JPS594401A - Purification device of crystal - Google Patents

Purification device of crystal

Info

Publication number
JPS594401A
JPS594401A JP11211282A JP11211282A JPS594401A JP S594401 A JPS594401 A JP S594401A JP 11211282 A JP11211282 A JP 11211282A JP 11211282 A JP11211282 A JP 11211282A JP S594401 A JPS594401 A JP S594401A
Authority
JP
Japan
Prior art keywords
crystal
stage
chamber
supplied
purification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11211282A
Other languages
Japanese (ja)
Inventor
Shigeru Saito
斎藤 繁
Noboru Suzuki
登 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kureha Corp
Original Assignee
Kureha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Corp filed Critical Kureha Corp
Priority to JP11211282A priority Critical patent/JPS594401A/en
Publication of JPS594401A publication Critical patent/JPS594401A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To purify with high purity and high yield an intended crystal component from crude raw material crystals by providing a purification stage and a recovering stage in a refining column, removing the crystals purified in the respective divided chambers once to the outside of the column, and cooling the same forcibly then feeding the crystal into the next chambers. CONSTITUTION:A purifying stage which is the stage above a chamber 3 having a supply port 10 for raw material and a recovering stage which is the stage below the chamber 3 are provided to a purification column 1. The crystals discharged through the crystal discharge ports 8 of the respective chambers 3 in the purification stage are cooled forcibly with a cooler 9 and are then supplied into the next purification chambers, and the liquid discharged through liquid discharge ports 5 is supplied from the corresponding chambers to the previous purification chambers. The liquid discharged from the first purification chamber to be supplied with a crude raw material crystal through a supply port 10 for raw material is cooled with a cooler 9' and is thus crystallized, whereafter the crystal is supplied into the lower recovering stage. In the recovering stage as well, the discharged crystal is supplied to the next crystal supply chamber for higher purity similarly, and the discharged liquid is supplied to the previous crystal supply chamber for lower purity.

Description

【発明の詳細な説明】 本発明は不純物を含む結晶性物質を該結晶成分の精製さ
れた融解液を利用して連続的に処理する結晶精製装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a crystal purification apparatus that continuously processes a crystalline substance containing impurities using a purified melt of the crystal component.

従来、結晶の精製装置としては種々のものがあるが、目
的結晶成分の融解11(を利用して精製する装置として
は、例えば特公昭47−40621・号公報に開示され
たものがあるうこの公報に開示される装置は下部に不純
物を含む被精製物質を塔内に送り込む手段を有し、上部
に精製された結晶を融解させ、その一部を塔内に戻し不
純な結晶の洗滌液として使用する手段と、精4.7され
た物質を外部に取出す手段を有する直立したviv製塔
内に、l+li4短冊状の翼を単一螺旋階段状に取付は
塔内に送り込咬れた結晶をときほぐす区能と結晶を押し
上け167送する機能とを兼ね(+iifえ必快に応じ
内部に結晶の併有を防止するための加熱手段を有する互
に噛み合って逆方向或は同方向に回転する2個或は2個
以上の攪拌機を設け、結晶を固結させないように塔内を
上昇させながら結晶性物質を精製するように構成される
Conventionally, there are various crystal purification apparatuses, but an example of an apparatus for purifying a target crystal component using melting 11 is the one disclosed in Japanese Patent Publication No. 47-40621. The device disclosed in the publication has a means in the lower part for feeding the substance to be purified containing impurities into the column, and a means for melting the purified crystals in the upper part and returning a part of it to the column as a washing liquid for impure crystals. 4.7 Into an upright VIV tower with a means for taking out the purified material to the outside, l+li4 rectangular blades are installed in the form of a single spiral staircase to feed the crushed crystals into the tower. It has both the function of loosening the crystals and the function of pushing the crystals upwards (+iif). Two or more rotating stirrers are provided, and the crystalline substance is purified while being raised inside the column so as not to solidify the crystals.

このような構成の結晶精製装置により、目的結晶成分の
融解液を利用して不純物を含む粗結晶を精製するとき、
原料粗結晶は塔の下部より導入され、内部に設けた楯、
拌算により塔頂に向つて揚昇される。塔頂に達した結晶
は必要量が融解されて還流液となり、重力によって塔内
を流下する。残りの結晶は取り出されて製品となる。
When using a crystal purification apparatus with such a configuration to purify crude crystals containing impurities using a melt of the target crystal component,
Raw material crude crystals are introduced from the bottom of the tower, and a shield installed inside the tower,
It is lifted up towards the top of the tower by stirring. The required amount of crystals that reach the top of the column are melted and become a reflux liquid, which flows down the column by gravity. The remaining crystals are extracted and made into a finished product.

