JPH0794001B2 - Countercurrent melt cooling refining method - Google Patents

Countercurrent melt cooling refining method

Info

Publication number
JPH0794001B2
JPH0794001B2 JP3087021A JP8702191A JPH0794001B2 JP H0794001 B2 JPH0794001 B2 JP H0794001B2 JP 3087021 A JP3087021 A JP 3087021A JP 8702191 A JP8702191 A JP 8702191A JP H0794001 B2 JPH0794001 B2 JP H0794001B2
Authority
JP
Japan
Prior art keywords
tank
refining
crystals
temperature
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3087021A
Other languages
Japanese (ja)
Other versions
JPH0724206A (en
Inventor
敬三 竹上
稔 守田
和登 中丸
浩司 三輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Tsukishima Kikai Co Ltd
Original Assignee
Mitsubishi Gas Chemical Co Inc
Tsukishima Kikai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc, Tsukishima Kikai Co Ltd filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP3087021A priority Critical patent/JPH0794001B2/en
Publication of JPH0724206A publication Critical patent/JPH0724206A/en
Publication of JPH0794001B2 publication Critical patent/JPH0794001B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、冷却型晶析器と竪型溶
融精製機とを組合せて、複数成分の結晶より一成分を純
化するための向流式溶融物冷却精製法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a countercurrent melt cooling and refining method for purifying one component from a crystal of a plurality of components by combining a cooling type crystallizer and a vertical melting and refining machine.

【0002】[0002]

【従来の技術】多成分の物質の混合物から純粋な一成分
を得ようとする場合、蒸留法または抽出法等の単位操作
があるけれども、前者では熱エネルギーを大量に使用
し、後者では操作が複雑でかつ純度の点で満足できない
ことがある。これに対し、もし当該混合物を冷却すれ
ば、ある濃度範囲で、目的とするA成分の純粋な結晶が
得られる場合には、結晶化による精製法が可能である。
2. Description of the Related Art When a pure component is to be obtained from a mixture of multi-component substances, there are unit operations such as a distillation method or an extraction method, but the former uses a large amount of heat energy and the latter requires an operation. It may be complicated and unsatisfactory in terms of purity. On the other hand, if the mixture is cooled to obtain pure crystals of the desired component A within a certain concentration range, a purification method by crystallization is possible.

【0003】すなわち、工業的には対象とする物質を冷
却して純粋なA成分を得て、これを固液分離機によっ
て、純粋なA成分を得ることができる。この際、除去化
が図られた母液中にはA成分以外の成分が増加して行
く。この母液よりさらにA成分を回収しようとすれば、
第1回の結晶温度よりもさらに低い温度で冷却する必要
がある。このために、従来は、(1)単位結晶槽を直列
に単に多段に並べて連続槽としたり、(2)水平型攪拌
結晶槽を連続的に運転するようにしていた。
That is, industrially, a substance of interest can be cooled to obtain a pure A component, which can be obtained by a solid-liquid separator. At this time, components other than the component A increase in the removed mother liquor. If it is attempted to recover the component A from this mother liquor,
It is necessary to cool at a temperature lower than the first crystallization temperature. For this reason, conventionally, (1) unit crystal tanks are simply arranged in multiple stages in series to form a continuous tank, or (2) a horizontal stirring crystal tank is continuously operated.

【0004】[0004]

【発明が解決しようとする課題】前述の(1)の従来の
多段槽の場合には、各槽の温度を順次低くして、この流
れに沿って処理液を流す方法が採られているが、この方
法では各結晶槽では結晶と母液とが完全混合しており、
次の槽に生成された結晶と共に移動するので、最終の槽
においては、B成分の最も濃度の高い母液とA成分の結
晶とが混在するようになり、したがって固液分離装置に
よりA成分を分離しても、結晶に付着する母液中のB成
分の濃度が高いので、全体として純粋なA成分を得るこ
とは難しい。
In the case of the conventional multi-stage tank of the above (1), a method is adopted in which the temperature of each tank is sequentially lowered and the processing liquid is caused to flow along this flow. , In this method, the crystals and mother liquor are completely mixed in each crystal tank,
Since it moves together with the crystals produced in the next tank, the mother liquor with the highest concentration of the B component and the crystals of the A component coexist in the final tank, and therefore the A component is separated by the solid-liquid separation device. However, since the concentration of the B component in the mother liquor attached to the crystals is high, it is difficult to obtain a pure A component as a whole.

【0005】このような多段槽を用いた結晶設備にあっ
ては、理想的には目的とするA成分の結晶とB成分を多
く含む母液とは向流的になることが望ましい。その理由
は、B成分が最も少い第1槽より得られる結晶へのB成
分の付着量が最も少くなるからである。
In a crystal facility using such a multi-stage tank, it is ideally desirable that the intended crystals of the A component and the mother liquor containing a large amount of the B component be countercurrent. The reason is that the amount of the B component attached to the crystals obtained from the first tank with the smallest B component is the smallest.

