JPH0793147B2 - Fuel cell power generation system - Google Patents

Fuel cell power generation system

Info

Publication number
JPH0793147B2
JPH0793147B2 JP62014342A JP1434287A JPH0793147B2 JP H0793147 B2 JPH0793147 B2 JP H0793147B2 JP 62014342 A JP62014342 A JP 62014342A JP 1434287 A JP1434287 A JP 1434287A JP H0793147 B2 JPH0793147 B2 JP H0793147B2
Authority
JP
Japan
Prior art keywords
fuel cell
flow rate
air flow
power generation
generation system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62014342A
Other languages
Japanese (ja)
Other versions
JPS63181268A (en
Inventor
裕子 山田
正昭 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP62014342A priority Critical patent/JPH0793147B2/en
Publication of JPS63181268A publication Critical patent/JPS63181268A/en
Publication of JPH0793147B2 publication Critical patent/JPH0793147B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04925Power, energy, capacity or load
    • H01M8/0494Power, energy, capacity or load of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04228Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04303Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04865Voltage
    • H01M8/0488Voltage of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04955Shut-off or shut-down of fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、燃料電池発電システムに関し、特にその停
止時の電池の保護方法に関するものである。
Description: TECHNICAL FIELD The present invention relates to a fuel cell power generation system, and more particularly to a method for protecting a battery when it is stopped.

〔従来の技術〕[Conventional technology]

第4図は例えば特開昭60−138854号公報に示された従来
の燃料電池発電システムを示す図であり、図において、
(1)は多数の単体電池を直列接続してなる燃料電池、
(2)は燃料電池(1)と並列に接続された抵抗器、
(3)は燃料電池(1)と抵抗器(2)とを接続する開
閉器、(6)は直流しゃ断器、(13)は負荷装置であ
る。(8)は空気供給路、(9)は燃料供給路であり、
空気と燃料を燃料電池(1)の空気極、燃料極にそれぞ
れ供給し、化学反応により直流電力を発生させる。
FIG. 4 is a diagram showing a conventional fuel cell power generation system disclosed in, for example, JP-A-60-138854.
(1) is a fuel cell in which a large number of unit cells are connected in series,
(2) is a resistor connected in parallel with the fuel cell (1),
(3) is a switch which connects the fuel cell (1) and the resistor (2), (6) is a DC breaker, and (13) is a load device. (8) is an air supply path, (9) is a fuel supply path,
Air and fuel are supplied to the air electrode and the fuel electrode of the fuel cell (1), respectively, and DC power is generated by a chemical reaction.

次に動作について説明する。いま、燃料電池発電システ
ムは、定常運転を行っているとする。すなわち、直流し
ゃ断器(6)が投入されており、燃料電池(1)に負荷
装置(13)が接続されている。ここで負荷装置(13)に
短絡事故が発生したとすると、制御装置(図示せず)か
らの信号により、直流しゃ断器(6)をトリップして負
荷装置(13)を切り離す。それと同時に開閉器(3)を
投入し、抵抗器(2)に燃料電池出力を与える。
Next, the operation will be described. Now, it is assumed that the fuel cell power generation system is in steady operation. That is, the DC breaker (6) is turned on, and the load device (13) is connected to the fuel cell (1). If a short circuit accident occurs in the load device (13), a signal from a control device (not shown) trips the DC breaker (6) to disconnect the load device (13). At the same time, the switch (3) is turned on, and the fuel cell output is given to the resistor (2).

また、燃料電池の運転を停止するため空気供給路(8)
と、燃料供給路(9)より供給される流量を徐々に絞っ
ていく。空気流量を零にするまでには10数分以上の時間
が必要である。流量が零になった後、開閉器(3)を開
き抵抗を切り離し、制御動作を終了する。
Also, an air supply path (8) for stopping the operation of the fuel cell
Then, the flow rate supplied from the fuel supply passage (9) is gradually reduced. It takes 10 minutes or more to reduce the air flow rate to zero. After the flow rate becomes zero, the switch (3) is opened to disconnect the resistance, and the control operation is completed.