本発明者等はこの結晶精製の機構の解析に努めたところ
、塔内を揚昇する結晶は流下してくる純度の高い融解液
との連続的な向流接触により結晶の表面の洗滌作用、固
体中に包まれた不純物或は固溶された不純物は結晶の充
分に長い塔内滞留中における物質交換(発汗作用)、下
降する還流液が下降するに従って熱を奪われるために起
る再結晶化などが、同時に起っている事がわかった。
The present inventors endeavored to analyze the mechanism of this crystal refining, and found that the crystals lifting up in the column have a washing effect on the surface of the crystals due to continuous countercurrent contact with the highly pure melt flowing down. Impurities encapsulated in the solid or impurities dissolved in the solid are caused by mass exchange (sweating effect) during the sufficiently long stay of the crystal in the column, and by recrystallization that occurs as the descending reflux liquid loses heat as it descends. It turns out that these changes are occurring at the same time.

これらの作用のうち主なる作用は洗滌作用でノ あるが、これ以外の作用が起っていることは第1図のグ
ラフから明らかである。第1図は粗結晶を充分多量の純
粋液で連続的に洗滌した後書られる結晶の洗滌液量と不
純物含有量の関係を示すグラフであってこれちから洗滌
操作のみを充分に行っても、到達純度に限界のあること
が理解される。しかし前述特公昭47−40621号公
報記載の精製装置で処理された結晶の純度は第1図の点
線で示した部分の右端の点に相当し洗滌実験で得られた
純度を上廻っている。これは洗滌作用以外に発汗ri用
及び再結晶作用の働きが加わったためである。共融系の
粗結晶を融点近くで1時間保持した後純粋液で洗滌する
と略点線で示した純度にまで到達することから発汗作用
の効果が大きいことが考えられる。粗結晶が固溶体の場
合には、洗滌作用と発汗作用のみでは充分な純度には到
達し得ない。目的結晶成分が不純物と固溶体を形成する
場合には更に再結晶作用の強化が必要であるうしかし°
前記装置においては熱収支の面から再結晶作用に大きく
期待することができない。
The main effect among these effects is the cleaning effect, but it is clear from the graph in FIG. 1 that other effects occur. FIG. 1 is a graph showing the relationship between the amount of washing solution and the impurity content of the crystals after continuously washing the crude crystals with a sufficiently large amount of pure solution. It is understood that there are limits to the purity that can be achieved. However, the purity of the crystals treated with the purification apparatus described in Japanese Patent Publication No. 47-40621 corresponds to the rightmost point of the dotted line in FIG. 1, and exceeds the purity obtained in the washing experiment. This is because in addition to the cleaning action, it also has the functions of sweating and recrystallization. If the eutectic crude crystals are kept near their melting point for 1 hour and then washed with a pure liquid, the purity approximately shown by the dotted line is reached, which suggests that the perspiration effect is large. When the crude crystals are a solid solution, sufficient purity cannot be achieved by washing and perspiration alone. However, if the target crystal component forms a solid solution with impurities, it may be necessary to further strengthen the recrystallization effect.
In the above-mentioned apparatus, we cannot expect much from the recrystallization effect from the standpoint of heat balance.

本発明者等は前記結晶精製装置における再結晶作用を強
化することについて研究するに当り古くから行なわれて
きた蒸留方式による精密分離法に注目した。蒸留方式の
場合に精密分離に持ち込む手段として還流量を増やす方
法が採られるが、前記結晶精製、塔においては蒸留塔と
の本質的な構造の違いから余り還流量を増やすことがで
きない。
In researching how to enhance the recrystallization effect in the crystal purification apparatus, the present inventors focused on a precision separation method using a distillation method that has been practiced for a long time. In the case of a distillation method, a method of increasing the reflux amount is adopted as a means of achieving precision separation, but the reflux amount cannot be increased much in the crystal purification column because of the essential structural difference from the distillation column.

