JPH0793029A - Running control unit for unmanned vehicle - Google Patents

Running control unit for unmanned vehicle

Info

Publication number
JPH0793029A
JPH0793029A JP5238195A JP23819593A JPH0793029A JP H0793029 A JPH0793029 A JP H0793029A JP 5238195 A JP5238195 A JP 5238195A JP 23819593 A JP23819593 A JP 23819593A JP H0793029 A JPH0793029 A JP H0793029A
Authority
JP
Japan
Prior art keywords
unmanned vehicle
angle
virtual
sensors
angle detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5238195A
Other languages
Japanese (ja)
Inventor
Yoshihiro Kuno
善弘 久野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP5238195A priority Critical patent/JPH0793029A/en
Publication of JPH0793029A publication Critical patent/JPH0793029A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make the unamnned vehicle travel along a virtual travel path by easily detecting the relative position of the unmanned vehicle to the virtual travel path, specially, the tilt angle at a low cost. CONSTITUTION:Angle detection lines 400 are laid at specific intervals perpendicularly to the virtual locus 300 and a pair of sensors 14 mounted on the unmanned vehicle detect the angle detection line 400. Once the sensors 14 detect a angle detection line 400, detection signals from the sensors 14 are outputted to a CPU 18 as a control unit. The digital signal from an encoder 16 which detects the angle of rotation of a steering wheel is outputted to the CPU 18 as well. The attitude angle theta is calculqted from theta=tan-1(D/L), where L is the interval between the couple of sensors 14 and D is the distance by which the unmanned vehicle travels until the pair of sensors 14 detect the angle detection line 400.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は無人車の走行制御装置、
特に仮想走行路に対する無人車の相対的な位置検出に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an unmanned vehicle traveling control device,
In particular, it relates to relative position detection of an unmanned vehicle with respect to a virtual road.

【0002】[0002]

【従来の技術】従来より、搬送車等の無人車は車両の組
立等に広く用いられている。一般的な無人車は3個以上
の走行輪で車両全体を支持し、車両に搭載されたモータ
でこれら車輪を駆動して予め定められたガイドラインに
沿って走行する。無人車をガイドラインに沿って誘導す
る方式には、電磁誘導式やテープ光学式、静電容量式等
がある。
2. Description of the Related Art Conventionally, unmanned vehicles such as carrier vehicles have been widely used for assembling vehicles. A general unmanned vehicle supports the entire vehicle with three or more traveling wheels, and drives these wheels with a motor mounted on the vehicle to travel along predetermined guidelines. There are electromagnetic induction type, tape optical type, electrostatic capacitance type, etc. as the method of guiding the unmanned vehicle along the guideline.

【0003】一方、ガイドラインを間欠的に設け、ある
いはほとんど設けることなく、誘導体なしで仮想走行路
上を走行させる方式もある。この無誘導方式の場合に
は、仮想走行路に対する無人車の相対的な位置を検出す
ることは重要である。相対的な位置を特定するために
は、仮想走行路に対するずれ量及び仮想走行路に対する
姿勢角を知る必要がある。例えば、特開昭60−101
613号公報の移動体の走行制御方法では、走行路に設
けられたマークを撮像装置で画像信号として入力し、得
られた画像を処理して予定走行路からのずれ量と姿勢角
を検出し、これらを解消するように操舵制御する技術が
開示されている。
On the other hand, there is also a system in which guide lines are intermittently provided or hardly provided, and the guide lines are allowed to travel on a virtual road. In the case of this unguided method, it is important to detect the relative position of the unmanned vehicle with respect to the virtual travel route. In order to specify the relative position, it is necessary to know the deviation amount with respect to the virtual traveling road and the posture angle with respect to the virtual traveling road. For example, JP-A-60-101
In the traveling control method of a moving body of Japanese Patent No. 613, a mark provided on a traveling road is input as an image signal by an imaging device, the obtained image is processed, and a deviation amount from a planned traveling road and an attitude angle are detected. A technique for steering control to solve these problems is disclosed.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、このよ
うに画像を処理して位置を検出する技術は、高価な画像
認識装置が必要となり、コスト高となる問題があった。
However, the technique of processing an image and detecting the position in this way requires an expensive image recognition device, which causes a problem of high cost.