この場合、たとえば特開昭61−233974号公報に示された
ように、停止のための動作期間中図示しない起電力検出
器により燃料電池(1)の出力電圧を検出し、開閉器
(3)を制御して抵抗の接続切り離しを行ない、燃料電
池の出力電圧を一定の巾内に保つ方式のものもある。
In this case, the output voltage of the fuel cell (1) is detected by an electromotive force detector (not shown) during the operation period for stopping as shown in Japanese Patent Laid-Open No. 233974/1986, and the switch (3) is detected. There is also a system in which the output voltage of the fuel cell is maintained within a certain width by controlling the connection and disconnection of the resistor.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

従来の燃料電池発電システムの負荷しゃ断は、以上の様
に行われるので出力電圧を監視しない方式では空気及び
燃料供給量が零となった制御動作終了後も、電極に付着
した酸素分子により(水素分子の影響は比較的少ない)
空気極は高い電位におかれ(以降、残留電圧と呼ぶ)電
池劣化の要因となるなどの問題点があり、又、出力電圧
を検出して開閉器を制御する方式のものにおいては、複
数の単体電池の内のいくつかに特性の劣化したものが生
じた場合、燃料電池の合計出力電圧が見かけ上低下する
(以後、見かけ電圧低下と呼ぶ)ため、必要なときに開
閉器が接続されず、その結果良品の単体電池まで劣化さ
せてしまうと言う問題があった。これは負荷しゃ断に限
らず、一般の停止時にも問題となる。
Since the load cut-off of the conventional fuel cell power generation system is performed as described above, in the method without monitoring the output voltage, even after the control operation when the air and fuel supply amounts become zero, oxygen molecules (hydrogen (Molecular effect is relatively small)
The air electrode has a problem that it is placed at a high potential (hereinafter referred to as residual voltage) and causes deterioration of the battery. Also, in the system of detecting the output voltage and controlling the switch, a plurality of If some of the unit cells have deteriorated characteristics, the total output voltage of the fuel cell will apparently decrease (hereinafter referred to as apparent voltage decrease), so the switch will not be connected when necessary. As a result, there has been a problem that even a non-defective unit cell is deteriorated. This is a problem not only when the load is cut off, but also when the vehicle is stopped.

この発明は上記のような問題点を解消するためになされ
たもので、残留電圧対策および見かけ電圧低下対策を行
うことにより、電池に悪影響を及ぼすことなく速やかに
停止できる燃料電池発電システムを得ることを目的とす
る。
The present invention has been made to solve the above-mentioned problems, and a countermeasure for residual voltage and a countermeasure for apparent voltage drop are taken to obtain a fuel cell power generation system that can be quickly stopped without adversely affecting the battery. With the goal.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る燃料電池発電システムは、燃料電池に供
給する空気流量を検出する空気流量検出器と、燃料電池
と並列に接続された直列接続の抵抗器および開閉器と、
燃料電池の出力電圧を検出する電圧検出器と、燃料電池
発電システムの停止時、空気流量が零になっていない間
は空気流量に応じて、また、空気流量が零となった後は
燃料電池の出力電圧に応じて開閉器を開閉して燃料電池
の発電を停止する制御手段とを備えたものである。
A fuel cell power generation system according to the present invention includes an air flow rate detector that detects an air flow rate supplied to a fuel cell, a series-connected resistor and a switch connected in parallel with the fuel cell,
A voltage detector that detects the output voltage of the fuel cell, and a fuel cell power generation system that is stopped according to the air flow rate when the air flow rate is not zero and after the air flow rate is zero. Control means for opening and closing the switch according to the output voltage of the fuel cell to stop the power generation of the fuel cell.

〔作用〕[Action]

この発明における燃料電池発電システムは、燃料電池と
抵抗器を接続する開閉器を空気流量が零になっていない
間は空気流量に応じて制御するので、出力電圧に関係な
く抵抗器が接続される。また、空気流量が零となった以
後は電池電圧に応じて制御することにより、残留電圧を
低下させる。
In the fuel cell power generation system according to the present invention, the switch that connects the fuel cell and the resistor is controlled according to the air flow rate while the air flow rate is not zero, so that the resistor is connected regardless of the output voltage. . Further, after the air flow rate becomes zero, the residual voltage is reduced by controlling according to the battery voltage.

