JP4560825B2 - Assembled battery - Google Patents

Assembled battery Download PDF

Info

Publication number
JP4560825B2
JP4560825B2 JP2000332672A JP2000332672A JP4560825B2 JP 4560825 B2 JP4560825 B2 JP 4560825B2 JP 2000332672 A JP2000332672 A JP 2000332672A JP 2000332672 A JP2000332672 A JP 2000332672A JP 4560825 B2 JP4560825 B2 JP 4560825B2
Authority
JP
Japan
Prior art keywords
battery
series
voltage
bypass circuit
parallel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000332672A
Other languages
Japanese (ja)
Other versions
JP2002142353A (en
Inventor
達弘 福沢
幹夫 川合
止 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2000332672A priority Critical patent/JP4560825B2/en
Publication of JP2002142353A publication Critical patent/JP2002142353A/en
Application granted granted Critical
Publication of JP4560825B2 publication Critical patent/JP4560825B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は、複数の電池を接続して成る組電池に係り、更に詳細には、リチウムイオン二次電池などの単電池を適切に接続して構成された組電池に関するものであり、かかる組電池は、電気自動車やハイブリッド自動車の電源として好適に使用される。
【0002】
【従来の技術】
近年、省エネルギーや大気汚染問題などの面から、電気自動車やハイブリッド自動車の必要性が高まっており、電気自動車電源用電池の重要性も高まっている。かかる電気自動車電源用電池の重要な技術の一つとして、信頼性の確保が挙げられ、電池に異常が生じた際には、異常電池を系から独立させて、他の電池への影響を少なくし、その後の車の走行を妨げない技術が求められている。
このような技術としては、従来、単電池又は単電池を直列に接続した電池群を並列に接続して構成した組電池において、単電池又は直列電池群にヒューズを直列に接続したものが提案されている(特開平5−250979号公報)。
【0003】
【発明が解決しようとする課題】
しかしながら、かかる従来技術のように、ただ単にヒューズを電池に対して直列に接続しただけでは、下記の理由から、電気自動車電源用の電池としては十分な信頼性が確保されないという課題があった。
即ち、常に一定の負荷電流が流れる電池については、ヒューズの溶断電流値を負荷電流値の近くに設定し、小さな過大電流でヒューズを溶断させることができるが、車両電源用電池には極めて大きな電流が流れ、通常走行時の負荷電流と最大負荷電流(最大負荷電流を流すことはあまりないが)との差が大きく、負荷変動も大きいため、これに使用されるヒューズには大容量であることが要求され、このような大容量ヒューズでは、例えば電池に微小短絡が生じた際の小さな漏れ電流は検出できない可能性があった。
【0004】
また、異常電池が生じた際にも、車両が安全な場所へ移動するための動力源は残す必要があり、このことを考慮すると、特に電気自動車やシリーズハイブリッド自動車においては、異常時に全ての電池を一度に負荷から切り離すことは難しいという課題もあった。
【0005】
本発明は、このような従来技術の有する課題に着目してなされたものであり、その目的とするところは、電池に生じた微小短絡等の異常を確実に検出し、異常電池を系から切り離し、且つ異常の起こった電池の悪影響が他の並列電池に及ぶことなく必要最低限の動力は確保できる組電池を提供することにある。
【0006】
【課題を解決するための手段】
本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、電池並列回路においても電池の異常検出を可能にし、電池に異常が生じた際にその異常を電圧計などで検出し、その信号を受けて上記電池に並列に接続された電流バイパス回路に大電流を流し、確実に回路を遮断することにより、上記課題が解決されることを見出し、本発明を完成するに至った。
【0007】
即ち、本発明の組電池は、電池を並列に接続した組電池において、
該電池の異常を検出する手段と、この各電池に並列に接続された、通電を制御する手段と抵抗体を有する電流バイパス回路と、このバイパス回路と上記電池に直列に接続された、過電流により回路を電気的に遮断する手段と、を備えることを特徴とする。
【0008】
また、本発明の組電池の好適形態は、上記電池が、複数の単電池が直列に接続された電池群であることを特徴とする。
【0009】
更に、本発明の組電池の他の好適形態は、上記電池の異常を検出する手段が、上記直列電池群の一部又は全部の電圧を電圧計で検出し、該電圧が所定値を超えたとき、異常と判断することを特徴とし、この場合、上記電圧計が上記電池ごとに設置されており、いずれかの上記電池が所定値以上の電圧を示したとき、その電圧を該電池に並列に接続された上記電圧計が検出し、上記バイパス回路のスイッチに信号を送り、このバイパス回路を閉状態にすることが望ましい。
【0010】
更にまた、本発明の組電池の他の好適形態は、上記単電池の平均電圧をV(V)、その内部抵抗をrc(Ω)、上記直列電池群の直列接続数をm(個)、当該組電池の並列接続数をn(個)、通常時最大負荷電流を(Imax)としたとき、
上記ヒューズの容量が2Imaxであり、上記バイパス回路の抵抗値が、(mV/2Imax)−(rcm/n)(Ω)以下であることを特徴とする。
【0011】
【作用】
本発明の組電池においては、並列に接続した電池又は複数の単電池を直列に並べた直列電池群の異常を検出する手段と、通電を制御する手段と、抵抗体を有する電流バイパス回路を組合せたことにより、微小短絡など、ヒューズ等が検知できなかった異常を確実に検出して、異常の起こった電池を回路から早期に切り離し、上記異常の起こった電池の悪影響(短絡による他の電池の過放電など)が他の電池に及ぶことなく、組電池として必要最低限の動力を確保することができる。
【0012】
【発明の実施の形態】
以下本発明の組電池について詳細に説明する。
本発明の組電池は、電池を並列に接続して成り、上記電池の一部又は全部の異常を検出する手段(以下、「異常検出手段」と略す)と、この各電池に並列に接続された、通電を制御する手段(以下、「通電制御手段」と略す)と抵抗体を有する電流バイパス回路と、このバイパス回路と上記電池に直列に接続された、過電流により回路を電気的に遮断する手段(以下、「回路遮断手段」と略す)と、を備える。また、上記電池としては、複数の単電池が直列に接続された電池群を適用することができる。
【0013】
ここで、上記異常検出手段としては、精度の良さから、例えば電圧計で所定値を超えたことにより異常を検出することが適当である。また、上記通電制御手段としては、利便性、確実性の面から、例えばスイッチが適当である。更に、回路遮断手段としては、信頼性の面から、例えばヒューズが適当である。
【0014】
また、上記単電池の平均電圧をV(V)、上記単電池の内部抵抗をrc(Ω)、上記直列電池群の直列接続数をm(個)、当該組電池の並列接続数をn(個)、通常時最大負荷電流を(Imax)としたとき、上記ヒューズの容量は、安全率を考慮すると、通常使用時の最大負荷電流の2倍が適当であり、上記バイパス回路の抵抗値は、(mV/2Imax)−(rcm/n)(Ω)以下であることが好ましい。
【0015】
更に、上記単電池としては、ナトリウム硫黄電池、ニッケルカドミウム電池、ニッケル水素電池、リチウム電池及びリチウムイオン電池などが例示できる。特に、並列組電池への適性、電気自動車電源用電池としての適性などの面から、正極にマンガン酸リチウム、負極にカーボンを使用したリチウムイオン二次電池を使用することが好ましい。また、リチウムイオン電池は、外部短絡が起こっても電池に問題が起こらないため、バイパス回路の抵抗の最小値は0Ωにできる。
【0016】
次に、上述した本発明の組電池を好適実施形態に基づき、説明する。
【0017】
(実施形態1)
図1に示すように、この組電池8では、単電池1ごとに異常検出手段の一例である電圧計2が接続され、また、単電池1が成す直列電池群7には、通電制御手段の一例であるスイッチ4と抵抗体5を有する電流バイパス回路3が並列に接続され、この電流バイパス回路3と直列電池群7には上記回路遮断手段の一例であるヒューズ6が直列に接続されている。また、スイッチ4は各電圧計2と接続されたスイッチコントローラー9により開閉制御できる。
単電池1としては、正極にマンガン酸リチウム、負極にカーボンを使用したリチウムイオン二次電池が用い、この組電池8はハイブリッド自動車に設置されている。