本発明者等はこの難点を解決し原料粗結晶より目的結晶
成分を高純度で、かつ高収率で精製するべく研究した結
果、精製塔を多段に分割しそれぞれ複数個の室からなる
精製段と回収段を設け、分割された各室で精製された結
晶は一旦塔外に抜出して強制的に冷却した結晶を次の室
に送り込む本発明に至った。ここで精製段とは供給され
る原料の純度を上げる段、回収段とは供給される原料の
純度以下のものを原料の純度まで上げ回′収する段であ
る。
The present inventors have conducted research to resolve this difficulty and purify the target crystal component from raw material crude crystals with high purity and high yield.As a result, the purification tower was divided into multiple stages, each consisting of a plurality of chambers. The present invention has been developed in which a recovery stage is provided, and the crystals purified in each divided chamber are once extracted outside the column and the forcibly cooled crystals are sent to the next chamber. Here, the purification stage is a stage for increasing the purity of the supplied raw material, and the recovery stage is a stage for raising the purity of the supplied raw material to that of the raw material and recovering it.

以下附図により本発明装置を詳しく説明する。The apparatus of the present invention will be explained in detail below with reference to the accompanying drawings.

第2図は本発明装置の1例の横断面図であり、第6図は
その縦断面図である。
FIG. 2 is a cross-sectional view of one example of the device of the present invention, and FIG. 6 is a longitudinal cross-sectional view thereof.

本発明装置はその横断面が2個以上の円を−の仕切られ
た部分、(以下室と記す)からなる精製段および回収段
とする。精製段とは原料供給口10を有する室より上方
の段、回収段とはそれより下方の段である。
The apparatus of the present invention has a purification stage and a recovery stage, each of which has a cross section divided by two or more circles (hereinafter referred to as chambers). The purification stage is a stage above the chamber having the raw material supply port 10, and the recovery stage is a stage below it.

精製段および回収段の各室3は内部に加熱手段を、底部
に固液分離板4、固液分離板4の下方に液抜出口5、固
液分離板4の上方に被精製結晶供給口6を、および上部
には結晶抜出口8が設けられる。そして精製段において
は各室3の結晶抜出口8から取り出した結晶は冷却器9
による強制冷却後次の精製室に供給され、液抜出口5よ
りの抜出液は当該室より前の精製室に供給される。又原
料粗結晶を原料供給口10(6相当)より供給する最初
の精製室よりの抜出液は冷却器9′により冷却結晶化後
下・方・の回収段へ送られる。回収段においても精製段
におiると同様抜出結晶はより高純度の次の結晶供給室
へ、抜出液はより低純度の前の結晶供給室へ供給する如
く構成される。
Each chamber 3 of the purification stage and recovery stage has a heating means inside, a solid-liquid separation plate 4 at the bottom, a liquid extraction port 5 below the solid-liquid separation plate 4, and a crystal supply port to be purified above the solid-liquid separation plate 4. 6, and a crystal extraction port 8 is provided at the top. In the refining stage, the crystals taken out from the crystal extraction port 8 of each chamber 3 are placed in a cooler 9.
After forced cooling, the liquid is supplied to the next purification chamber, and the liquid extracted from the liquid extraction port 5 is supplied to the purification chamber before this chamber. Further, the liquid extracted from the first refining chamber to which the raw material crude crystals are supplied from the raw material supply port 10 (corresponding to 6) is cooled and crystallized by the cooler 9' and then sent to the lower recovery stage. Similarly to the purification stage i, the recovery stage is configured so that the extracted crystals are supplied to the next crystal supply chamber of higher purity, and the extracted liquid is supplied to the previous crystal supply chamber of lower purity.

精製塔1内部に設ける攪拌機12は第2図における各日
の中心に回転軸128 、128’を設け、第3図に示
す如く該回転軸128 、128’の表面に翼片12B
 、 12B’を螺旋線状に配置取付けた構造を有する
。この−組の攪拌機12.12’は相互に翼片12Bが
他の攪拌機の翼片12B’hの間に位置するように、か
つ翼片の先端が他の攪拌機の回転軸にできるだけ近くに
存在するよう取付けられる。又、各室に設けられる加熱
手段は例えば熱媒体による。あるいは電気的に加熱する
独立した装置Tとして設けてもよいが、攪拌機12に加
熱機能を保持させることもできる。攪拌機に加熱機能を
持たせる場合は撹拌機全体を加熱手段とする態様のほか
、回転軸のみ又は回転軸と翼片の一部、例えば各室の上
部に位置する翼片に加熱機能を持たせるなどの態様がと
れる。
The agitator 12 provided inside the purification column 1 has rotating shafts 128, 128' at the center of each day in FIG.
, 12B' are arranged and attached in a spiral line. This set of stirrers 12, 12' are mutually arranged in such a way that the blades 12B are located between the blades 12B'h of the other stirrers, and the tips of the blades are as close as possible to the axis of rotation of the other stirrers. installed to do so. Further, the heating means provided in each chamber is, for example, a heating medium. Alternatively, it may be provided as an independent device T that electrically heats, or the stirrer 12 may have a heating function. When a stirrer is provided with a heating function, in addition to using the entire stirrer as a heating means, only the rotating shaft or a portion of the rotating shaft and the blades, for example, the blades located at the top of each chamber, are provided with the heating function. The following modes can be taken.

本発明装置による結晶精製を第3図により説明する。Crystal purification using the apparatus of the present invention will be explained with reference to FIG.

まず原料粗結晶は!定湿度に冷却して原料供給口10よ
り最初の精製室に供給される。連続運転においては次の
yI製室の抜出液も最初の精製室に供給される。各室の
少なくとも上端部は目的結晶成分の融点温1蔓もしくは
それより若干尚い温度に維持されている。
First of all, the raw material crude crystals! The raw material is cooled to constant humidity and supplied to the first purification chamber through the raw material supply port 10. In continuous operation, the effluent from the next yI production chamber is also supplied to the first purification chamber. At least the upper end of each chamber is maintained at a temperature of one degree or slightly higher than the melting point temperature of the target crystal component.

最初の精製室の結晶後出口よりの抜出し結晶は冷却器9
により強制冷却し次の精製室へ供給される。
The crystals extracted from the outlet after crystallization in the first refining chamber are placed in the cooler 9.
It is forcibly cooled and supplied to the next refining room.

このように各精製室からの抜出し結晶は順次に次の精製
室へと送られ、順次純度が向上して行く。最終精製室の
結晶抜出口11より目的精製結晶を得る。一方第2の精
製室以降の各精製室よりの抜出し液はそのまま又は除熱
し液状でもしくは必要に応じて冷却して一部又は全部結
晶化した後、それより前の適当ないずれかの室に供給さ
れる。このとき抜出し液を供給する室はその室に供給す
る粗結晶の純度が該抜出し液の純度と同じかもしくはこ
れより低純度である室である。各精製室への粗結晶およ
び抜出し液の供給は図示する如く別々に冷却し一つの供
給口より供給する態様のほか、結晶と抜出し液を併せて
1個の冷却器で冷却して次9室に供給する態様をとって
もよい。又場合により抜出し液は冷却しない場合もち、
る。
In this way, the extracted crystals from each purification chamber are sequentially sent to the next purification chamber, and their purity is successively improved. The desired purified crystals are obtained from the crystal extraction port 11 of the final purification chamber. On the other hand, the liquid extracted from each purification chamber after the second purification chamber is sent as it is, or in liquid form after heat removal, or after being cooled as necessary to partially or completely crystallize it, to any suitable chamber before it. Supplied. At this time, the chamber to which the extracted liquid is supplied is a chamber in which the purity of the crude crystals supplied to the chamber is the same as or lower than the purity of the extracted liquid. The crude crystals and extracted liquid can be supplied to each refining chamber by cooling them separately and supplying them from one supply port as shown in the figure, or by cooling the crystals and extracted liquid together in one cooler and supplying them to the next nine chambers. It is also possible to take the form of supplying it to In some cases, the extracted liquid may not be cooled,
Ru.

このように多段に設けたN製段よりそれぞれ結晶と抜出
し液の抜出しを行ない、結晶は次の精製段に、又抜出し
液はそれより前の精製段に戻し供給する操作を多段に繰
返すことにより再結晶作用を任意の量行なわせることが
できる。
By repeating this process in multiple stages, the crystals and extracted liquid are extracted from each of the N-made stages provided in multiple stages, and the crystals are returned to the next refining stage, and the extracted liquid is returned to the previous refining stage. Any amount of recrystallization can be performed.

必要とする精製段の数は原料粗結晶の性質や目的とする
純度によって決められる。
The number of refining stages required is determined by the properties of the raw material crude crystals and the desired purity.

又回収段には、原料粗結晶が供給される最初の精製室よ
りの抜出し液が最初の回収室に供給され、精製段におけ
ると同様の機構により結晶の精製が行なわれ、原料粗結
晶と同等以上の純度になった結晶は精製段へ供給され、
不純物は最終の回収室の液抜出口13より塔外に取り出
される。
In addition, the liquid extracted from the first refining chamber to which raw material crude crystals are supplied is supplied to the recovery stage, and the crystals are purified by the same mechanism as in the refining stage, so that they are equivalent to the raw material crude crystals. The crystals with a purity higher than that are supplied to the purification stage,
Impurities are taken out of the column from the liquid extraction port 13 of the final recovery chamber.

本発明によれば洗滌作用1発汗作用のみならず再結晶作
用をも任意の量行なわせることが可能である。従って原
料粗結晶中に存在する不純物が目的結晶成分と共融系を
形成する成分であるときは勿論、精製が困難な固溶糸を
形成する成分である場合にも極めて高純度に精製するこ
しているから精Jl!率が著しく向上される。
According to the present invention, it is possible to perform not only the cleaning action and perspiration action but also the recrystallization action in any desired amount. Therefore, not only when the impurities present in the raw material crude crystal are components that form a eutectic system with the target crystal component, but also when they are components that form solid solution threads that are difficult to purify, it is necessary to purify them to extremely high purity. It's because it's so beautiful! rate is significantly improved.

又本発明による精製はその物質の沸点より極めて低い融
点において物質の分離が行なわれるため製品を熱的に破
壊させることが少なくて処理することができる長所を有
する。更に本発明による結晶精製に当り用いる高熱源、
低熱源として目的結晶成分の融点が約200″C以下の
成分である場合には例えば工場の廃熱等の低価格のもの
が利用できる利点を有する。
Further, the purification according to the present invention has the advantage that the separation of substances is carried out at a melting point much lower than the boiling point of the substance, so that the product can be processed with less thermal destruction. Furthermore, a high heat source used for crystal purification according to the present invention,
When the target crystal component has a melting point of about 200"C or less as a low heat source, there is an advantage that a low-cost material such as waste heat from a factory can be used.

本発明装置は結晶性物質であれば殆んどの物質に適応で
き精製することができる。このような物質としていくつ
か例示すると、ナフタリン、バラキシレン、ジクロルベ
ンゼン等ヲあケルことができる。
The apparatus of the present invention can be applied to and purify almost any crystalline substance. Some examples of such substances include naphthalene, paraxylene, and dichlorobenzene.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は粗結晶を純粋液で洗滌したときの洗滌液量と純
度の関係を示すグラフ、第2図は本発明による実施例装
置の横断面図、第6図は本発明による実施例装置の縦断
面図である。 1・・・精製塔、2・・・仕切板、4・・・固液分離板
(多孔板)、5・・・液、抜出口、6・・・被精製結晶
供給口、8・・・結晶抜出口、9・・・冷却器、1o・
・・原料供給口、11・・・S製品取出口、12・・・
N、拌機、13・・・液抜出口。 以    上 、  寸 l 閃 第2図 「A L、4
Fig. 1 is a graph showing the relationship between the amount of washing liquid and purity when crude crystals are washed with a pure liquid, Fig. 2 is a cross-sectional view of an embodiment of the apparatus according to the present invention, and Fig. 6 is a graph showing the relationship between the purity and the amount of washing liquid when crude crystals are washed with a pure liquid. FIG. DESCRIPTION OF SYMBOLS 1... Purification tower, 2... Partition plate, 4... Solid-liquid separation plate (perforated plate), 5... Liquid, extraction port, 6... Crystal to be purified supply port, 8... Crystal extraction port, 9...Cooler, 1o.
...Raw material supply port, 11...S product outlet, 12...
N, stirrer, 13...liquid extraction port. Above, the size 1 flash figure 2 "A L, 4

Claims (1)