〔発明の実施例〕Example of Invention

以下、この発明の一実施例を図について説明する。第1
図において、(1)は燃料電池、(2a)、(2b)、(2
c)は燃料電池(1)と並列に接続された抵抗器、(3
a)、(3b)、(3c)は燃料電池(1)と抵抗器(2
a)、(2b)、(2c)とを接続する開閉器、(4)は燃
料電池(1)で発生した直流電力を交流電力に変換する
直交変換装置、(5)は系統と連系するための電圧変換
を行う変圧器、(6a)、(6b)及び(6c)、(6d)は抵
抗器上流側及び下流側の直流しゃ断器、(7)は系統連
系のための交流しゃ断器、(8)、(9)は電池発電に
必要な空気と燃料を供給する空気供給路及び燃料供給
路、(10)は空気流量を計測する空気流量検出器、(1
1)は燃料電池(1)の平均電圧を計測する電圧検出
器、(12)は空気流量及び電池電圧を監視しながら開閉
器(3a)、(3b)、(3c)をON/OFF制御するための制御
装置である。
An embodiment of the present invention will be described below with reference to the drawings. First
In the figure, (1) is a fuel cell, (2a), (2b), (2
c) is a resistor connected in parallel with the fuel cell (1), (3
a), (3b) and (3c) are the fuel cell (1) and the resistor (2
Switches for connecting a), (2b) and (2c), (4) an orthogonal converter for converting DC power generated in the fuel cell (1) into AC power, and (5) interconnected with the grid. For performing voltage conversion for power supply, (6a), (6b) and (6c), (6d) are resistors upstream and downstream DC breakers, (7) is AC breaker for grid interconnection , (8), (9) are air supply passages and fuel supply passages for supplying air and fuel necessary for battery power generation, (10) is an air flow rate detector for measuring the air flow rate, (1
1) is a voltage detector that measures the average voltage of the fuel cell (1), and (12) controls ON / OFF of the switches (3a), (3b) and (3c) while monitoring the air flow rate and the cell voltage. Is a control device for.

また第2図は停止時の空気流量と抵抗器及び電池電圧の
特性を、第3図は制御動作のフローチャートを示す。
Further, FIG. 2 shows the characteristics of the air flow rate and the resistor and battery voltage at the time of stop, and FIG. 3 shows a flow chart of the control operation.

次にこの発明の動作について説明する。いま燃料電池発
電システムに停止指令が入ったとする。そこで速やかに
負荷出力を最低負荷出力にまで低下した後、交流しゃ断
器(7)を開き系統から切り離す。それと同時に、開閉
切(3a)、(3b)、(3c)を投入し、抵抗器(2a)、
(2b)、(2c)に燃料電池出力を与える。また燃料電池
(1)の運転を停止するために、まず空気供給路(8)
より供給される空気流量を徐々に絞る。空気流量検出器
(10)より検出される空気流量が徐々に減少しある設定
値Qnに達した時点で制御装置(12)からの信号により開
閉器(3c)を開き、抵抗器(2c)を切り離す。これによ
り燃料電池(1)の負荷は軽くなるから、電池の出力電
圧は過度に低下する事が防止され上昇する。以下同様に
空気流量の減少に比例し、順番に抵抗器(2b)まで切り
離す。
Next, the operation of the present invention will be described. It is assumed that the fuel cell power generation system now receives a stop command. Therefore, the load output is quickly reduced to the minimum load output, and then the AC breaker (7) is opened and disconnected from the system. At the same time, open / close switch (3a), (3b), (3c) is turned on, and resistor (2a),
Fuel cell output is given to (2b) and (2c). Also, in order to stop the operation of the fuel cell (1), first, the air supply passage (8)
Gradually reduce the flow rate of the supplied air. When the air flow rate detected by the air flow rate detector (10) gradually decreases and reaches a certain set value Qn, the switch (3c) is opened by the signal from the control device (12) and the resistor (2c) is opened. Detach. As a result, the load on the fuel cell (1) is lightened, and the output voltage of the cell is prevented from excessively decreasing and increases. Similarly, in proportion to the decrease in the air flow rate, disconnect the resistors (2b) in order.