【0018】
また、この組電池8は、いずれかの単電池の異常電圧を電圧計2により検出し、異常が生じている直列電池群7に接続されたバイパス回路3に、スイッチ4により電流を流すことができる。バイパス回路3に電流が流されると、過電流によりヒューズ6に過電流が流されるので、異常電池を含む回路を系から独立させることができる。
【0019】
更に、この組電池8は、上記単電池の平均電圧をV(V)、単電池の内部抵抗をrc(Ω)、直列電池群の直列接続数をm(個)、組電池の並列接続数をn(個)、通常時最大負荷電流を(Imax)としたとき、ヒューズの容量が2Imaxであり、上記バイパス回路の抵抗値が、(mV/2Imax)−(rcm/n)(Ω)以下となる。
【0020】
以上説明した組電池8において、内部短絡等の異常が発生した際に、異常電池の電流の遮断は、包括的に行うことが望ましく、代表的には図2に示すフローチャートに従って実行することができる。
【0021】
以下、図2に示すフローチャートをプロセス順に説明する。
まず、プロセス1(以下、[P1]のように略す)では、各単電池1の電圧が測定される。例えば内部短絡等の異常が生じた際には、その異常は単電池の電圧異常として、電圧計2で検出される。
次いで、電圧計2で検出された電圧が異常電圧(この電池の場合は4.3V超えるとき又は1.5V未満のとき)であるかが判定される[P2]。検出された電圧がかかる範囲内にあるとき(Yesのとき:1.5〜4.5V)は、通常の使用が続行される。
【0022】
検出された電圧が異常電圧であるとき(Noのとき:4.3V超えるとき又は1.5V未満のとき)は、電圧計2に接続されたスイッチコントローラー9からバイパス回路3のスイッチ4に信号が送られ、スイッチが閉状態になる[P3]。
バイパス回路3のスイッチ4が閉状態になると、通常は電流が流れていないバイパス回路3に電流が流れる[P4]。このときの電流値は通常使用時の最大負荷電流値の2倍以上であり、ヒューズ6を溶断するのに十分な電流値であるため、ヒューズ6が溶断し、直列電池群7が開放状態になる[P5]。
【0023】
また、異常電池を含む直列電池群は、ヒューズ溶断後もバイパス回路に電流を流しつづけるため、穏やかに電圧0Vに到達し、その後は電池として機能しなくなる[P6]。
一方、異常単電池を含まない他の直列電池群には、何の影響も及ばないため、車両として使用できる最大出力は低下するものの、車両の走行は依然として可能であり、安全な場所に移動して修理等を行うことが可能である[P7]。
【0024】
以上説明したように、上記組電池は、安全且つヒューズを溶断するのに十分な電流をヒューズに流すことができ、直列電池群とバイパス回路に直列に接続されているヒューズを確実に溶断し、異常電池を含む直列電池群のみを並列回路から切り離すことができる。
また、異常電池を含む直列電池群は、ヒューズ溶断後もバイパス回路に電流を流しつづけるため、穏やかに電圧0Vに到達し、異常電池を安全に処理することができる。
更に、異常電池を含む直列電池群以外の直列電池群への通電は保たれるため、それ以降の車両走行も可能である。
更にまた、バイパス回路を、通常使用時における電池容量バラツキ調整に使用することも可能である。
また、上記組電池は、大出力及び大容量を確保できるため、ハイブリッド自動車用の電池に限られず、信頼性の高い電気自動車用の電力供給源などにも使用できる。
【0025】
【発明の効果】
以上説明してきたように、本発明によれば、電池並列回路においても電池の異常検出を可能にし、電池に異常が生じた際にその異常を電圧計などで検出し、その信号を受けて上記電池に並列に接続された電流バイパス回路に大電流を流し、確実に回路を遮断することとしたため、電池に生じた微小短絡等の異常を確実に検出し、異常電池を系から切り離し、且つ異常の起こった電池の悪影響が他の並列電池に及ぶことなく必要最低限の動力は確保できる組電池を提供することができる。
【図面の簡単な説明】
【図1】本発明の組電池の一実施形態を示す回路図である。
【図2】図1の実施形態における異常電池の電流の遮断方法を示すフロー図である。
【符号の説明】
1 単電池
2 電圧計
3 電流バイパス回路
4 スイッチ
5 抵抗体
6 ヒューズ
7 直列電池群
8 組電池
9 スイッチコントローラー
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an assembled battery formed by connecting a plurality of batteries, and more particularly to an assembled battery configured by appropriately connecting single cells such as a lithium ion secondary battery. Is suitably used as a power source for electric vehicles and hybrid vehicles.
[0002]
[Prior art]
In recent years, the need for electric vehicles and hybrid vehicles has increased from the viewpoint of energy saving and air pollution problems, and the importance of batteries for electric vehicle power supplies has also increased. One of the important technologies for such electric vehicle power supply batteries is ensuring reliability. When an abnormality occurs in a battery, the abnormal battery is made independent from the system to reduce the impact on other batteries. However, there is a need for technology that does not interfere with the subsequent driving of the car.
As such a technique, conventionally, a unit battery or an assembled battery configured by connecting a group of cells connected in series to each other in parallel has been proposed in which a fuse is connected in series to a unit cell or a series battery group. (Japanese Patent Laid-Open No. 5-250799).
[0003]
[Problems to be solved by the invention]
However, simply connecting a fuse in series to the battery as in the conventional technique has a problem that sufficient reliability as a battery for an electric vehicle power source cannot be ensured for the following reason.
In other words, for batteries where a constant load current always flows, the fuse blown current value can be set close to the load current value, and the fuse can be blown with a small excessive current. There is a large difference between the load current during normal driving and the maximum load current (although there is not much flow of the maximum load current), and the load fluctuation is large, so the fuse used for this must have a large capacity In such a large-capacity fuse, for example, there is a possibility that a small leakage current when a micro short circuit occurs in the battery cannot be detected.
[0004]
In addition, when an abnormal battery occurs, it is necessary to leave a power source for the vehicle to move to a safe place. In consideration of this, all batteries, especially in an electric vehicle and a series hybrid vehicle, should be kept. There is also a problem that it is difficult to separate the load from the load at once.
[0005]
The present invention has been made paying attention to such problems of the prior art, and the object of the present invention is to reliably detect abnormalities such as micro short-circuits occurring in the battery and disconnect the abnormal battery from the system. Another object of the present invention is to provide an assembled battery that can secure the minimum necessary power without causing the adverse effect of the abnormal battery to affect other parallel batteries.
[0006]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventors have made it possible to detect battery abnormality even in a battery parallel circuit, and when abnormality occurs in the battery, the abnormality is detected with a voltmeter, In response to the signal, a large current is passed through a current bypass circuit connected in parallel to the battery, and the circuit is surely interrupted. The present invention has been found to solve the above problems, and the present invention has been completed.
[0007]
That is, the assembled battery of the present invention is an assembled battery in which batteries are connected in parallel.
Means for detecting abnormality of the battery, means for controlling energization, a current bypass circuit having a resistor connected in parallel to each of the batteries, and an overcurrent connected in series to the bypass circuit and the battery Means for electrically interrupting the circuit.
[0008]
In a preferred embodiment of the assembled battery of the present invention, the battery is a battery group in which a plurality of single cells are connected in series.
[0009]
Furthermore, in another preferred embodiment of the assembled battery of the present invention, the means for detecting abnormality of the battery detects a voltage of a part or all of the series battery group with a voltmeter, and the voltage exceeds a predetermined value. In this case, the voltmeter is installed for each battery, and when any of the batteries shows a voltage higher than a predetermined value, the voltage is parallel to the battery. It is desirable that the voltmeter connected to be detected and send a signal to the switch of the bypass circuit to close the bypass circuit.
[0010]
Furthermore, in another preferred embodiment of the assembled battery of the present invention, the average voltage of the unit cell is V (V), the internal resistance is rc (Ω), the number of series connections of the series battery group is m (pieces), When the number of parallel connections of the assembled battery is n (pieces), and the normal maximum load current is (Imax),
The capacity of the fuse is 2Imax, and the resistance value of the bypass circuit is (mV / 2Imax) − (rcm / n) (Ω) or less .
[0011]
[Action]
In the assembled battery of the present invention, a means for detecting abnormality of a battery connected in parallel or a series battery group in which a plurality of single cells are arranged in series, a means for controlling energization, and a current bypass circuit having a resistor are combined. Therefore, it is possible to reliably detect abnormalities such as micro short-circuits that could not be detected by the fuse, etc., and disconnect the abnormal battery from the circuit at an early stage. The minimum power required for the assembled battery can be ensured without overdischarge or the like reaching other batteries.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the assembled battery of the present invention will be described in detail.
The assembled battery of the present invention is formed by connecting batteries in parallel, and is connected in parallel to means for detecting an abnormality of a part or all of the battery (hereinafter abbreviated as “abnormality detection means”) and each of the batteries. In addition, a means for controlling energization (hereinafter abbreviated as “energization control means”), a current bypass circuit having a resistor, and the bypass circuit and the battery connected in series, the circuit is electrically interrupted by an overcurrent. Means (hereinafter abbreviated as “circuit interruption means”). Moreover, as the battery, a battery group in which a plurality of single cells are connected in series can be applied.
[0013]
Here, as the abnormality detecting means, it is appropriate to detect an abnormality when a predetermined value is exceeded with a voltmeter, for example, because of its high accuracy. Further, as the energization control means, for example, a switch is appropriate from the viewpoint of convenience and reliability. Further, as the circuit breaking means, for example, a fuse is appropriate from the viewpoint of reliability.
[0014]
The average voltage of the unit cells is V (V), the internal resistance of the unit cells is rc (Ω), the number of series connections of the series battery group is m (pieces), and the number of parallel connections of the assembled batteries is n ( When the maximum normal load current is (Imax), the capacity of the fuse is appropriate to be twice the maximum load current during normal use in consideration of the safety factor. The resistance value of the bypass circuit is , (MV / 2Imax) − (rcm / n) (Ω) or less .
[0015]
Furthermore, examples of the unit cell include a sodium sulfur battery, a nickel cadmium battery, a nickel metal hydride battery, a lithium battery, and a lithium ion battery. In particular, it is preferable to use a lithium ion secondary battery in which lithium manganate is used for the positive electrode and carbon is used for the negative electrode from the viewpoints of suitability for a parallel assembled battery and suitability as a battery for an electric vehicle power source. In addition, since the lithium ion battery does not cause a problem even if an external short circuit occurs, the minimum value of the resistance of the bypass circuit can be set to 0Ω.
[0016]
Next, the assembled battery of the present invention described above will be described based on a preferred embodiment.
[0017]
(Embodiment 1)
As shown in FIG. 1, in this assembled battery 8, a voltmeter 2, which is an example of an abnormality detection means, is connected to each unit cell 1, and a series battery group 7 formed by the unit cells 1 has an energization control unit. An example switch 4 and a current bypass circuit 3 having a resistor 5 are connected in parallel, and the current bypass circuit 3 and the series battery group 7 are connected in series with a fuse 6 as an example of the circuit interrupting means. . The switch 4 can be controlled to open and close by a switch controller 9 connected to each voltmeter 2.
As the unit cell 1, a lithium ion secondary battery using lithium manganate as a positive electrode and carbon as a negative electrode is used, and the assembled battery 8 is installed in a hybrid vehicle.
[0018]
Moreover, this assembled battery 8 detects the abnormal voltage of any single cell with the voltmeter 2, and allows a current to flow through the bypass circuit 3 connected to the series battery group 7 in which an abnormality has occurred by the switch 4. it can. When a current is passed through the bypass circuit 3, an overcurrent is caused to flow through the fuse 6 due to the overcurrent, so that the circuit including the abnormal battery can be made independent from the system.
[0019]
Furthermore, this assembled battery 8 has an average voltage V (V) of the unit cells, an internal resistance of the unit cells rc (Ω), a number of series connections of the series battery group m (pieces), and a number of parallel connections of the assembled cells. Is n (pieces) and the normal maximum load current is (Imax), the fuse capacity is 2Imax, and the resistance value of the bypass circuit is (mV / 2Imax) − (rcm / n) (Ω) or less. It becomes.
[0020]
In the assembled battery 8 described above, when an abnormality such as an internal short circuit occurs, it is desirable to comprehensively cut off the current of the abnormal battery, and can typically be executed according to the flowchart shown in FIG. .
[0021]
Hereinafter, the flowchart illustrated in FIG. 2 will be described in the order of processes.
First, in process 1 (hereinafter abbreviated as [P1]), the voltage of each unit cell 1 is measured. For example, when an abnormality such as an internal short circuit occurs, the abnormality is detected by the voltmeter 2 as a voltage abnormality of the unit cell.
Next, it is determined whether the voltage detected by the voltmeter 2 is an abnormal voltage (in the case of this battery, when it exceeds 4.3 V or less than 1.5 V) [P2]. When the detected voltage is within such a range (Yes: 1.5 to 4.5 V), normal use is continued.
[0022]
When the detected voltage is an abnormal voltage (when No: when it exceeds 4.3 V or when it is less than 1.5 V), a signal is sent from the switch controller 9 connected to the voltmeter 2 to the switch 4 of the bypass circuit 3. The switch is closed (P3).
When the switch 4 of the bypass circuit 3 is closed, a current flows through the bypass circuit 3 where no current normally flows [P4]. Since the current value at this time is more than twice the maximum load current value during normal use and is a current value sufficient to blow the fuse 6, the fuse 6 is blown and the series battery group 7 is opened. [P5].
[0023]
In addition, the series battery group including the abnormal battery keeps flowing the current through the bypass circuit even after the fuse is blown, so that the voltage gently reaches 0V, and thereafter does not function as a battery [P6].
On the other hand, other series battery groups that do not include abnormal cells do not have any effect, so the maximum output that can be used as a vehicle is reduced, but the vehicle can still be driven and moved to a safe place. It is possible to perform repair or the like [P7].
[0024]
As described above, the assembled battery can flow a sufficient current to fuse the fuse safely and securely, and the fuse connected in series to the series battery group and the bypass circuit can be surely blown, Only the series battery group including the abnormal battery can be disconnected from the parallel circuit.
In addition, since the series battery group including the abnormal battery continues to pass the current through the bypass circuit even after the fuse is blown, the voltage reaches 0V gently, and the abnormal battery can be safely processed.
Furthermore, since energization to the series battery group other than the series battery group including the abnormal battery is maintained, the vehicle can be traveled thereafter.
Furthermore, the bypass circuit can also be used for battery capacity variation adjustment during normal use.
Moreover, since the said assembled battery can ensure large output and a large capacity | capacitance, it is not restricted to the battery for hybrid vehicles, It can be used also for the electric power supply source for electric vehicles with high reliability.
[0025]
【The invention's effect】
As described above, according to the present invention, it is possible to detect battery abnormality even in a battery parallel circuit, and when abnormality occurs in the battery, the abnormality is detected by a voltmeter, etc. Since a large current is passed through the current bypass circuit connected in parallel to the battery and the circuit is reliably shut off, abnormalities such as micro short-circuits that occur in the battery are reliably detected, abnormal batteries are disconnected from the system, and abnormal Thus, it is possible to provide an assembled battery that can secure the minimum necessary power without causing the adverse effect of the battery that has occurred on other parallel batteries.
[Brief description of the drawings]
FIG. 1 is a circuit diagram showing an embodiment of an assembled battery of the present invention.
FIG. 2 is a flowchart showing a method for interrupting current of the abnormal battery in the embodiment of FIG. 1;
[Explanation of symbols]
1 Cell 2 Voltmeter 3 Current Bypass Circuit 4 Switch 5 Resistor 6 Fuse 7 Series Battery Group 8 Assembly Battery 9 Switch Controller