【0006】このような向流式とする試みは既に多くな
されており、その方法のうち一番簡単な方法は、供給液
は重力によって各槽に流れていき、各槽で得られた結晶
は各槽の間に設けた固液分離機で処理して、結晶は温度
の高い方へ、母液は温度の低い方へ移動させる方法であ
る。この方法によれば、確実に結晶と母液との移動が向
流的になり、高温側では、結晶がA成分の多い母液と接
触し、結晶に付着するB成分が高温母液により希釈され
減少するので、最も好しい態様であるけれども、最大の
欠点は高価な固液分離設備(濾過機、遠心分離機等)を
必要とし、かつその運転・保守費が嵩むことである。
Many attempts have been made to make such a countercurrent method, and the simplest method among them is that the feed liquid flows into each tank by gravity, and the crystals obtained in each tank are This is a method in which the crystals are moved to the higher temperature side and the mother liquor is moved to the lower temperature side by treating with a solid-liquid separator provided between each tank. According to this method, the movement of the crystal and the mother liquor is surely countercurrent, the crystal comes into contact with the mother liquor having a large amount of the A component on the high temperature side, and the B component attached to the crystal is diluted by the high temperature mother liquor and reduced. Therefore, the most disadvantageous aspect is that it requires expensive solid-liquid separation equipment (filter, centrifuge, etc.) and its operating and maintenance costs are high.

【0007】他方、前述の(2)の従来法は、具体的に
は水平型ジャケット付結晶槽の内部にリボン羽根を設け
て、連続的に冷却して生成された結晶を一方向に移動さ
せ、これに対して液を向流的に連続的に流す方法であ
る。しかし、この方法では槽内で結晶が浮遊して液に同
伴してしまい、向流とならないことが多く、また1℃当
りの温度差を得ようとすれば、距離的に約2mを必要と
するので、たとえば製品の溶融温度と不純物を多く含ん
だ低温側の結晶析出温度との差が大きい場合には、結晶
槽の全水平長さはかなり長いものとなり、設置スペース
が大きくなるばかりでなく、結晶槽内の結晶の移動は、
各位置でその移動量が異ったものとなり、冷却された結
晶と温い母液の流れとが相対的に不安定あるいは析出結
晶量が変化してしまい、安定した運転を期し難い問題点
がある。
On the other hand, in the above-mentioned conventional method (2), specifically, a ribbon blade is provided inside the horizontal jacketed crystal tank to continuously cool and generate the generated crystal in one direction. On the other hand, it is a method of continuously flowing the liquid countercurrently. However, in this method, crystals often float in the tank and are entrained in the liquid, and a countercurrent is not often generated. Further, in order to obtain a temperature difference per 1 ° C., a distance of about 2 m is required. Therefore, for example, if the difference between the melting temperature of the product and the crystal precipitation temperature on the low temperature side containing a large amount of impurities is large, the total horizontal length of the crystal tank will be considerably long, and not only will the installation space be large. , The movement of the crystal in the crystal tank,
The amount of movement differs at each position, and the cooled crystals and the flow of warm mother liquor are relatively unstable or the amount of precipitated crystals changes, which makes it difficult to achieve stable operation.

【0008】一方、通常かくして得られた結晶と母液と
は、竪型の溶融精製機へ供給するか、遠心分離機で結晶
を取出して製品にするのかのいずれかである。前者の場
合、結晶機と結合させて連続処理を可能としたものが多
いが、その種のものでは、低温側へ移動する液の沈降部
(清澄部)がないため、結晶が同伴してしまい分離効率
が悪い。この点を改善しようとすれば、精製機の上部に
結晶の沈降部を設ける必要がある。
On the other hand, the crystals and mother liquor thus obtained are usually supplied to a vertical melting and refining machine, or the crystals are taken out by a centrifugal separator to obtain a product. In the case of the former, there are many cases in which continuous processing is possible by combining with a crystallizer, but with such a kind, there is no settling part (clarification part) of the liquid that moves to the low temperature side, so crystals are entrained. Separation efficiency is poor. In order to improve this point, it is necessary to provide a crystal settling section in the upper part of the refiner.

【0009】また後者の遠心分離機を用いる場合には、
母液の付着があり、これを置換洗浄しても得られる結晶
の純度には限界がある。その理由は、遠心力で脱水され
たケーキ層の粒子間には空隙があり、その空隙は気体が
介在しているため、さらに粒子間には接触密着部分があ
るため、洗浄液をかけた場合、遠心力によって洗浄液が
加速されているので、空隙のある粒子表面を十分接触す
ることなく通過したり、前記密着部へ十分洗浄液が接触
しないからである。したがって、いずれにしても結晶化
による場合において、純度を上げようとすれば、再結晶
化を複数回行なわなければならず、運転コストが著しく
嵩む。
When the latter centrifuge is used,
The mother liquor adheres, and there is a limit to the purity of crystals that can be obtained by substitution and washing. The reason is that there are voids between the particles of the cake layer that have been dehydrated by centrifugal force, and since the voids have a gas present, there is a contact adhesion part between the particles, so when a cleaning liquid is applied, This is because the cleaning liquid is accelerated by the centrifugal force, so that the cleaning liquid passes through the surface of the particles having voids without sufficient contact, or the cleaning liquid does not sufficiently contact the contact portion. Therefore, in any case, in the case of crystallization, if the purity is to be increased, recrystallization must be performed a plurality of times, resulting in a significant increase in operating cost.

【0010】本発明は、前記従来法の問題点を巧妙に一
挙に解決したものである。そしてその目的は、設備費が
安値となり、かつ精製効率の高い精製法を提供すること
にある。
The present invention cleverly solves the problems of the conventional method. And the objective is to provide a refining method with a low equipment cost and high refining efficiency.