そのたびに電池の負荷は順次軽くなり、空気流量低下に
よって低くなった出力に応じた軽負荷に切換えられて、
電池出力電圧の過度の低下が未然に防止される。
Each time, the load on the battery becomes lighter, and it is switched to a light load according to the reduced output due to the decrease in the air flow rate.
Excessive reduction of the battery output voltage is prevented in advance.

次に空気流量検出器(10)より検出される空気流量が零
となり、かつ電圧検出器(11)より検出される電池電圧
が設定下限値V2以下になった時点で、制御装置(12)か
らの信号により開閉器(3a)を開き、抵抗器(2a)を切
り離す。このままでは、電極に付着した酸素分子によ
り、残留電圧が立ち、電池電圧が上昇する。そこで電池
電圧上限値V1(例えば0.8V)以上で開閉器(3a)を閉じ
て抵抗器(2a)をONし電池電圧下限値V2でONを続ける。
そして電池電圧下限値V2以下で開閉器(3a)を開いて抵
抗器(2a)をOFFとする制御を制御装置(12)により行
い、残留電圧が電池電圧上限値V1に到らなくなることを
確認して、停止の次のステップへ移行する。ここで空気
流量にのみ着目して制御を行ったが、これは燃料に比較
して酸素の方が電池に及ぼす悪い影響が大きいためであ
る。燃料流量減少の過程は空気流量と同時に行っても、
あるいは空気流量減少後に行ってもよい。
Next, when the air flow rate detected by the air flow rate detector (10) becomes zero and the battery voltage detected by the voltage detector (11) becomes less than the set lower limit value V2, the control device (12) Signal opens the switch (3a) and disconnects the resistor (2a). If left as it is, the residual voltage rises due to the oxygen molecules attached to the electrodes, and the battery voltage rises. Therefore, the switch (3a) is closed at the battery voltage upper limit value V1 (for example, 0.8V) or more, the resistor (2a) is turned on, and the ON state is continued at the battery voltage lower limit value V2.
Then, control the controller (12) to open the switch (3a) and turn off the resistor (2a) at the battery voltage lower limit value V2 or less, and confirm that the residual voltage does not reach the battery voltage upper limit value V1. Then, the process proceeds to the next step of stopping. Here, the control was performed by focusing only on the air flow rate, because oxygen has a larger adverse effect on the battery than the fuel. Even if the process of reducing the fuel flow rate is performed at the same time as the air flow rate,
Alternatively, it may be performed after the air flow rate is reduced.

なお、上記実施例では抵抗器として固定抵抗を用いた
が、可変抵抗を用い電池電圧により抵抗値を連続的に変
化する制御を行ってもよい。
Although a fixed resistor is used as the resistor in the above-described embodiment, a variable resistor may be used to control the resistance value to continuously change depending on the battery voltage.

また、上記実施例では系統に連系している場合について
述べたが、交流側あるいは直流側に負荷装置を接続して
もよい。
Further, in the above embodiment, the case where the load is connected to the grid is described, but the load device may be connected to the AC side or the DC side.

〔発明の効果〕〔The invention's effect〕

以上のように、この発明によれば、燃料電池に供給する
空気流量を検出する空気流量検出器と、燃料電池と並列
に接続された直列接続の抵抗器および開閉器と、燃料電
池の出力電圧を検出する電圧検出器と、燃料電池発電シ
ステムの停止時に空気流量の低減途中では開閉器を空気
流量に応じて開閉制御し、空気流量が零になった後は開
閉器を燃料電池の出力電圧に応じて開閉制御して燃料電
池の発電を停止する制御手段とを備えたので、直列接続
された多数の燃料電池の単体電池の中に特性が劣化した
単体があるために電池全体の電圧が見かけ上低下してい
る場合にも、空気流量が零でない間は抵抗電圧に関係な
く接続されるので、良品の燃料電池の電圧が高すぎたり
しない適性の動作状態となし、しかも空気流量が零とな
った後は電圧が高すぎたり低すぎたりしない制御が行わ
れ空気極に残留する酸素を速やかに消費して、電極の高
電位による触媒腐食、シンタリング等の燃料電池(電
極)の劣化を防止でき、速やかに停止できるという効果
がある。
As described above, according to the present invention, the air flow rate detector that detects the flow rate of air supplied to the fuel cell, the series-connected resistor and switch connected in parallel with the fuel cell, and the output voltage of the fuel cell And a voltage detector that detects when the fuel cell power generation system is stopped and the switch is controlled to open or close according to the air flow rate while the air flow rate is being reduced. Since there is provided a control means for controlling the opening / closing according to the above, and stopping the power generation of the fuel cell, the voltage of the entire cell will be Even if the air flow rate is apparently low, the connection is made regardless of the resistance voltage as long as the air flow rate is not zero. The voltage is high after It is controlled so that it does not get too low or too low, and oxygen remaining in the air electrode is quickly consumed to prevent catalyst corrosion due to high electrode potential, deterioration of the fuel cell (electrode) such as sintering, and to stop quickly. There is an effect.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の一実施例による燃料電池発電システ
ムを示す回路構成図、第2図はこの発明の一実施例によ
る停止時の空気流量と抵抗器及び電池電圧の特性図、第
3図はこの発明の一実施例による制御動作のフローチャ
ート、第4図は従来の燃料電池発電システムを示す回路
構成図である。 図において、(1)は燃料電池、(2a)〜(2c)は抵抗
器、(3a)〜(3c)は開閉器、(10)は空気流量検出
器、(12)は制御装置である。 なお図中、同一符号は同一、又は相当部分を示す。
FIG. 1 is a circuit configuration diagram showing a fuel cell power generation system according to an embodiment of the present invention, FIG. 2 is a characteristic diagram of an air flow rate at the time of stop, a resistor and a battery voltage according to an embodiment of the present invention, and FIG. FIG. 4 is a flow chart of control operation according to an embodiment of the present invention, and FIG. 4 is a circuit configuration diagram showing a conventional fuel cell power generation system. In the figure, (1) is a fuel cell, (2a) to (2c) are resistors, (3a) to (3c) are switches, (10) is an air flow detector, and (12) is a controller. In the drawings, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】複数の単体電池からなる燃料電池の発電出
力を負荷に供給する燃料電池発電システムであって、 上記燃料電池の出力に開閉器を介して接続された抵抗器
と、上記燃料電池の出力電圧を検出する電圧検出器とを
有するものにおいて、 上記燃料電池に供給する空気流量を検出する空気流量検
出器と、 上記燃料電池発電システムの停止の際、 前記負荷をしゃ断した後、前記開閉器を投入し、しかる
のち、前記空気流量の低減途中において、空気流量の減
少に応じて上記開閉器を開く制御を行い、上記空気流量
が零となった以後は上記開閉器を上記燃料電池の出力電
圧に応じて開閉制御する制御手段とを備えたことを特徴
とする燃料電池発電システム。
1. A fuel cell power generation system for supplying a power generation output of a fuel cell comprising a plurality of unit cells to a load, the resistor being connected to the output of the fuel cell via a switch, and the fuel cell. And a voltage detector for detecting the output voltage of the air cell, wherein an air flow rate detector for detecting an air flow rate to be supplied to the fuel cell, and when the fuel cell power generation system is stopped, after interrupting the load, The switch is turned on, and then, while the air flow rate is being reduced, control is performed to open the switch according to the decrease in the air flow rate, and after the air flow rate becomes zero, the switch is switched to the fuel cell. And a control means for controlling opening / closing according to the output voltage of the fuel cell power generation system.
JP62014342A 1987-01-23 1987-01-23 Fuel cell power generation system Expired - Lifetime JPH0793147B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62014342A JPH0793147B2 (en) 1987-01-23 1987-01-23 Fuel cell power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62014342A JPH0793147B2 (en) 1987-01-23 1987-01-23 Fuel cell power generation system

Publications (2)

Publication Number Publication Date
JPS63181268A JPS63181268A (en) 1988-07-26
JPH0793147B2 true JPH0793147B2 (en) 1995-10-09

Family

ID=11858394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62014342A Expired - Lifetime JPH0793147B2 (en) 1987-01-23 1987-01-23 Fuel cell power generation system

Country Status (1)

Country Link
JP (1) JPH0793147B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04101362A (en) * 1990-08-18 1992-04-02 Fuji Electric Co Ltd Electric power generating apparatus of phosphate-type fuel cell
ATE199797T1 (en) * 1997-11-20 2001-03-15 Siemens Ag METHOD AND APPARATUS FOR MONITORING A SELECTED GROUP OF FUEL CELLS OF A HIGH TEMPERATURE FUEL CELL STACK
US6025083A (en) * 1998-02-25 2000-02-15 Siemens Westinghouse Power Corporation Fuel cell generator energy dissipator
US6858336B2 (en) * 2000-12-20 2005-02-22 Utc Fuel Cells, Llc Procedure for shutting down a fuel cell system using air purge
US6641946B2 (en) 2001-02-15 2003-11-04 Siemens Westinghouse Power Corporation Fuel dissipater for pressurized fuel cell generators
US6635370B2 (en) * 2001-06-01 2003-10-21 Utc Fuel Cells, Llc Shut-down procedure for hydrogen-air fuel cell system
JP3895960B2 (en) * 2001-10-03 2007-03-22 本田技研工業株式会社 Fuel cell stack
JP4806891B2 (en) * 2003-11-27 2011-11-02 日産自動車株式会社 Fuel cell system
JP4629351B2 (en) 2004-03-19 2011-02-09 株式会社日立製作所 Polymer electrolyte fuel cell system
JP2006093092A (en) * 2004-08-23 2006-04-06 Nissan Motor Co Ltd Fuel cell
JP5122726B2 (en) * 2004-09-16 2013-01-16 株式会社日立製作所 Solid polymer fuel cell method, fuel cell system, and recording medium
JP4492824B2 (en) 2007-11-21 2010-06-30 トヨタ自動車株式会社 Fuel cell system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0763020B2 (en) * 1983-02-14 1995-07-05 株式会社東芝 Fuel cell start / stop device
JPS61233974A (en) * 1985-04-10 1986-10-18 Fuji Electric Co Ltd Main terminal voltage control device of fuel cell
JPS6290873A (en) * 1985-10-16 1987-04-25 Toshiba Corp Fuel cell power generation device
JPH0833782B2 (en) * 1986-10-15 1996-03-29 株式会社富士電機総合研究所 Fuel cell voltage control circuit

Also Published As

Publication number Publication date
JPS63181268A (en) 1988-07-26

Similar Documents

Publication Publication Date Title
CA3032333C (en) Vehicle system
US6781343B1 (en) Hybrid power supply device
US5023150A (en) Method and apparatus for controlling a fuel cell
US8384351B2 (en) Battery system using battery unit in which battery arms are connected in parallel
US6777909B1 (en) Device for generating electric energy in a motor vehicle by means of a fuel cell and method for operating such a device
US8027759B2 (en) Fuel cell vehicle system
CA2447269A1 (en) Fuel battery device and method for controlling fuel battery
JP4560825B2 (en) Assembled battery
KR20010041324A (en) Fuel cell generator energy dissipator
JPH0793147B2 (en) Fuel cell power generation system
US5075813A (en) Cell protection apparatus and method for a battery cell system
WO2005067083A1 (en) Fuel cell system and method of correcting fuel cell current
JP2002352840A (en) Fuel cell power generating device
JPS6398710A (en) Voltage control circuit for fuel cell
JP3383985B2 (en) Fuel cell power generation equipment
JPH10210685A (en) Controlling method for system-interconnected power converter for fuel cell
JPS63181269A (en) Fuel cell power generation system
CN115528649A (en) Photovoltaic system and circuit protection method of photovoltaic system
JP4075574B2 (en) Power supply system for vehicles equipped with fuel cells
JPH02270267A (en) Fuel cell power generating system
JP3646433B2 (en) Fuel cell power generator
JPH0785418B2 (en) Operating method of fuel cell power generator
JPH01298649A (en) Discharge control circuit for fuel cell
JPH1042484A (en) Charger
JPH02193537A (en) Power generating device in fuel cell