fuel cell and method for producing the same
JPWO2003026052A1 (en) Bipolar plate for fuel cell and manufacturing method thereof
WO2006044313A2 (en) Preparation of solid oxide fuel cell electrodes by electrodeposition
US7527888B2 (en) Current collector supported fuel cell
TWI610490B (en) Metal plate for partition of solid polymer fuel cell
JPS61218074A (en) Solid oxide fuel battery tube and manufacture thereof
JP5572146B2 (en) Protective film forming method, cell connecting member, and solid oxide fuel cell
JP2001351642A (en) Separator for fuel cell
CN1842934B (en) Solid oxide fuel cell device with a component having a protective coatings and a method for making such
JP2014209452A (en) Cell connection member, cell for solid oxide fuel cell and electrodeposition paint for use in production thereof
JP2001357859A (en) Separator for fuel cell
JPH10158894A (en) Film formation of solid electrolyte
JPH0794198A (en) Current collector for high temperature fuel cell and manufacture thereof
JP4352447B2 (en) Solid oxide fuel cell separator with excellent conductivity
JPH0794197A (en) Current collector for high temperature fuel cell and manufacture thereof
Seabaugh et al. Oxide Protective Coatings for Solid Oxide Fuel Cell Interconnects
KR102335014B1 (en) Electrode material for solid oxide fuel cell and method for manufacturing the same
JP2003123782A (en) Separator for fuel cell, its manufacturing method, and fuel cell
JPH0381962A (en) Solid electrolyte fuel cell
KR101027222B1 (en) OAE/Co Coating for Planar Solid Oxide Fuel Cell Interconnects