【0011】[0011]

【課題を解決するための手段】上記課題を解決するため
の本発明は、上部にそれぞれ清澄部を有する複数の冷却
式結晶槽と、上部に清澄部を下部に加熱器をそれぞれ有
する竪型溶融精製塔とを備えた設備を用い、結晶槽に対
して原料を供給するとともに、前記各結晶槽は各々異な
る温度で晶析操作を行い、前記精製塔は各晶析操作温度
のうち最も高い温度よりさらに高い温度で運転し、結晶
槽において生成した結晶はそれより高い温度で晶析操作
が行われている結晶槽の清澄部へ導き、最高晶析操作温
度の結晶槽で生成した結晶は固液分離手段を介して精製
塔の清澄部へ導き、精製塔内を下部へ移行する結晶に対
してその下部の加熱器により溶融し、溶融物の一部を製
品として取出し、他の部分を還流液として上昇させ、前
記下部へ移行する結晶の洗浄を行い、精製塔および結晶
槽の上部の清澄液は晶析操作温度の高い結晶槽から低い
結晶槽への順で移行させ、最終低温結晶槽の清澄液は系
外に取出し、対象の複数成分の溶融混合物について、生
成結晶と母液との関係に関し、結晶槽の上部と下部、な
らびに精製塔の上部と下部との間において、生成結晶の
流れと母液の流れに関し、結晶槽から精製塔の清澄部へ
の流れとその精製塔の上部清澄部から結晶槽への流れに
おいて、それぞれ向流関係にあることを特徴とするもの
である。
According to the present invention for solving the above-mentioned problems, a vertical melting apparatus having a plurality of cooling type crystal tanks each having a refining section in an upper part and a refining section in an upper part and a heater in a lower part, respectively. Using equipment equipped with a purification tower, while supplying the raw materials to the crystallization tank, each of the crystallization tanks perform crystallization operation at a different temperature, the purification tower is the highest temperature of each crystallization operation temperature The crystals produced in the crystallizer operating at a higher temperature are guided to the refining section of the crystallizer where the crystallization operation is performed at a higher temperature, and the crystals produced in the crystallizer with the highest crystallization operation temperature are solid. It leads to the refining section of the purification tower through the liquid separation means, melts the crystals that move to the lower part of the purification tower by the heater at the lower part, takes out a part of the melt as a product, and refluxes the other part. It rises as a liquid and moves to the lower part After cleaning the crystals, the clearing liquid in the upper part of the purification tower and the crystallizing tank is transferred in order from the crystallizing tank with a higher crystallization operation temperature to the lower one, and the clearing liquid in the final low-temperature crystallizing tank is taken out of the system. Regarding the relationship between the produced crystals and the mother liquor in the melted mixture of the plurality of components, the purification of the crystals formed and the mother liquor between the upper and lower portions of the crystal tank and the upper and lower portions of the purification tower from the crystal tank is performed. The flow to the refining section of the tower and the flow from the upper refining section of the purification tower to the crystallizing tank have countercurrent relationships.

【0012】ここに、複数の結晶槽間にも固液分離手段
を設けることができる。固液分離手段は、液体サイクロ
ンであることが好ましい。
Here, solid-liquid separating means can be provided between a plurality of crystallizing tanks. The solid-liquid separation means is preferably a liquid cyclone.

【0013】[0013]

【作用】本発明では、対象の複数成分の溶融混合物につ
いて、生成結晶と母液との関係に関し、結晶槽の上部と
下部、ならびに精製塔の上部と下部との間において、生
成結晶の流れと母液の流れに関し、結晶槽から精製塔の
清澄部への流れとその精製塔の上部清澄部から結晶槽へ
の流れにおいて、それぞれ向流関係にあるので、設備費
が低減し、純度の高い結晶を効率良く精製できる。
The present invention relates to the relationship between the produced crystals and the mother liquor in the molten mixture of the target components, and the flow of the produced crystals and the mother liquor between the upper and lower portions of the crystal tank and the upper and lower portions of the purification column. With respect to the flow of, the flow from the crystal tank to the refining section of the purification tower and the flow from the upper refining section of the purification tower to the crystal tank have countercurrent relations with each other, so equipment cost is reduced and high-purity crystals are obtained. Can be efficiently purified.

【0014】[0014]

【実施例】この目的を達成するための具体例によって本
発明を次に説明する。図面は一具体例を示したもので、
結晶槽として2基の結晶槽1A,1Bを設け、これと精
製塔2とを組合わせたものである。
The present invention will now be described by way of specific examples for achieving this object. The drawing shows one specific example,
Two crystallization tanks 1A and 1B are provided as crystallization tanks, and this is combined with the purification tower 2.

【0015】第1,第2結晶槽1A,1Bは、それぞれ
上部に清澄部10A,10Bを有し、下部周壁に冷却媒
体11が通される冷却ジャケット部12A,12Bが設
けられ、また内部に攪拌駆動装置13A,13Bによっ
て回転駆動される伝熱面掻取羽根14A,14Bが配さ
れている。
Each of the first and second crystallizing tanks 1A and 1B has refining portions 10A and 10B at the upper portion thereof, cooling jacket portions 12A and 12B through which a cooling medium 11 is passed are provided at the lower peripheral wall thereof, and inside thereof. Heat transfer surface scraping blades 14A, 14B are rotatably driven by the stirring drive devices 13A, 13B.

【0016】さらに下部には結晶スラリー抜出口15
A,15Bがあり、結晶スラリー抜出口15Bから抜出
された結晶スラリーは、スラリーポンプ16Bにより第
1結晶槽1Aの清澄部10Aへ、結晶スラリー抜出口1
5Aからの結晶スラリーはスラリーポンプ16Aにより
精製塔2の上部の清澄部 20へ送給されるよう構成さ
れている。また第1結晶槽1Aの下部には複数成分の溶
融混合物17、たとえばA成分とB成分を含む共晶系
で、A成分の晶析温度が高く、AB成分の混合物の晶析
温度が低い溶融混合物の供給口が設けられている。
At the lower portion, a crystal slurry outlet 15 is provided.
The crystal slurry extracted from the crystal slurry withdrawal port 15B, which has A and 15B, is fed to the refining section 10A of the first crystal tank 1A by the slurry pump 16B and the crystal slurry withdrawal port 1
The crystal slurry from 5A is configured to be fed to the refining section 20 in the upper part of the purification tower 2 by the slurry pump 16A. In the lower part of the first crystal tank 1A, a molten mixture 17 of a plurality of components, for example, a eutectic system containing the components A and B, in which the crystallization temperature of the A component is high and the crystallization temperature of the mixture of the AB component is low, A supply port for the mixture is provided.

【0017】一方、精製塔2は竪型をなしており、その
上部に清澄部20を有している。また精製塔2は、上部
に清澄部20を有することを除いて、その精製原理は特
公昭54−34705号公報等において公知のものであ
る。すなわち、下部にはスチーム等の熱媒21が通され
る加熱器22が設けられ、内部には清澄部20より下方
の領域の結晶粒子層の挙動の安定化のための攪拌装置2
3が配され、駆動モータ24によって運転可能となって
いる。さらに下部にはスクリーン25が配され、不純物
をここで除去しながらポンプ26により溶融物の一部を
製品27として抜き出す構成とされている。
On the other hand, the refining tower 2 is of a vertical type, and has a refining section 20 above it. Further, the refining tower 2 has a refining principle known in, for example, Japanese Patent Publication No. 54-34705, except that it has a refining section 20 at the top. That is, a heater 22 through which a heat medium 21 such as steam is passed is provided in the lower part, and an agitator 2 for stabilizing the behavior of the crystal particle layer in a region below the refining part 20 is provided inside.
3 are arranged and can be operated by the drive motor 24. Further, a screen 25 is arranged in the lower part, and a part of the melt is extracted as a product 27 by a pump 26 while removing impurities here.

【0018】他方、精製塔2の上部には溢流口28が形
成され、清澄液は管路31によって重力により第1結晶
槽1Aの清澄部10Aへ導かれ、第1結晶槽 1Aの清
澄部10Aには溢流口18Aが形成され、そこから流出
する清澄液は第2結晶槽1Bの清澄部10Bへ管路32
により導かれ、さらにそこに形成された溢流口18Bか
らの清澄液は管路33によって系外へ排出されるように
なっている。
On the other hand, an overflow port 28 is formed in the upper part of the purification tower 2, and the clarified liquid is guided to the clarification part 10A of the first crystallization tank 1A by gravity by the pipe line 31, and the clarification part of the first crystallization tank 1A. An overflow port 18A is formed in 10A, and the clarified liquid flowing out from the overflow port 18A is supplied to the clarification section 10B of the second crystallization tank 1B by a conduit 32.
The clarified liquid from the overflow port 18B, which is guided by the above, is discharged to the outside of the system through the pipe line 33.

【0019】このように構成された精製設備では、第2
結晶槽1B、第1結晶槽1Aおよび精製塔2の順で順次
高い温度で操作される。その例は、第2結晶槽1Bの晶
析温度13℃、第1結晶槽1Aのそれが43℃、精製塔
2ではその上部が48℃、下部が53℃とされる。
In the refining equipment thus constructed, the second
The crystallizing tank 1B, the first crystallizing tank 1A, and the refining tower 2 are sequentially operated at higher temperatures. In the example, the crystallization temperature of the second crystal tank 1B is 13 ° C., that of the first crystal tank 1A is 43 ° C., and in the refining tower 2, the upper portion thereof is 48 ° C. and the lower portion thereof is 53 ° C.

【0020】いま溶融混合物17が第1結晶槽1Aに供
給されると、その掻取冷却面で冷却され過飽和となり、
過飽和液は既に存在する結晶と接触して生成と成長が行
なわれる。このようにして得られた結晶スラリーは、精
製塔2の清澄部20へ導かれる。また第2結晶槽1Bの
晶析操作によって得られた結晶スラリーは、第1結晶槽
の清澄部10Aへ導かれる。
When the molten mixture 17 is supplied to the first crystal tank 1A, it is cooled by its scraping cooling surface and becomes supersaturated.
The supersaturated liquid comes into contact with already existing crystals to be produced and grown. The crystal slurry thus obtained is guided to the refining section 20 of the purification tower 2. Further, the crystal slurry obtained by the crystallization operation of the second crystal tank 1B is guided to the refining section 10A of the first crystal tank.

【0021】精製塔2内では次のような操作が行なわれ
る。すなわち清澄部20では、導かれた結晶スラリー中
の結晶と母液は、上昇する純度の高い母液によって分散
され、希釈洗浄され、その後下方の結晶粒子層へ移行す
る。結晶粒子層では、ゆっくり結晶が降下し、その際上
昇する溶融還流液と接触しながら、同時に結晶表面が溶
融洗浄されながら、加熱器22の溶融部に至り、そこで
溶融され、一部は製品27として抜き出される。抜き出
し以外の溶融物は還流液となって塔内を上昇し、降下す
る結晶の洗浄に供される。このような操作が連続的に行
なわれる。
The following operations are carried out in the purification tower 2. That is, in the refining unit 20, the crystals and the mother liquor in the guided crystal slurry are dispersed by the rising mother liquor of high purity, diluted and washed, and then transferred to the lower crystal particle layer. In the crystal particle layer, the crystal slowly descends, and at the same time, the crystal surface is melted and washed while being in contact with the ascending molten reflux liquid, and at the same time, reaches the melting part of the heater 22 and is melted there, and part of the product 27 Is extracted as. The melt other than withdrawal becomes a reflux liquid, which rises in the column and is used for washing the falling crystals. Such an operation is continuously performed.

【0022】精製塔2の清澄部20で希釈され清澄され
た清澄液は第1結晶槽1Aへ返送され、晶析に供せられ
る。さらに第1結晶槽1Aの上部では、第2結晶槽1B
から導かれた結晶スラリーが、第1結晶 槽1Aの母液
と混合されて結晶は希釈洗浄され、純化された結晶が下
方の結晶発生部へ下降する。一方、第1結晶槽1Aの析
出条件で得られた母液は、さらに冷却温度を下げてA成
分を回収する必要があるため、第2結晶槽1Bの清澄部
10Bへ導かれ、第2結晶槽1Bにおいて同様な晶析操
作が実行される。最終のB成分を多く含む母液は、管路
33により系外へ取り出される。
The clarified liquid diluted and clarified in the clarification section 20 of the purification tower 2 is returned to the first crystallization tank 1A for crystallization. Further, in the upper part of the first crystal tank 1A, the second crystal tank 1B is provided.
The crystal slurry derived from (1) is mixed with the mother liquor in the first crystal tank 1A to dilute and wash the crystals, and the purified crystals descend to the lower crystal generating portion. On the other hand, the mother liquor obtained under the precipitation conditions of the first crystal tank 1A is guided to the refining section 10B of the second crystal tank 1B because it is necessary to further lower the cooling temperature to recover the A component, and the second crystal tank A similar crystallization operation is performed in 1B. The final mother liquor containing a large amount of B component is taken out of the system through the conduit 33.

【0023】以上のように、本発明法では、結晶と母液
が確実に向流接触するので、精製効率はきわめて高いも
のとなるとともに、必らずしも固液分離装置を必要とせ
ず、設備費および運転費が低減する。
As described above, according to the method of the present invention, the crystals and the mother liquor are surely brought into countercurrent contact with each other, so that the purification efficiency is extremely high, and the solid-liquid separation device is not necessarily required. Costs and operating costs are reduced.

【0024】さらに、本発明においては、温度差を大き
く採るため、ならびに高温側に移行するスラリー中の母
液量を減じ、高温側の清澄部から向流的にオーバーフロ
ーする清澄液との向流効率を高めるために、固液分離手
段が設けられる。すなわち、図1において、符号50は
その固液分離手段としての、液体サイクロンである。
Further, in the present invention, in order to obtain a large temperature difference, and by reducing the amount of the mother liquor in the slurry that moves to the high temperature side, the countercurrent efficiency with the refining liquid that overflows countercurrently from the refining section on the high temperature side. A solid-liquid separation means is provided in order to increase the temperature. That is, in FIG. 1, reference numeral 50 is a liquid cyclone as the solid-liquid separating means.

【0025】この固液分離手段としては、濾過機または
遠心分離機等の固液分離装置であってもよいが、メンテ
ナンスなどの点で液体サイクロンが有利である。
The solid-liquid separating means may be a solid-liquid separating device such as a filter or a centrifuge, but a liquid cyclone is advantageous in terms of maintenance.

【0026】また、結晶槽において清澄部と晶析部とを
間壁または仕切りによって分離してもよい。かかる構成
によれば、晶析物の清澄部への移行を防止できる。原料
たる共晶物の供給位置は、供給濃度によって選定すれば
よく、純度の高いものは高温側の結晶槽に、低いものは
低温側の結晶槽へ供給する。さらに再結晶を繰り返して
純度を工場せんとする場合には、同設備での運転を複数
回繰返せばよい。しかし、本発明法による場合、純度の
高いものが容易に得られるので、通常その必要はない。
Further, in the crystallization tank, the refining section and the crystallization section may be separated by a partition wall or a partition. With this configuration, it is possible to prevent the crystallized substances from moving to the refining section. The supply position of the eutectic material as a raw material may be selected according to the supply concentration. High purity ones are supplied to the high temperature side crystal tank, and low purity ones are supplied to the low temperature side crystal tank. Further, in the case where the recrystallization is repeated to obtain the purity in the factory, the operation in the same equipment may be repeated a plurality of times. However, in the case of the method of the present invention, a highly pure product can be easily obtained, and thus it is not usually required.

【0027】上記例は結晶槽として2基を設けた例であ
るが、さらに増してもよいし、かつ単に1基で精製塔と
組み合せたものでもよい。要は、得ようとする純度と、
A成分をどの程度まで回収しようとするかによって結晶
槽の基数が選定される。
Although the above example is an example in which two units are provided as the crystallization tank, the number of units may be further increased, or only one unit may be combined with the purification column. In short, the purity you are trying to obtain,
The radix of the crystallization tank is selected depending on how much the component A is to be recovered.

【0028】ところで、前の説明において、固液分離装
置を設けてもよいことに言及した。
By the way, in the above description, it was mentioned that a solid-liquid separator may be provided.

【0029】固液分離装置を設けない場合、晶析部から
清澄部へ結晶スラリーがほぼそのままの温度で移行する
ため、結晶槽間または精製塔との間で温度差が取れな
い。もし、どうしても温度差を取りたいのであれば、蒸
発缶により蒸発を行い、結晶のみを清澄部へ移行させる
方法もあるが、この場合熱エネルギーが必要となるし、
母液が無駄になる。そこで、温度差を取る必要がある場
合には、濾過機またはサイクロンを設けて、結晶のみを
清澄部へ移行させればよい。濾過機を用いる場合、最大
30℃,サイクロンを用いる場合、通常は5℃程度、最
大10〜15℃程度の温度差を取ることが可能である。
分離後の母液は、濾過機の場合には結晶槽の清澄部へ、
サイクロンの場合は結晶が母液に一部同伴するので清澄
部の下部または晶析部へ返送するのが望ましい。
When the solid-liquid separator is not provided, the crystal slurry moves from the crystallization section to the refining section at almost the same temperature, so that a temperature difference cannot be obtained between the crystal tanks and the purification tower. If you absolutely want to take the temperature difference, there is also a method of evaporating with an evaporator and transferring only crystals to the refining section, but in this case heat energy is required,
The mother liquor is wasted. Therefore, if it is necessary to obtain a temperature difference, a filter or a cyclone may be provided to transfer only the crystals to the refining section. When a filter is used, a maximum temperature difference of 30 ° C. and when a cyclone is used, a temperature difference of usually about 5 ° C. and a maximum of about 10 to 15 ° C. can be taken.
The mother liquor after separation, in the case of a filter, to the clarification section of the crystallization tank,
In the case of a cyclone, some crystals are entrained in the mother liquor, so it is desirable to return them to the lower part of the refining section or the crystallization section.

【0030】次に実施例を示す。前記具体例とほぼ同様
な装置構成によって、PDCB( パラ・ジクロルベンゼン)
の精製を行った。結晶槽は、直径600mm, 高さ100
0mmジャケット付冷却式結晶槽で、そのジャケット高さ
600mm、液高900mm, 液の清澄部300mmとなし、
この結晶槽を2基直列的に配置した。また直径400m
m, 高さ2000mm, 下部に電熱面積0.2m2 の加熱器を
有する精製塔を用意した。なお、結晶槽の電熱面積は、
1.14m2であり、また付設された攪拌機は1.5 kWのモ
ータにより20rpm で運転し、かつジャケット面の前面掻
取りが可能な掻取刃を設け、中心にドラフトチューブを
持った構造とした。
Next, examples will be shown. The PDCB (para-dichlorobenzene) has a device configuration similar to that of the above specific example.
Was purified. The crystal tank has a diameter of 600 mm and a height of 100
Cooling crystal tank with 0mm jacket, with a jacket height of 600mm, a liquid height of 900mm, and a liquid refining section of 300mm.
Two of these crystal vessels were arranged in series. Also 400m in diameter
A purification tower having a heater of m, height of 2000 mm, and an electric heating area of 0.2 m 2 at the bottom was prepared. The heating area of the crystal tank is
A 1.14 2, also attached to the agitator was operated at 20rpm by 1.5 kW motor, and provided with a scraper blade capable Although Ri front scraping the lateral surface, and a structure having a draft tube in the center.

【0031】かかる装置に対して、PDCB90%、ODCB(
オルソ・ジクロルベンゼン )9%、MDCB(メタ・ジクロ
ルベンゼン)1%の混合物を第1結晶槽に平均 100
kg/hrで供給し、第1槽の上部より得られた清澄液は第
2槽に、析出した結晶は精製塔上部に供給し、また精製
塔の下部からは製品を取出し、その上部からの溢流液は
第1槽へ返送した。第2結晶槽では、第1槽からの溢流
液を受け入れて、PDCBの結晶化を行い、得られた結晶は
第1槽へ送給し、上部の溢流液は系外へ取出した。
For such a device, PDCB 90%, ODCB (
An average of 100% of a mixture of 9% ortho-dichlorobenzene) and 1% MDCB (meta-dichlorobenzene).
It is supplied at a rate of kg / hr, the clarified liquid obtained from the upper part of the first tank is supplied to the second tank, the precipitated crystals are supplied to the upper part of the purification tower, and the product is taken out from the lower part of the purification tower and the The overflow liquid was returned to the first tank. In the second crystal tank, the overflow liquid from the first tank was received to crystallize PDCB, the obtained crystals were fed to the first tank, and the upper overflow liquid was taken out of the system.

【0032】ここで運転温度条件は、第1槽43℃、第
2槽13℃、精製塔上部48℃、下部53℃とした。精
製塔での製品は83kg/hrで抜き出し、そのPDCBの純度
は99.9%であった。なお、精製塔での還流量は25
〜30kg/hrであった。さらに、第2槽から第1槽への
結晶移送量は、約70kg/hr、第1槽から第2槽へのそ
れは約220kg/hrであり、第2槽からの溢流液濃度は
PDCB40%であり、回収率は92.6%であった。
The operating temperature conditions were 43 ° C. in the first tank, 13 ° C. in the second tank, 48 ° C. in the upper part of the purification tower, and 53 ° C. in the lower part. The product in the purification tower was extracted at 83 kg / hr, and the PDCB purity was 99.9%. The reflux amount in the purification tower is 25
It was ~ 30 kg / hr. Furthermore, the amount of crystals transferred from the second tank to the first tank is about 70 kg / hr, that from the first tank to the second tank is about 220 kg / hr, and the concentration of the overflow liquid from the second tank is
The PDCB was 40% and the recovery rate was 92.6%.

【0033】この実施例のように、本発明法によると、
前述の蒸留法と比較すると、精製塔内において一般に下
部に移行する溶融熱は、蒸発潜熱の1/10〜1/5で
あり、また前述の実施例でのPDCBの精製のような近接し
た沸点を持つ系の場合について蒸留法と比較すると、還
流比は1/10〜1/100でよいため、加熱のための
スチーム消費量は1/10以下となり、熱エネルギー的
にきわめて少くて足りる。
As in this embodiment, according to the method of the present invention,
Compared with the above-mentioned distillation method, the heat of fusion generally transferred to the lower part in the purification column is 1/10 to 1/5 of the latent heat of vaporization, and the boiling point is similar to that of the PDCB purification in the above-mentioned embodiment. Compared with the distillation method in the case of the system having the, the reflux ratio may be 1/10 to 1/100, so the steam consumption for heating is 1/10 or less, and the heat energy is extremely small.

【0034】また、従来の晶析装置による場合、高純度
のものを得ようとすれば、2〜3回の再結晶法を採らね
ばならないが、前述のように99.9%の純度を1回の
精製で達成でき、省エネルギー化が可能であるし、また
再結晶操作を行うと製品損失が5%程度あったのに対し
て、本発明法によれば、ほぼゼロとなり、しかも再結晶
法では2〜3人の運転員を必要としていたが、本発明で
は0.5人で足りることが判明した。
Further, in the case of using a conventional crystallizer, if a high-purity product is to be obtained, a recrystallization method must be carried out 2-3 times, but as described above, a purity of 99.9% is 1%. It can be achieved by refining once, energy saving is possible, and the product loss was about 5% when the recrystallization operation was performed, whereas according to the method of the present invention, it was almost zero, and the recrystallization method was also used. However, the number of operators required was 2 to 3, but it was found that the present invention requires 0.5.

【0035】[0035]

【発明の効果】以上の通り、本発明によれば、設備費お
よび運転費を低減できるとともに、精製効率の高い運転
を行うことができる。
As described above, according to the present invention, the facility cost and the operating cost can be reduced, and the operation with high purification efficiency can be performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一例を示すフローシートである。FIG. 1 is a flow sheet showing an example of the present invention.

【図2】その要部の詳細図である。FIG. 2 is a detailed view of a main part thereof.

【符号の説明】[Explanation of symbols]

1A…第1結晶槽、1B…第2結晶槽、2…精製塔、1
0A,10B,20…清澄部、12A,12B…冷却ジ
ャケット、14A,14B…掻取羽根、17…溶融混合
物、22…加熱器、23…攪拌装置、27…製品、50
…液体サイクロン。
1A ... 1st crystal tank, 1B ... 2nd crystal tank, 2 ... Purification tower, 1
0A, 10B, 20 ... Clarifying section, 12A, 12B ... Cooling jacket, 14A, 14B ... Scraping blade, 17 ... Molten mixture, 22 ... Heater, 23 ... Stirrer, 27 ... Product, 50
… Hydrocyclone.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中丸 和登 東京都中央区佃2丁目17番15号 月島機械 株式会社内 (72)発明者 三輪 浩司 東京都中央区佃2丁目17番15号 月島機械 株式会社内 (56)参考文献 特開 昭57−99301(JP,A) 特公 昭53−9585(JP,B2) 特公 平4−31721(JP,B2) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kazuto Nakamaru 2-17-15 Tsukushima, Chuo-ku, Tokyo Within Tsukishima Kikai Co., Ltd. (72) Koji Miwa 2-17-15 Tsukishima, Chuo-ku, Tokyo Tsukishima Machinery Co., Ltd. (56) Reference JP-A-57-99301 (JP, A) JP-B 53-9585 (JP, B2) JP-B 4-31721 (JP, B2)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】上部にそれぞれ清澄部を有する複数の冷却
式結晶槽と、上部に清澄部を下部に加熱器をそれぞれ有
する竪型溶融精製塔とを備えた設備を用い、結晶槽に対
して原料を供給するとともに、前記各結晶槽は各々異な
る温度で晶析操作を行い、前記精製塔は各晶析操作温度
のうち最も高い温度よりさらに高い温度で運転し、結晶
槽において生成した結晶はそれより高い温度で晶析操作
が行われている結晶槽の清澄部へ導き、最高晶析操作温
度の結晶槽で生成した結晶は固液分離手段を介して精製
塔の清澄部へ導き、精製塔内を下部へ移行する結晶に対
してその下部の加熱器により溶融し、溶融物の一部を製
品として取出し、他の部分を還流液として上昇させ、前
記下部へ移行する結晶の洗浄を行い、精製塔および結晶
槽の上部の清澄液は晶析操作温度の高い結晶槽から低い
結晶槽への順で移行させ、最終低温結晶槽の清澄液は系
外に取出し、 対象の複数成分の溶融混合物について、生成結晶と母液
との関係に関し、結晶槽の上部と下部、ならびに精製塔
の上部と下部との間において、生成結晶の流れと母液の
流れに関し、結晶槽から精製塔の清澄部への流れとその
精製塔の上部清澄部から結晶槽への流れにおいて、それ
ぞれ向流関係にあることを特徴とする向流式溶融物冷却
精製法。
1. A crystallization tank equipped with a plurality of cooling type crystal tanks each having a refining section at the top and a vertical melting and refining tower having a refining section at the top and a heater at the bottom, respectively. While supplying the raw materials, each of the crystallizing tanks performs a crystallization operation at a different temperature, the refining tower is operated at a temperature higher than the highest temperature among the crystallization operating temperatures, and the crystals produced in the crystallizing tank are It is led to the refining section of the crystal tank where the crystallization operation is performed at a higher temperature, and the crystals produced in the crystal tank with the highest crystallization operation temperature are introduced to the refining section of the purification tower through the solid-liquid separation means for purification. The crystals that move to the lower part of the column are melted by the heater of the lower part, a part of the melt is taken out as a product, the other part is raised as reflux liquid, and the crystals that move to the lower part are washed. , Clearing liquid at the top of the purification tower and crystallizer The crystallization operation temperature is changed from a high-temperature crystallization tank to a low-temperature crystallization tank in this order, and the final low-temperature crystallization tank clarified liquid is taken out of the system. Regarding the flow of the produced crystals and the flow of the mother liquor between the upper and lower portions of the crystal tank and between the upper and lower portions of the purification tower, the flow from the crystal tank to the refining section of the purification tower and the crystals from the upper refining section of the purification tower A countercurrent melt cooling and refining method characterized by having countercurrent relationships in the flow to the tank.
【請求項2】複数の結晶槽間にも固液分離手段を有する
請求項2記載の向流式溶融物冷却精製法。
2. The countercurrent melt cooling and refining method according to claim 2, further comprising solid-liquid separating means between a plurality of crystallizing tanks.
【請求項3】固液分離手段は、液体サイクロンである請
求項1または2記載の向流式溶融物冷却精製法。
3. The countercurrent melt cooling and refining method according to claim 1, wherein the solid-liquid separating means is a liquid cyclone.
JP3087021A 1991-04-18 1991-04-18 Countercurrent melt cooling refining method Expired - Lifetime JPH0794001B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3087021A JPH0794001B2 (en) 1991-04-18 1991-04-18 Countercurrent melt cooling refining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3087021A JPH0794001B2 (en) 1991-04-18 1991-04-18 Countercurrent melt cooling refining method

Publications (2)

Publication Number Publication Date
JPH0724206A JPH0724206A (en) 1995-01-27
JPH0794001B2 true JPH0794001B2 (en) 1995-10-11

Family

ID=13903307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3087021A Expired - Lifetime JPH0794001B2 (en) 1991-04-18 1991-04-18 Countercurrent melt cooling refining method

Country Status (1)

Country Link
JP (1) JPH0794001B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1017956C2 (en) * 2001-04-27 2002-11-05 Korporam B V Multi-stage countercurrent crystallizer.

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS539585A (en) * 1976-07-14 1978-01-28 Toshiba Ceramics Co Protective tube for continuous temperature measurement
JPS5799301A (en) * 1980-12-09 1982-06-21 Nippon Kayaku Co Ltd Purification of crystalline substance

Also Published As

Publication number Publication date
JPH0724206A (en) 1995-01-27

Similar Documents

Publication Publication Date Title
US4588414A (en) Countercurrent, cooling crystallization and purification method for multi-component molten mixture
EP0400171B1 (en) Countercurrent multi-stage water crystallization for aromatic compounds
JP3979505B2 (en) Method for producing high purity terephthalic acid
JP2012158614A (en) Process for producing high-purity terephthalic acid
EP0084895B1 (en) A process for the continuous partial crystallization and the separation of a liquid mixture and a device for carrying out this process
JPH08176045A (en) Method of refining bisphenol a
CN112321560A (en) Method and system for continuously purifying L-lactide by suspension crystallization
JP3731681B2 (en) Method for producing high purity terephthalic acid
CN105294384A (en) Device for separating p-xylene crystal
JPS6010763B2 (en) Countercurrent crystal formation method by recirculation
JPS63185402A (en) Method and apparatus for recovering pure substance from liquid mixture by crystallization
JPH0794001B2 (en) Countercurrent melt cooling refining method
US20240010599A1 (en) Method for purifying compound
JPH0691103A (en) Countercurrent cooling and purifying device for melt and method therefor
EP0119978B1 (en) Incrustation resistive crystallizer
EP0067224B1 (en) Process for producing dibenzofuran
US20240010600A1 (en) Purification device
JP2000290220A (en) Purification of acrylic acid
JPH05228301A (en) Scraping-type indirectly cooling crystallization method
JP2501106B2 (en) Method for purifying dimethylphenol
US4338464A (en) Removal of bromobutanone from acetic acid
JPS594401A (en) Purification device of crystal
CA1316943C (en) Countercurrent multi-stage water crystallization of aromatic compounds
JPH01168648A (en) Purification of hexamethylenediamine
JPS6259603B2 (en)