【特許請求の範囲】[Claims] (”)横FOr面が211d以上の円を一部重ね合せた
形状であり、内部に回転軸の表面に213片を螺旋線状
に配置取付けた攪拌機を前記各日の中心部に有する塔を
、Cb)多段に仕切り、仕切られた各掌部分は内部に加
熱手段、底部に固液分離板、該分離板の下方に液抜出口
および該分離板の上方に粗結晶供給口を設け、主部には
結晶抜出口を有し1、(C)各室よりの抜出液は該室よ
り前の室に、又各室よりの抜出結晶は次の室に供給する
如く構成された精製段と回取段を有することを特徴とす
る結晶精製装置。
('') The tower has a shape in which circles with lateral FOr planes of 211d or more are partially overlapped, and has a stirrer in the center of each of the above days, with 213 pieces arranged in a spiral line on the surface of the rotating shaft inside. , Cb) Divided into multiple stages, each partitioned palm part has a heating means inside, a solid-liquid separation plate at the bottom, a liquid extraction port below the separation plate, and a crude crystal supply port above the separation plate, and the main (C) A purification system configured so that the liquid extracted from each chamber is supplied to the chamber before the chamber, and the crystals extracted from each chamber are supplied to the next chamber. A crystal refining device characterized by having a stage and a recovery stage.
JP11211282A 1982-06-29 1982-06-29 Purification device of crystal Pending JPS594401A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11211282A JPS594401A (en) 1982-06-29 1982-06-29 Purification device of crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11211282A JPS594401A (en) 1982-06-29 1982-06-29 Purification device of crystal

Publications (1)

Publication Number Publication Date
JPS594401A true JPS594401A (en) 1984-01-11

Family

ID=14578454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11211282A Pending JPS594401A (en) 1982-06-29 1982-06-29 Purification device of crystal

Country Status (1)

Country Link
JP (1) JPS594401A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4806318A (en) * 1986-04-15 1989-02-21 Kureha Kagaku Kogyo Kabushiki Kaisha Apparatus for purifying crystals
WO1991004777A1 (en) * 1989-10-04 1991-04-18 Shigeru Saitoh Crystal refining apparatus
US5396863A (en) * 1992-03-25 1995-03-14 Solvay (Societe Anonyme) Installation and process for the crystallization of an inorganic substance and process and installation for the crystallization of sodium carbonate monohydrate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4806318A (en) * 1986-04-15 1989-02-21 Kureha Kagaku Kogyo Kabushiki Kaisha Apparatus for purifying crystals
WO1991004777A1 (en) * 1989-10-04 1991-04-18 Shigeru Saitoh Crystal refining apparatus
US5396863A (en) * 1992-03-25 1995-03-14 Solvay (Societe Anonyme) Installation and process for the crystallization of an inorganic substance and process and installation for the crystallization of sodium carbonate monohydrate

Similar Documents

Publication Publication Date Title
JP2738958B2 (en) Method for purifying aromatic compounds
EP0105524B1 (en) Countercurrent, cooling crystallization and purification method for multi-component molten mixture
EP0305316A2 (en) Multi-stage purification unit process
EP0718267A2 (en) Process for the production of crystalline adduct of bisphenol A and phenol and apparatus therefor
EP0084895B1 (en) A process for the continuous partial crystallization and the separation of a liquid mixture and a device for carrying out this process
CN112321560A (en) Method and system for continuously purifying L-lactide by suspension crystallization
US3644103A (en) Countercurrent solid-liquid contacting using flexible bristle scre flight means
JPS6010763B2 (en) Countercurrent crystal formation method by recirculation
EP3313545A1 (en) Semi-continuous crystallization method and apparatus
JPS63185402A (en) Method and apparatus for recovering pure substance from liquid mixture by crystallization
EP2928828B1 (en) Process and apparatus for producing ammonium sulfate crystals
JPS594401A (en) Purification device of crystal
US2823242A (en) Process and apparatus for crystal purification and separation
EP0167401A2 (en) Procedure and means for separating or purifying organic substances
CN110559681A (en) Device and method for preparing high-purity p-cresol
JPH0315481B2 (en)
JPS58199002A (en) Refining device for crystal
JPS62244402A (en) Crystal refining device
JPH0699346B2 (en) Method and apparatus for crystallizing a manifold
CN104645660B (en) Continuous flow upstream fractional crystallization method and apparatus
WO1991004777A1 (en) Crystal refining apparatus
JPH11123302A (en) Method and apparatus for melting and purifying crystal
US3755390A (en) Process for continuously separating glycerides
SU1030352A1 (en) Method for isolating xylene
JPS5846322B2 (en) Method for purifying crystalline components