Claims (8)

電池を並列に接続した組電池において、
該電池の異常を検出する手段と、この各電池に並列に接続された、通電を制御する手段と抵抗体を有する電流バイパス回路と、このバイパス回路と上記電池に直列に接続された、過電流により回路を電気的に遮断する手段と、を備えることを特徴とする組電池。
In a battery pack in which batteries are connected in parallel,
Means for detecting abnormality of the battery, means for controlling energization, a current bypass circuit having a resistor connected in parallel to each of the batteries, and an overcurrent connected in series to the bypass circuit and the battery And a means for electrically interrupting the circuit.
上記電池が、複数の単電池が直列に接続された電池群であることを特徴とする請求項1記載の組電池。 The assembled battery according to claim 1, wherein the battery is a battery group in which a plurality of single cells are connected in series. 上記電池の異常を検出する手段が、上記直列電池群の一部又は全部の電圧を電圧計で検出し、該電圧が所定値を超えたとき、異常と判断することを特徴とする請求項2記載の組電池。 The means for detecting an abnormality of the battery detects a part or all of the voltage of the series battery group with a voltmeter, and determines that the abnormality is detected when the voltage exceeds a predetermined value. The assembled battery as described. 上記通電を制御する手段がスイッチであり、上記過電流により回路を電気的に遮断する手段がヒューズであることを特徴とする請求項1〜3のいずれか1つの項に記載の組電池。 The assembled battery according to any one of claims 1 to 3, wherein the means for controlling energization is a switch, and the means for electrically interrupting the circuit by the overcurrent is a fuse. 上記電圧計が上記電池ごとに設置されており、いずれかの上記電池が所定値以上の電圧を示したとき、その電圧を該電池に並列に接続された上記電圧計が検出し、上記バイパス回路のスイッチに信号を送り、このバイパス回路を閉状態にすることを特徴とする請求項3又は4記載の組電池。 The voltmeter is installed for each battery, and when any of the batteries shows a voltage of a predetermined value or more, the voltmeter connected in parallel to the battery detects the voltage, and the bypass circuit The assembled battery according to claim 3 or 4, wherein a signal is sent to the switch to close the bypass circuit. 上記単電池の平均電圧をV(V)、その内部抵抗をrc(Ω)、上記直列電池群の直列接続数をm(個)、当該組電池の並列接続数をn(個)、通常時最大負荷電流を(Imax)としたとき、上記ヒューズの容量が2Imaxであり、上記バイパス回路の抵抗値が、(mV/2Imax)−(rcm/n)(Ω)以下であることを特徴とする請求項2〜5のいずれか1つの項に記載の組電池。The average voltage of the unit cells is V (V), its internal resistance is rc (Ω), the number of series connections of the series battery group is m (pieces), the number of parallel connections of the assembled batteries is n (pieces), and the normal time When the maximum load current is (Imax), the capacity of the fuse is 2Imax, and the resistance value of the bypass circuit is (mV / 2Imax) − (rcm / n) (Ω) or less. The assembled battery as described in any one of Claims 2-5. 上記単電池として、正極にマンガン酸リチウム、負極にカーボンを使用したリチウムイオン二次電池を用いたことを特徴とする請求項2〜6のいずれか1つの項に記載の組電池。 The assembled battery according to any one of claims 2 to 6, wherein a lithium ion secondary battery using lithium manganate as a positive electrode and carbon as a negative electrode is used as the unit cell. 正極にマンガン酸リチウム、負極にカーボンを使用したリチウムイオン二次電池から成る複数の単電池が直列に接続された直列電池群を並列に接続した組電池において、
上記直列電池群の一部又は全部の電圧を電圧計で検出し、該電圧が所定値から外れたとき異常と判断する異常検出手段と、
スイッチと抵抗体を有し、上記直列電池群のそれぞれに並列に接続された電流バイパス回路と、
このバイパス回路と上記直列電池群に直列に接続されたヒューズを備えたことを特徴とする車両用組電池。
In an assembled battery in which a series battery group in which a plurality of single cells composed of lithium ion secondary batteries using lithium manganate as a positive electrode and carbon as a negative electrode are connected in series is connected in parallel,
Abnormality detection means for detecting a voltage of a part or all of the series battery group with a voltmeter, and determining that the voltage is abnormal when the voltage deviates from a predetermined value;
A current bypass circuit having a switch and a resistor and connected in parallel to each of the series battery groups;
An assembled battery for a vehicle comprising a fuse connected in series to the bypass circuit and the series battery group.
JP2000332672A 2000-10-31 2000-10-31 Assembled battery Expired - Fee Related JP4560825B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000332672A JP4560825B2 (en) 2000-10-31 2000-10-31 Assembled battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000332672A JP4560825B2 (en) 2000-10-31 2000-10-31 Assembled battery

Publications (2)

Publication Number Publication Date
JP2002142353A JP2002142353A (en) 2002-05-17
JP4560825B2 true JP4560825B2 (en) 2010-10-13

Family

ID=18808846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000332672A Expired - Fee Related JP4560825B2 (en) 2000-10-31 2000-10-31 Assembled battery

Country Status (1)

Country Link
JP (1) JP4560825B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013084665A1 (en) * 2011-12-09 2013-06-13 本田技研工業株式会社 Power control device
CN105006867A (en) * 2015-08-05 2015-10-28 深圳先进储能材料国家工程研究中心有限公司 Battery unit connecting circuit of energy storage system applied to high-power and high-voltage working conditions

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3872758B2 (en) 2003-01-08 2007-01-24 株式会社日立製作所 Power control device
JP4593081B2 (en) * 2003-04-07 2010-12-08 株式会社日立製作所 Railway vehicle power converter
KR100906249B1 (en) 2006-09-11 2009-07-07 주식회사 엘지화학 Control Method of Battery-System for Improving Safety
JP5244356B2 (en) * 2007-09-25 2013-07-24 エネルギー コントロール リミテッド Independent partition type power battery set
JP5428548B2 (en) * 2009-01-21 2014-02-26 トヨタ自動車株式会社 Power storage device
JP5272978B2 (en) * 2009-09-02 2013-08-28 三菱自動車工業株式会社 Battery device
JP5343787B2 (en) * 2009-09-18 2013-11-13 トヨタ自動車株式会社 Electrical system
WO2012014350A1 (en) 2010-07-29 2012-02-02 パナソニック株式会社 Battery module
EP2462680A1 (en) 2010-08-06 2012-06-13 Sanyo Electric Co., Ltd. Battery parallel-operation circuit and battery system
JP5533535B2 (en) * 2010-10-08 2014-06-25 トヨタ自動車株式会社 Power supply system and control method thereof
JP5640925B2 (en) * 2011-09-05 2014-12-17 トヨタ自動車株式会社 Secondary battery inspection device and secondary battery inspection method
JP2013207876A (en) * 2012-03-28 2013-10-07 Hitachi Ltd Battery system
DE102012210166A1 (en) * 2012-06-18 2013-12-19 Robert Bosch Gmbh Battery management system, motor vehicle and battery module
JP6277057B2 (en) * 2014-05-13 2018-02-07 デクセリアルズ株式会社 Battery pack, battery system, and discharging method
US11063327B2 (en) * 2017-03-03 2021-07-13 Nissan Motor Co., Ltd. Secondary battery and secondary battery control method
CN107256987B (en) * 2017-06-06 2019-07-09 江西优特汽车技术有限公司 A kind of power battery micro-short circuit detection method
CN110190227A (en) * 2019-06-17 2019-08-30 上海依呗科技有限公司 A kind of Portable DC system battery group having self-test capability
KR20210017842A (en) 2019-08-09 2021-02-17 주식회사 엘지화학 A battery pack with an energy drain resistor for prevention of chain ignition
CN110843534A (en) * 2019-11-13 2020-02-28 江西优特汽车技术有限公司 Short circuit prevention protection method for acquisition circuit
KR20230056280A (en) * 2021-10-20 2023-04-27 주식회사 엘지에너지솔루션 Fire protection apparatus and operating method of the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04354114A (en) * 1991-05-31 1992-12-08 Nec Corp Polar capacitor circuit
JPH10322915A (en) * 1997-05-19 1998-12-04 Fujitsu Ltd Protection circuit and battery unit
JP2000133318A (en) * 1998-08-21 2000-05-12 Sony Corp Battery pack
JP2001352666A (en) * 2000-06-09 2001-12-21 Hitachi Ltd Protective device for secondary battery and set battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04354114A (en) * 1991-05-31 1992-12-08 Nec Corp Polar capacitor circuit
JPH10322915A (en) * 1997-05-19 1998-12-04 Fujitsu Ltd Protection circuit and battery unit
JP2000133318A (en) * 1998-08-21 2000-05-12 Sony Corp Battery pack
JP2001352666A (en) * 2000-06-09 2001-12-21 Hitachi Ltd Protective device for secondary battery and set battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013084665A1 (en) * 2011-12-09 2013-06-13 本田技研工業株式会社 Power control device
JP5286456B1 (en) * 2011-12-09 2013-09-11 本田技研工業株式会社 Power control device
US9041243B2 (en) 2011-12-09 2015-05-26 Honda Motor Co., Ltd. Power control apparatus
CN105006867A (en) * 2015-08-05 2015-10-28 深圳先进储能材料国家工程研究中心有限公司 Battery unit connecting circuit of energy storage system applied to high-power and high-voltage working conditions
CN105006867B (en) * 2015-08-05 2018-05-29 深圳先进储能材料国家工程研究中心有限公司 The battery unit connection circuit of energy-storage system applied to high power high voltage operating mode

Also Published As

Publication number Publication date
JP2002142353A (en) 2002-05-17

Similar Documents

Publication Publication Date Title
JP4560825B2 (en) Assembled battery
EP2774798B1 (en) Battery management system and driving method thereof
CN107863789B (en) Power supply system
US8593111B2 (en) Assembled battery system
US8471529B2 (en) Battery fault tolerant architecture for cell failure modes parallel bypass circuit
CN109649216B (en) Automatic connection of drive battery
KR101326508B1 (en) Trouble diagnosis method of current sensor for high voltage battery system
CN107895819B (en) Power supply device for vehicle
JP2013099167A (en) Control device and control method for vehicle mounted with electric storage system
KR20130081215A (en) Power supply device
JP2000133318A (en) Battery pack
EP3566894B1 (en) Battery pack for vehicle
KR20130033196A (en) Battery management system and battery management method
US20210165044A1 (en) Failure diagnosis method and management apparatus for energy storage device
WO2020102138A1 (en) Quick battery disconnect system for high current circuits
JP2002010501A (en) Capacity equalizing apparatus for capacitor
JP2018198519A (en) Vehicle power supply device
US8737031B2 (en) Voltage monitoring circuit, and vehicle equipped with same
JP3654058B2 (en) Battery inspection device
US20210078442A1 (en) Charging architecture for reconfigurable battery pack using solid-state and contactor switches
US11865925B2 (en) Method for operating an electric energy store, electric energy store, and device
KR101976849B1 (en) Apparatus for preventing overdischarge and overdischarge of battery
JP2003291754A (en) Electric power source for vehicle
JP2021182811A (en) Charge control device
CN111999663A (en) Battery connecting wire breakage detection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090305

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100718

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4560825

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees