JPH0794078A - Field emitting chip - Google Patents

Field emitting chip

Info

Publication number
JPH0794078A
JPH0794078A JP23758993A JP23758993A JPH0794078A JP H0794078 A JPH0794078 A JP H0794078A JP 23758993 A JP23758993 A JP 23758993A JP 23758993 A JP23758993 A JP 23758993A JP H0794078 A JPH0794078 A JP H0794078A
Authority
JP
Japan
Prior art keywords
groove
silicon nitride
field emission
nitride film
electron beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23758993A
Other languages
Japanese (ja)
Inventor
Yoshihiko Suzuki
美彦 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP23758993A priority Critical patent/JPH0794078A/en
Publication of JPH0794078A publication Critical patent/JPH0794078A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the integration density of elements by constituting a field emitting chip from a base bottom part and a plurality of electron beam emitting parts provided on the base bottom part CONSTITUTION:A first silicon nitride film is formed on both surfaces of a monocrystal silicon base, and the silicon nitride film is removed in square form to form a groove having a square bottom. An etching groove is then oxidized to provide an oxide film, a groove form having four cavities is provided on the bottom part, and a second silicon nitride film is further formed on both surfaces of this sample. A second base material is connected to the groove- formed surface side of the sample, and after the first and second silicon nitride films are removed, the first base material and the silicon oxide film are eluted, whereby a second silicon nitride film is exposed in the groove form having four cavities. Thereafter, a film of a metal material having a small work function such as cesium is formed on the field emitting chip side, whereby a form having four electron beam emitting parts 11 on a base bottom part 12 is provided. Thus, the integration with double density, compared with in the past, can be performed, and integration density of elements can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、真空集積回路、マイク
ロ波・ミリ波用微小真空管、ディスプレイ素子、電子線
露光用電子源等に用いる微小電子源の電界放射ティップ
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a field emission tip of a micro electron source used for a vacuum integrated circuit, a micro vacuum tube for microwave / millimeter wave, a display element, an electron source for electron beam exposure, and the like.

【0002】[0002]

【従来の技術】半導体製造技術の進展に伴い、真空マイ
クロエレクトロニクスに関する技術開発が活発化してい
る。電界放射ティップから電子線を放射することを基本
要素としているこの技術は、キャリアのスピードが早
い、屈折、フォーカス及び回折が可能、媒質での散乱が
ない、温度及び放射線の影響がない、材料の選択が自
由、構造の自由度が大きいなどの顕著な利点を有してい
るため広く注目されている。
2. Description of the Related Art With the progress of semiconductor manufacturing technology, technical developments related to vacuum microelectronics have been activated. This technology, whose basic element is to radiate an electron beam from a field emission tip, has a high carrier speed, is capable of refraction, focusing and diffraction, has no scattering in a medium, has no influence of temperature and radiation, and has a material It has attracted widespread attention because it has remarkable advantages such as freedom of choice and high degree of structural freedom.

【0003】この技術を達成するための主要デバイスで
ある電界放射ティップは、斜め蒸着法またはエッチング
法等を用いて作製される。形状としては1つの頂点(突
起)を有する円錐あるいは四角錘形状のものであった。
この円錐あるいは四角錘の頂点(突起)が電子線放射部
となり、ここから電子線が放射される。そして、このよ
うにして作製された電界放射ティップを集積化して画面
表示素子や演算素子に用いていた。
A field emission tip, which is a main device for achieving this technique, is manufactured by using an oblique vapor deposition method or an etching method. The shape was a cone or a quadrangular pyramid having one apex (protrusion).
The apex (projection) of the cone or the quadrangular pyramid serves as an electron beam radiating portion, from which the electron beam is radiated. Then, the field emission tips manufactured in this manner are integrated and used for a screen display element and a calculation element.

【0004】[0004]

【発明が解決しようとする問題点】しかしながら従来の
電界放射ティップは、電界放射ティップの一つの底面
(基底部)に対して一つの電子線放射部(突起)しか有
していなかった為、高密度に集積化することができない
という問題点があった。本発明は上記問題点を鑑みてな
されたものであり、集積密度を向上させることが可能な
電界放射ティップを提供することを目的とする。
However, the conventional field emission tip has only one electron beam emitting portion (projection) with respect to one bottom surface (base portion) of the field emission tip. There is a problem that it cannot be integrated in high density. The present invention has been made in view of the above problems, and an object thereof is to provide a field emission tip capable of improving the integration density.

【0005】[0005]

【問題点を解決するための手段】発明者は鋭意研究の結
果、1つの電界放射ティップに対して複数の電子線放射
部(突起)を設けることによって集積密度を向上させる
ことができることに気が付いた。即ち、本発明の電界放
射ティップは『基底部と、前記基底部に備えられた複数
の電子線放射部と、から(請求項1)』構成する。
As a result of earnest research, the inventor has realized that the integration density can be improved by providing a plurality of electron beam emitting portions (projections) for one field emission tip. . That is, the field emission tip of the present invention is constituted by "a base portion and a plurality of electron beam emitting portions provided in the base portion (claim 1)".

【0006】[0006]

【作用】本発明の電界放射ティップは、複数の電子線放
射部を有するため集積密度を向上させることができる。
以下、実施例により本発明をより具体的に説明するが、
本発明はこれに限るものではない。
The field emission tip of the present invention has a plurality of electron beam emitting portions, so that the integration density can be improved.
Hereinafter, the present invention will be described in more detail with reference to Examples.
The present invention is not limited to this.

【0007】[0007]

【実施例】図2は、本発明の第1の実施例による高集積
電界放射ティップの製造過程を示す概略図である。第1
の基板材料である厚みが250μmの100面方位の単
結晶シリコン基板21の両面に低圧気相成長法により第
1の窒化珪素膜22を成膜する。その後、ドライエッチ
ング法を用いて一辺が約10μmの四角形状に窒化珪素
膜22を除去する。この窒化珪素膜22が除去され、シ
リコン基板21が露出した部分を異方性エッチングす
る。このようにして、底部(100面)が四角形となる
形状の溝を形成した(2a図)。この溝を上面から見る
と3a図のようになる。
2 is a schematic view showing a manufacturing process of a highly integrated field emission tip according to a first embodiment of the present invention. First
A first silicon nitride film 22 is formed on both surfaces of a 100-crystal-oriented single crystal silicon substrate 21 having a thickness of 250 μm, which is a substrate material, by low pressure vapor deposition. After that, the silicon nitride film 22 is removed into a quadrangular shape having a side of about 10 μm by using a dry etching method. The silicon nitride film 22 is removed, and the exposed portion of the silicon substrate 21 is anisotropically etched. Thus, a groove having a square bottom (100 faces) was formed (Fig. 2a). When this groove is viewed from above, it becomes as shown in FIG. 3a.

【0008】その後、エッチング溝を酸化し酸化膜23
を設けた。このとき酸化膜の成長速度は溝の角の部分
(溝の底部の四角形の頂点)で遅くなるため、底部に4
つの窪みを持つ溝形状が得られる(2b図)。この試料
にさらに低圧気相成長法により第2の窒化珪素膜24を
表裏面に形成した(2c図)。
After that, the etching groove is oxidized to form the oxide film 23.
Was set up. At this time, the growth rate of the oxide film becomes slower at the corners of the groove (the vertices of the quadrangle at the bottom of the groove).
A groove shape with two depressions is obtained (Fig. 2b). A second silicon nitride film 24 was formed on the front and back surfaces of this sample by the low pressure vapor deposition method (FIG. 2c).

【0009】この試料の溝形成面側に第2基板材料25
を接合し、ドライエッチング法により裏面の第一の窒化
珪素膜22及び第二の窒化珪素膜24を除去する。その
後、試料全体をKOH水溶液、TMAH水溶液などのア
ルカリ水溶液に浸し第1の基板材料21と酸化珪素膜2
3を溶出する。このようにすると、上記の4つの窪みを
持つ溝形状の形で第二の窒化珪素膜24が露出する(2
d図)。
A second substrate material 25 is formed on the groove forming surface side of this sample.
And the first silicon nitride film 22 and the second silicon nitride film 24 on the back surface are removed by dry etching. Then, the entire sample is dipped in an alkaline aqueous solution such as a KOH aqueous solution or a TMAH aqueous solution to immerse the first substrate material 21 and the silicon oxide film 2.
Elute 3. By doing so, the second silicon nitride film 24 is exposed in the form of a groove having the above-mentioned four depressions (2
(Fig. d).

【0010】その後、電界放射ティップ側に真空蒸着法
等によりセシウムなどの仕事関数の小さな金属材料26
を成膜した(2e図)。この金属材料26は、仕事関数
の小さなものが好ましいため、本実施例ではセシウムを
用いているが、これに限るものではない。このようにし
て、先端に4つの突起をもつ複数の電界放射ティップ群
を形成した。電界放射ティップの形状は、図1の1bに
示すように基底部12の上に4個の電子線放射部11を
有する形状になる。
Then, a metal material 26 having a small work function such as cesium is formed on the side of the field emission tip by vacuum deposition or the like.
Was deposited (FIG. 2e). The metal material 26 preferably has a small work function, and thus cesium is used in this embodiment, but the material is not limited to this. In this way, a plurality of field emission tip groups having four protrusions at the tip were formed. The shape of the field emission tip is a shape having four electron beam emission parts 11 on the base part 12 as shown in 1b of FIG.

【0011】図4は、本発明の電界放射ティップ群(4
a図)と従来の電界放射ティップ群(4b図)を比較し
た上面図である。各電界放射ティップの基底部の寸法は
両者とも約10μm角の四角形状である。図中の黒丸は
突起(電子線放射部)の先端を表している。これらの電
界放射ティップ群からなる表示素子を作製したところ従
来より4倍高密度の表示素子を得ることが出来た。この
ように本発明の電界放射ティップは、素子の集積密度を
向上させることが明らかになった。
FIG. 4 shows a group of field emission tips (4
It is a top view which compared the conventional field emission tip group (FIG. 4b) with FIG. The size of the base of each field emission tip is a square shape of about 10 μm square. The black circles in the figure represent the tips of the protrusions (electron beam emitting portions). When a display element composed of these field emission tip groups was produced, a display element having a density four times higher than that of the conventional display element could be obtained. As described above, it was revealed that the field emission tip of the present invention improves the integration density of devices.

【0012】図2を用いて本発明の第2の実施例による
電界放射ティップの製造方法を説明する。第1の基板材
料である厚みが250μmの100面方位の単結晶シリ
コン基板21の両面に低圧気相成長法により第1の窒化
珪素膜22を成膜した。そののちドライエッチング法に
より部分的に窒化膜を幅が約10μm、長さが5μmの
矩形状に多数除去し、該シリコン基板21を異方性エッ
チングし底部に稜線を持つ形状の溝を形成した(2a
図)。この溝の形状を上面から見ると3a図のようにな
る。
A method of manufacturing a field emission tip according to the second embodiment of the present invention will be described with reference to FIG. A first silicon nitride film 22 was formed on both surfaces of a 100-oriented single crystal silicon substrate 21 having a thickness of 250 μm, which is a first substrate material, by a low pressure vapor deposition method. Then, a large number of nitride films having a width of about 10 μm and a length of 5 μm were partially removed by a dry etching method, and the silicon substrate 21 was anisotropically etched to form a groove having a ridge line at the bottom. (2a
Figure). The shape of this groove is as shown in FIG.

【0013】その後、このエッチング溝を酸化し酸化膜
23を設けた(2b図)。このとき酸化膜の成長速度は
溝の角の部分(溝の底部の2つの頂点)で遅くなるた
め、底部に2つの窪みを持つ溝形状が得られた。この試
料にさらに低圧気相成長法により第2の窒化珪素膜24
を表裏面に形成した(2c図)。
Then, the etching groove was oxidized to form an oxide film 23 (FIG. 2b). At this time, the growth rate of the oxide film was slowed at the corners of the groove (two apexes of the groove bottom), so that a groove shape having two depressions at the bottom was obtained. A second silicon nitride film 24 was formed on this sample by a low pressure vapor deposition method.
Was formed on the front and back surfaces (Fig. 2c).

【0014】この試料の溝形成面側に第2基板材料25
を接合し、ドライエッチング法により裏面の第一の窒化
珪素膜22及び第二の窒化珪素膜24を除去する。その
後、試料全体をKOH水溶液、TMAH水溶液などのア
ルカリ水溶液に浸し第1の基板材料21と酸化珪素膜2
3を溶出する。このようにすると、上記の2つの窪みを
持つ溝形状の形で第二の窒化珪素膜24が露出する(2
d図)。
A second substrate material 25 is formed on the groove forming surface side of this sample.
And the first silicon nitride film 22 and the second silicon nitride film 24 on the back surface are removed by dry etching. Then, the entire sample is dipped in an alkaline aqueous solution such as a KOH aqueous solution or a TMAH aqueous solution to immerse the first substrate material 21 and the silicon oxide film 2.
Elute 3. By doing so, the second silicon nitride film 24 is exposed in the shape of the groove having the above-mentioned two depressions (2
(Fig. d).

【0015】その後、ティップ側に真空蒸着法等により
セシウムなどの仕事関数の小さな金属材料26を成膜し
た(2e図)。この金属材料26は、仕事関数の小さな
ものが好ましいため、本実施例ではセシウムを用いてい
るが、これに限るものではない。このようにして、先端
に2つの針状突起をもつ複数のティップ群を形成した。
After that, a metal material 26 having a small work function such as cesium was formed on the tip side by a vacuum vapor deposition method or the like (FIG. 2e). The metal material 26 preferably has a small work function, and thus cesium is used in this embodiment, but the material is not limited to this. In this way, a plurality of tip groups having two needle-like protrusions at the tip were formed.

【0016】電界放射ティップの形状は、図1の1aに
示すように基底部12の上に2個の電子線放射部11を
有する形状になる。また、従来の電界放射ティップと比
べると2倍の密度で集積することが可能となった。この
ように、一つの基底部に対して複数の電子線放射部を有
する電界放射ティップを用いれば、素子の集積密度が向
上することが確認された。
The field emission tip has a shape having two electron beam emitting portions 11 on a base 12 as shown in 1a of FIG. In addition, it has become possible to integrate at a density twice as high as that of the conventional field emission tip. As described above, it was confirmed that the integration density of the device is improved by using the field emission tip having a plurality of electron beam emission parts for one base part.

【0017】また、第1及び第2の実施例と同様にし
て、第1の基板21に溝を開ける際にこの溝の底部の形
状の頂点の数に合わせた数の電子線放射部を有する電界
放射ティップを作製することができる。つまり、この頂
点の数に応じて集積密度を向上させることができる。ま
た、本実施例のように電界放射ティップを作製すると、
複数の電界放射ティップを一度に作製できるため、素子
の集積化を簡単かつ効率よくすることができる。
Further, similar to the first and second embodiments, when a groove is formed in the first substrate 21, the electron beam emitting portions are provided in a number corresponding to the number of vertices of the shape of the bottom of the groove. Field emission tips can be made. That is, the integration density can be improved according to the number of vertices. Further, when the field emission tip is manufactured as in this example,
Since a plurality of field emission tips can be produced at one time, the device can be easily and efficiently integrated.

【0018】[0018]

【発明の効果】本発明の電界放射ティップは、素子の集
積密度を向上させることができる。
The field emission tip of the present invention can improve the integration density of devices.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例による電界放射ティップを示す
概略図であり、1a図は2つの電子線放射部を有する電
界放射ティップを示し、1b図は4つの電子線放射部を
有する電界放射ティップを示す。
1 is a schematic view showing a field emission tip according to an embodiment of the present invention, FIG. 1a shows a field emission tip having two electron beam emitting portions, and FIG. 1b shows a field emission tip having four electron beam emitting portions. Indicates a tip.

【図2】本発明の実施例による電界放射ティップの製造
方法を示す概略図である。
FIG. 2 is a schematic view showing a method of manufacturing a field emission tip according to an embodiment of the present invention.

【図3】本発明の実施例による電界放射ティップの製造
方法を示す概略図である。
FIG. 3 is a schematic view showing a method of manufacturing a field emission tip according to an embodiment of the present invention.

【図4】本発明の実施例による電界放射ティップ群(4
a図)と従来の電界放射ティップ群(4b図)を比較し
た上面図である。
FIG. 4 shows a group of field emission tips according to an embodiment of the present invention (4
It is a top view which compared the conventional field emission tip group (FIG. 4b) with FIG.

【符号の説明】[Explanation of symbols]

11・・・電子線放射部 12・・・基底部 21・・・第一の基板材料 22・・・窒化珪素膜 23・・・酸化珪素膜 24・・・窒化珪素膜 25・・・第二の基板材料 26・・・金属材料 11 ... Electron Beam Emitting Part 12 ... Base Part 21 ... First Substrate Material 22 ... Silicon Nitride Film 23 ... Silicon Oxide Film 24 ... Silicon Nitride Film 25 ... Second Substrate materials 26 ... Metal materials

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 基底部と、 前記基底部に備えられた複数の電子線放射部と、 から成る高集積電界放射ティップ。1. A highly integrated field emission tip comprising a base and a plurality of electron beam emitters provided in the base.
JP23758993A 1993-09-24 1993-09-24 Field emitting chip Pending JPH0794078A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23758993A JPH0794078A (en) 1993-09-24 1993-09-24 Field emitting chip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23758993A JPH0794078A (en) 1993-09-24 1993-09-24 Field emitting chip

Publications (1)

Publication Number Publication Date
JPH0794078A true JPH0794078A (en) 1995-04-07

Family

ID=17017564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23758993A Pending JPH0794078A (en) 1993-09-24 1993-09-24 Field emitting chip

Country Status (1)

Country Link
JP (1) JPH0794078A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002037518A1 (en) * 2000-11-06 2002-05-10 Fujitsu Limited Field-emission cathode and method for manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002037518A1 (en) * 2000-11-06 2002-05-10 Fujitsu Limited Field-emission cathode and method for manufacturing the same
US7030545B2 (en) 2000-11-06 2006-04-18 Fujitsu Limited Field emission cathode with emitters formed of acicular protrusions with secondary emitting protrusions formed thereon
KR100701476B1 (en) * 2000-11-06 2007-03-29 후지쯔 가부시끼가이샤 Field-emission cathode and method for manufacturing the same

Similar Documents

Publication Publication Date Title
US3753022A (en) Miniature, directed, electron-beam source
US6127623A (en) Solar cell and production process therefor
EP0134438B1 (en) Vacuum and/or electrostatic pinchuck for holding semiconductor wafers or other flat electrical components and method for making the same
US4307507A (en) Method of manufacturing a field-emission cathode structure
US5595933A (en) Method for manufacturing a cathode
JP2973423B2 (en) Superconducting element and manufacturing method thereof
JP3388870B2 (en) Micro triode vacuum tube and method of manufacturing the same
JPH0794078A (en) Field emitting chip
JP3195547B2 (en) Vacuum sealed field emission type electron source device and manufacturing method thereof
JPH08306302A (en) Field emission type electron source and its manufacture
JP2001133772A (en) Method of producing light guide plate, light guide plate, and liquid crystal display device
JP2785790B2 (en) Aperture mask for charged particle beam exposure apparatus and method of manufacturing the same
JP2000156148A (en) Emitter and manufacture thereof
JP3211572B2 (en) Field emission type electronic device and method of manufacturing the same
KR100285316B1 (en) Large-scaled field emission display device
KR100208474B1 (en) Micro-tip for field emission and manufacturing method thereof
JP2754175B2 (en) Manufacturing method of cold electron-emitting device
KR970030066A (en) Field emission device and manufacturing method thereof
JPS5890728A (en) Mark for alignment on semiconductor wafer and manufacture thereof
JP3184890B2 (en) Electron emitting device and method of manufacturing the same
KR100313780B1 (en) Diamond tip for electron emission and manufactruring method thereof
JP3205966B2 (en) Light emitting thin film and method for manufacturing
JP3097523B2 (en) Method for manufacturing field emission element
JPH06164034A (en) Solid-state laser
JPH05182583A (en) Field emission type element and manufacture thereof