【0005】本発明は上記従来技術の有する課題に鑑み
なされたものであり、その目的は、簡易に、かつ、低廉
に仮想走行路に対する無人車の相対位置、特に傾き角を
検出し、無人車を仮想走行路に沿って走行させることが
できる無人車の走行制御装置を提供することにある。
The present invention has been made in view of the above problems of the prior art, and an object of the present invention is to detect the relative position of an unmanned vehicle with respect to a virtual running path, particularly, the inclination angle, easily and inexpensively, and to detect the unmanned vehicle. An object of the present invention is to provide a travel control device for an unmanned vehicle that can drive the vehicle along a virtual travel path.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明の無人車の走行制御装置は、無人車の前後中
心線に対して垂直かつ所定間隔Lだけ離間して搭載さ
れ、予め前記仮想走行路に対して垂直となるように所定
間隔毎に設けられた角度検出線を検出する一対の検出手
段と、前記一対の検出手段の一方が前記角度検出線を検
出してから他方が前記角度検出線を検出するまでの無人
車の走行距離Dを検出する距離検出手段と、前記間隔L
及び前記走行距離Dに基づき無人搬送車の前記仮想走行
路に対する姿勢角を演算する演算手段と、演算された姿
勢角に基づき無人車のステアリングを制御する制御手段
とを有することを特徴とする。
In order to achieve the above object, a traveling control device for an unmanned vehicle according to the present invention is mounted perpendicularly to a longitudinal center line of the unmanned vehicle at a predetermined distance L, and is mounted in advance. A pair of detection means for detecting angle detection lines provided at predetermined intervals so as to be perpendicular to the virtual traveling path, and one of the pair of detection means detects the angle detection line and then the other is Distance detecting means for detecting a traveling distance D of the unmanned vehicle until the angle detection line is detected, and the distance L.
And an operation means for calculating an attitude angle of the unmanned guided vehicle with respect to the virtual travel path based on the traveling distance D, and a control means for controlling steering of the unmanned vehicle based on the calculated attitude angle.

【0007】[0007]

【作用】本発明では、一対の検出手段が無人車の前後中
心線に対して垂直かつ所定間隔Lだけ離間して搭載され
ており、これら検出手段により仮想走行路に対して垂直
となるように所定間隔毎に設けられた角度検出線を検出
する。無人車が仮想走行路に沿って走行している場合、
すなわち姿勢角がゼロの場合には一対の検出手段はほぼ
同時に角度検出線を検出するが、無人車が仮想走行路か
ら外れて姿勢角がゼロでない場合には、一対の検出手段
で検出する時間に差が生じることになる。そして、一対
の検出手段の間隔Lと検出時間差の間に無人車が走行し
た距離D及び姿勢角θとの間には、簡単な幾何学的関係 tanθ=D/L が成立するので、姿勢角θを簡易に検出することができ
る。
According to the present invention, the pair of detecting means are mounted perpendicularly to the longitudinal center line of the unmanned vehicle and separated from each other by the predetermined distance L, so that the detecting means make them perpendicular to the virtual traveling path. The angle detection line provided at every predetermined interval is detected. If an unmanned vehicle is traveling along a virtual driveway,
That is, when the attitude angle is zero, the pair of detecting means detect the angle detection lines almost at the same time, but when the unmanned vehicle deviates from the virtual road and the attitude angle is not zero, the time detected by the pair of detecting means. Will be different. Then, a simple geometrical relationship tan θ = D / L is established between the distance L of the pair of detection means and the distance D and the posture angle θ that the unmanned vehicle travels during the detection time difference. θ can be easily detected.

【0008】[0008]

【実施例】以下、図面を用いながら本発明の好適な実施
例について説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A preferred embodiment of the present invention will be described below with reference to the drawings.

【0009】図3には本実施例における無人搬送車の走
行制御システムの概念図が示されており、また、図1に
は本実施例の無人搬送車の構成が示されている。図3に
おいて、無人搬送車10は誘導線100上にあり、誘導
線100の終端部近傍には無誘導開始を指示するための
マークプレート200が敷設されている。無人搬送車1
0にはこのマークプレートを検出するためのセンサ(例
えば磁気センサ等)が設けられており、誘導走行中にマ
ークプレート200を周知の検出手段で読み取ると、無
人搬送車10に搭載された制御装置はステアリング輪
(3輪の内の先頭車輪)12を直進状態に維持し、誘導
線100の敷設されていない仮想軌跡300上を走行し
ていく。
FIG. 3 shows a conceptual diagram of the traveling control system for the automatic guided vehicle in the present embodiment, and FIG. 1 shows the configuration of the automatic guided vehicle in the present embodiment. In FIG. 3, the automated guided vehicle 10 is on the guide wire 100, and a mark plate 200 for instructing the start of the non-guide is installed near the end of the guide wire 100. Automated guided vehicle 1
0 is provided with a sensor (for example, a magnetic sensor) for detecting the mark plate, and when the mark plate 200 is read by a well-known detecting means during the guide traveling, the control device mounted on the automatic guided vehicle 10 is provided. Keeps the steering wheel (leading wheel of the three wheels) 12 in a straight-ahead state and travels on a virtual trajectory 300 on which the guide wire 100 is not laid.

【0010】理想的な状態では、無人搬送車は仮想軌跡
300上を無誘導で走行していくが、実際には路面のう
ねりやステアリング輪12と床面の間での滑り、ステア
リングユニットのガタ等により無人搬送車は仮想軌跡3
00からずれていくことになる。このずれの内、本実施
例では特に、仮想軌跡300と無人搬送車10との傾き
角θ、すなわち仮想軌跡300と車両前後中心線とのな
す角θ(図3参照)を簡易かつ正確に検出することを特
徴としている。
In an ideal state, the automated guided vehicle travels on the virtual trajectory 300 without guidance, but in reality, the swell of the road surface, the slip between the steering wheel 12 and the floor, and the rattling of the steering unit. Unmanned guided vehicle is a virtual trajectory 3 due to
It will deviate from 00. Among these deviations, particularly in the present embodiment, the inclination angle θ between the virtual locus 300 and the automated guided vehicle 10, that is, the angle θ between the virtual locus 300 and the vehicle front-rear centerline (see FIG. 3) is simply and accurately detected. It is characterized by doing.

【0011】このため、本実施例では、仮想軌跡300
に対し垂直に角度検出線400を所定間隔毎に敷設し、
この角度検出線400を無人搬送車10に設けた一対の
センサ14で検出することにより姿勢角θを検出してい
る。センサ14の一方は前述のマークプレート200読
み取り用のセンサも兼ねている。また、角度検出線40
0はマークプレート200と同一の材質で形成され(例
えば金属)、センサ14はマークプレート200を検出
するときと同一の原理(例えば磁気変化)で検出する。
センサ14で角度検出線400を検出すると、センサ1
4からの検出信号が制御装置としてのCPU18に出力
される。一方、CPU18にはステアリング輪12の回
転角を検出するエンコーダ16からのデジタル信号も出
力される。CPU18はこれらの信号に基づき、センサ
14の一方が角度検出線400を検出してから他方が角
度検出線400を検出するまでの無人搬送車の走行距離
を算出する。一対のセンサ14の間隔をL、一対のセン
サ14が角度検出線400を検出するまでの走行距離を
Dとすると、姿勢角θとの間にはtanθ=D/Lの関
係があるから、CPU18は、 θ=tan-1(D/L) ・・・(1) により姿勢角θを算出する。そして、CPU18は次の
角度検出線400を検出するまでにこのθをゼロとする
ようにステアリングモータ20を制御して無人搬送車の
走行を制御する。
Therefore, in this embodiment, the virtual trajectory 300
The angle detection lines 400 are laid vertically at a predetermined interval,
The attitude angle θ is detected by detecting the angle detection line 400 with the pair of sensors 14 provided in the automatic guided vehicle 10. One of the sensors 14 also serves as the sensor for reading the mark plate 200 described above. Also, the angle detection line 40
0 is formed of the same material as the mark plate 200 (for example, metal), and the sensor 14 detects the mark plate 200 on the same principle (for example, magnetic change).
When the angle detection line 400 is detected by the sensor 14, the sensor 1
The detection signal from 4 is output to the CPU 18 as a control device. On the other hand, the CPU 18 also outputs a digital signal from the encoder 16 that detects the rotation angle of the steering wheel 12. Based on these signals, the CPU 18 calculates the traveling distance of the automated guided vehicle from when one of the sensors 14 detects the angle detection line 400 to when the other detects the angle detection line 400. Assuming that the distance between the pair of sensors 14 is L and the travel distance until the pair of sensors 14 detect the angle detection line 400 is D, there is a relationship of tan θ = D / L with the posture angle θ. Calculates the attitude angle θ by θ = tan−1 (D / L) (1) Then, the CPU 18 controls the steering motor 20 so that this θ becomes zero before detecting the next angle detection line 400, and controls the traveling of the automatic guided vehicle.

【0012】本実施例の無人搬送車の走行制御は概略以
上のように行われるが、以下、図2のフローチャートを
用いて本実施例における走行制御をより詳細に説明す
る。
The traveling control of the automatic guided vehicle according to the present embodiment is performed as described above. The traveling control according to the present embodiment will be described in more detail below with reference to the flowchart of FIG.

【0013】無人搬送車(以下AGVという)10のセ
ンサ14の一方がマークプレート200を検出すると、
検出信号をCPU18に出力する。CPU18は検出信
号の入力によりステアリング輪12を直進状態に維持す
るとともにモータ22を駆動して無誘導走行を開始する
(S101)。無誘導走行が開始されると、CPU18
はエンコーダ16からのデジタル信号を入力してAGV
10の走行距離を算出する(S102)。そして、予め
定められた設定距離以上走行したか否かが判定される
(S103)。前述したように、角度検出線400は仮
想軌跡300の所定間隔毎に敷設されており、設定距離
以上走行しても角度検出線400を検出できない場合に
は、異常が発生したと判定してモータ22の駆動を中止
し異常停止する(S104)。設定距離以上走行してい
ない場合には、次に角度検出線400を検出したか否か
が判定される(S105)。この判定は、前述したよう
にセンサ14から検出信号がCPU18に入力されたか
否かで判定される。一対のセンサ14で角度検出線40
0を検出すると、CPU18は(1)式に従ってAGV
の姿勢角θ、すなわち仮想軌跡300に対し車両前後中
心線がなす角が算出される(S106)。
When one of the sensors 14 of the automatic guided vehicle (hereinafter referred to as AGV) 10 detects the mark plate 200,
The detection signal is output to the CPU 18. The CPU 18 maintains the steering wheel 12 in a straight traveling state by inputting the detection signal and drives the motor 22 to start non-guided traveling (S101). When the unguided running is started, the CPU 18
Inputs the digital signal from the encoder 16 to the AGV
The traveling distance of 10 is calculated (S102). Then, it is determined whether or not the vehicle has traveled the predetermined set distance or more (S103). As described above, the angle detection lines 400 are laid at predetermined intervals on the virtual trajectory 300, and if the angle detection lines 400 cannot be detected even after traveling the set distance or more, it is determined that an abnormality has occurred and the motor is detected. The drive of 22 is stopped and abnormally stopped (S104). If the vehicle has not traveled the set distance or more, it is next determined whether or not the angle detection line 400 has been detected (S105). This determination is made based on whether the detection signal is input from the sensor 14 to the CPU 18 as described above. Angle detection line 40 with a pair of sensors 14
When 0 is detected, the CPU 18 executes AGV according to the equation (1).
The posture angle θ, that is, the angle formed by the vehicle front-rear centerline with respect to the virtual trajectory 300 is calculated (S106).

【0014】AGV10の姿勢角θが算出された後、仮
想軌跡300に対するAGV10のずれ量算出の処理に
移行する。本実施例では、図3に示されるように仮想軌
跡300上の所定位置に位置補正マーク500が予め敷
設されており、この位置補正マーク500を検出するこ
とによりずれ量dを算出している。この位置補正マーク
500は角度検出線400に近接してその直後に設けら
れ、AGV10に別個設けられた不図示のセンサで検出
する。なお、位置補正マーク500を角度検出線400
と同一材質で敷設し、センサ14を一対以上設けてセン
サ14により位置補正マークを検出する構成とすること
も可能である。センサにより位置補正マーク500が検
出されると(S107)、検出信号がCPU18に供給
され、検出位置から位置補正マーク500とAGV10
のずれ量dが算出される(S108)。
After the attitude angle θ of the AGV 10 is calculated, the process proceeds to the process of calculating the deviation amount of the AGV 10 with respect to the virtual trajectory 300. In this embodiment, as shown in FIG. 3, a position correction mark 500 is laid in advance at a predetermined position on the virtual trajectory 300, and the deviation amount d is calculated by detecting this position correction mark 500. The position correction mark 500 is provided immediately after the position near the angle detection line 400, and is detected by a sensor (not shown) separately provided in the AGV 10. The position correction mark 500 is attached to the angle detection line 400.
It is also possible to lay it with the same material as above, to provide a pair of sensors 14 and to detect the position correction mark by the sensor 14. When the position correction mark 500 is detected by the sensor (S107), a detection signal is supplied to the CPU 18, and the position correction mark 500 and the AGV 10 are detected from the detected position.
The shift amount d of is calculated (S108).

【0015】姿勢角θとずれ量dが算出された後、CP
U18はこれらを用いて次のマークまでのAGV10の
走行軌跡を演算し(S109)、姿勢角θ及びずれ量d
がゼロとなるようにステアリングモータ20を駆動して
ステアリング角度を修正する(S110)。これによ
り、AGV10は路面のうねりやステアリング輪12と
床面の間での滑り、ステアリングユニットのガタ等があ
っても仮想軌跡に沿って走行することが可能となる。
After the posture angle θ and the shift amount d are calculated, CP
U18 uses these to calculate the traveling locus of the AGV 10 up to the next mark (S109), and the posture angle θ and the deviation d
The steering motor 20 is driven to correct the steering angle so that is zero (S110). As a result, the AGV 10 can travel along the virtual locus even if there is swell on the road surface, slip between the steering wheel 12 and the floor surface, rattling of the steering unit, or the like.

【0016】このように、本実施例では従来のように高
価な画像認識装置は必要でなく、磁気センサ等の簡易か
つ低廉なセンサを一対設け、これらセンサの検出時間の
差に基づいて姿勢角を求めることができるので、システ
ムのコストパフォーマンスを向上させることができる。
As described above, this embodiment does not require an expensive image recognition device as in the prior art, but a pair of simple and inexpensive sensors such as a magnetic sensor are provided, and the attitude angle is determined based on the difference in detection time between these sensors. Therefore, the cost performance of the system can be improved.

【0017】[0017]

【発明の効果】以上説明したように、本発明の無人車の
走行制御装置によれば、簡易に、かつ、低廉に仮想走行
路に対する無人車の相対位置、特に傾き角を検出し、無
人車を仮想走行路に沿って走行させることができる。
As described above, according to the running control apparatus for an unmanned vehicle of the present invention, it is possible to easily and inexpensively detect the relative position of the unmanned vehicle with respect to the virtual running path, particularly the tilt angle, and to detect the unmanned vehicle. Can be run along the virtual travel path.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の無人車の構成図である。FIG. 1 is a configuration diagram of an unmanned vehicle according to an embodiment of the present invention.

【図2】同実施例の処理フローチャートである。FIG. 2 is a processing flowchart of the embodiment.

【図3】同実施例の走行制御説明図である。FIG. 3 is a travel control explanatory diagram of the embodiment.

【符号の説明】[Explanation of symbols]

10 無人搬送車(AGV) 12 ステアリング輪 14 センサ 16 エンコーダ 18 CPU 20 ステアリングモータ 100 誘導線 200 マークプレート 300 仮想軌跡 400 角度検出線 500 位置補正マーク 10 Automated guided vehicle (AGV) 12 Steering wheel 14 Sensor 16 Encoder 18 CPU 20 Steering motor 100 Guide line 200 Mark plate 300 Virtual locus 400 Angle detection line 500 Position correction mark

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 仮想走行路に沿って無人車を走行させる
ために無人車に搭載される走行制御装置であって、 無人車の前後中心線に対して垂直かつ所定間隔Lだけ離
間して搭載され、予め前記仮想走行路に対して垂直とな
るように所定間隔毎に設けられた角度検出線を検出する
一対の検出手段と、 前記一対の検出手段の一方が前記角度検出線を検出して
から他方が前記角度検出線を検出するまでの無人車の走
行距離Dを検出する距離検出手段と、 前記間隔L及び前記走行距離Dに基づき無人搬送車の前
記仮想走行路に対する姿勢角を演算する演算手段と、 演算された姿勢角に基づき無人車のステアリングを制御
する制御手段と、を有することを特徴とする無人車の走
行制御装置。
1. A travel control device mounted on an unmanned vehicle for causing the unmanned vehicle to travel along a virtual travel path, wherein the unmanned vehicle is mounted perpendicular to a front-rear centerline of the unmanned vehicle and separated by a predetermined distance L. And a pair of detection means for detecting angle detection lines provided at predetermined intervals so as to be perpendicular to the virtual travel path in advance, and one of the pair of detection means detects the angle detection line. From the other to the detection of the angle detection line, distance detection means for detecting the travel distance D of the unmanned vehicle, and the attitude angle of the automatic guided vehicle with respect to the virtual travel path are calculated based on the distance L and the travel distance D. A travel control device for an unmanned vehicle, comprising: a computing means; and a control means for controlling steering of the unmanned vehicle based on the calculated attitude angle.
JP5238195A 1993-09-24 1993-09-24 Running control unit for unmanned vehicle Pending JPH0793029A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5238195A JPH0793029A (en) 1993-09-24 1993-09-24 Running control unit for unmanned vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5238195A JPH0793029A (en) 1993-09-24 1993-09-24 Running control unit for unmanned vehicle

Publications (1)

Publication Number Publication Date
JPH0793029A true JPH0793029A (en) 1995-04-07

Family

ID=17026576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5238195A Pending JPH0793029A (en) 1993-09-24 1993-09-24 Running control unit for unmanned vehicle

Country Status (1)

Country Link
JP (1) JPH0793029A (en)

Similar Documents

Publication Publication Date Title
JP2572968B2 (en) How to guide autonomous vehicles
JPH0793029A (en) Running control unit for unmanned vehicle
JPH1195837A (en) Method for determining initial truck position and attitude angle of gyro guide type automated guided vehicle, and method for improving travel stability at position correction
JP3275364B2 (en) Reverse traveling control method for automatic guided vehicles
JP2000330635A (en) Automatic guided vehicle
JP3128455B2 (en) Automatic operation control device for transport vehicles
JP2002108453A (en) Unmanned vehicle
JP3628405B2 (en) Direction correction method and apparatus for traveling vehicle
JPH01282615A (en) Position correcting system for self-travelling unmanned vehicle
JP2775835B2 (en) How to transfer unmanned vehicles
JP3727429B2 (en) Method for calculating positional relationship with respect to travel route of vehicle
JP2840943B2 (en) Mobile robot guidance device
JP2002267411A (en) Conveyance vehicle
JP2000010632A (en) Stopping position deciding device of automated guided vehicle
JP2847673B2 (en) Body guidance method for automatic guided vehicles
JPH0281105A (en) Automatic steering control system
JPH0760344B2 (en) How to drive an automated guided vehicle
JP3804142B2 (en) Unmanned vehicle steering control method
JP2841736B2 (en) How to control unmanned vehicles
JPH09269820A (en) Vehicle guiding device
JPH10111718A (en) Method and device for controlling travel of automated guided carrier
JPS62221707A (en) Gyro-guide type unmanned carrier
JPH09185411A (en) Traveling direction detecting method for unmanned vehicle
JP2021082122A (en) Unmanned carrier vehicle
JP2577095Y2 (en) Body guidance system for automatic guided vehicles

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees