JPH0792432B2 - Automatic chemical analyzer - Google Patents

Automatic chemical analyzer

Info

Publication number
JPH0792432B2
JPH0792432B2 JP63237580A JP23758088A JPH0792432B2 JP H0792432 B2 JPH0792432 B2 JP H0792432B2 JP 63237580 A JP63237580 A JP 63237580A JP 23758088 A JP23758088 A JP 23758088A JP H0792432 B2 JPH0792432 B2 JP H0792432B2
Authority
JP
Japan
Prior art keywords
absorbance
wavelengths
wavelength
reagents
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63237580A
Other languages
Japanese (ja)
Other versions
JPH0285745A (en
Inventor
正樹 竹内
惠美子 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63237580A priority Critical patent/JPH0792432B2/en
Publication of JPH0285745A publication Critical patent/JPH0285745A/en
Publication of JPH0792432B2 publication Critical patent/JPH0792432B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/314Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、反応液内を透過してきた光を多波長に分光し
各波長に対応した吸光度を測定して複数の項目の化学分
析を行う自動化学分析装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Object of the Invention (Industrial field of application) The present invention splits light transmitted through a reaction solution into multiple wavelengths and measures the absorbance corresponding to each wavelength to measure a plurality of items. The present invention relates to an automatic chemical analyzer for performing chemical analysis of.

(従来の技術) 例えば人体から採取した血清を試料(サンプル)として
用い、この中の特定成分に対して反応する所望の試薬を
それに反応させ、この反応液内の特定波長の光の吸光度
を比色法で測定することにより前記特定成分の濃度を検
出して診断に供するようにした自動化学分析装置が知ら
れている。第4図はこのような自動化学分析装置の概略
を示すもので、例えば円形の恒温槽1内には図示しない
駆動源によって矢印方向に一定のサイクルで間欠送りさ
れる反応容器2が配置され、恒温槽1の周囲のA位置に
は対向位置の反応容器2に分析すべき試料を分注するた
めの試料分注装置3が配置され、B位置には対向位置の
反応容器2に試料と反応する試薬を分注するための試薬
分注装置4が配置され、またC位置には対向位置の反応
容器2内の試料と試薬との反応液を攪拌するための攪拌
子5が配置されている。さらに十分に攪拌された反応液
の反応容器2が通過する恒温槽1のD位置には、反応容
器2を挟んで配置された光源6及び光検出器7を含む吸
光度測定部8が設けられ、反応液に光を入射しその透過
量を測定して第6図に示すような吸収スペクトル上にお
ける特定波長λ0に対応した吸光度A0を測定することに
より、所望の項目が測定される。このように自動化学分
析装置で所望項目の化学分析を行うにあたり、最近では
光検出器としてフォトダイオードアレイを用いて反応液
内を透過してきた光を多波長に分光し各波長に対応した
吸光度を測定するようにした多波長測光システムが確立
されている。第5図はこのような測光システムを示すも
ので、光源6から発せられた光は集光レンズ9を介して
光ファイバ10aに入射され、この光ファイバ10aによって
複数nの光路に分岐された後、各光路プリズム11aを介
して反応容器2に入射される。反応容器2内の反応液を
透過した光はプリズム11bを介して再び光ファイバ10bに
入射され、複数nの光路からの入射光を選択的に通過さ
せる光スイッチ12に入射される。選択された1つの光路
は一対のミラー13a,13bを介してスリット14に導かれ、
回折格子15に入射される。入射光は回折格子15によって
多波長に分光され、各波長の光はフォトダイオードアレ
イから成る光検出器16によって各々の光量が電流として
検出される。このようにして検出された電流はアンプ以
降に導かれ、CPU等によって各波長ごとに吸光度が演算
される。第6図はこのようにして得られた吸収スペクト
ルを示すもので、波長λ0を特定することにより対応し
た吸光度A0を求めることができる。
(Prior Art) For example, serum collected from a human body is used as a sample, and a desired reagent that reacts with a specific component therein is reacted therewith, and the absorbance of light of a specific wavelength in the reaction solution is compared. 2. Description of the Related Art There is known an automatic chemical analyzer that detects the concentration of the specific component by measurement by a color method and uses it for diagnosis. FIG. 4 shows an outline of such an automatic chemical analyzer. For example, a reaction vessel 2 which is intermittently fed in a constant cycle in a direction indicated by an arrow by a drive source (not shown) is arranged in a circular constant temperature bath 1. A sample dispensing device 3 for dispensing a sample to be analyzed is placed in a reaction container 2 in an opposite position at a position A around the constant temperature bath 1, and a reaction is performed between the sample in a reaction container 2 in an opposite position at a position B. A reagent dispensing device 4 for dispensing the reagent to be used is disposed, and a stirrer 5 for stirring the reaction liquid of the sample and the reagent in the reaction container 2 at the opposite position is disposed at the position C. . Further, at a position D of the constant temperature bath 1 through which the reaction container 2 of the reaction solution sufficiently stirred passes, an absorbance measuring section 8 including a light source 6 and a photodetector 7 arranged with the reaction container 2 interposed is provided. A desired item is measured by injecting light into the reaction solution, measuring the amount of the light transmitted, and measuring the absorbance A 0 corresponding to the specific wavelength λ 0 on the absorption spectrum as shown in FIG. As described above, when performing a chemical analysis of a desired item with an automatic chemical analysis device, recently, a photodiode array is used as a photodetector to split the light transmitted through the reaction solution into multiple wavelengths to obtain the absorbance corresponding to each wavelength. A multi-wavelength photometric system for measuring is established. FIG. 5 shows such a photometric system, in which the light emitted from the light source 6 enters the optical fiber 10a through the condenser lens 9 and is branched into a plurality of optical paths by the optical fiber 10a. , Is incident on the reaction container 2 via each optical path prism 11a. The light that has passed through the reaction liquid in the reaction container 2 is incident again on the optical fiber 10b via the prism 11b, and is then incident on the optical switch 12 that selectively allows incident light from a plurality of optical paths n to pass. One selected optical path is guided to the slit 14 via a pair of mirrors 13a and 13b,
It is incident on the diffraction grating 15. Incident light is split into multiple wavelengths by the diffraction grating 15, and light of each wavelength is detected as a current by a photodetector 16 including a photodiode array. The current detected in this way is guided to the amplifier and subsequent stages, and the absorbance is calculated for each wavelength by the CPU or the like. FIG. 6 shows the absorption spectrum thus obtained, and the corresponding absorbance A 0 can be obtained by specifying the wavelength λ 0 .

(発明が解決しようとする課題) ところで従来の自動化学分析装置では、多波長測光によ
り吸光度を測定する場合複数の項目を測定するには対応
した複数の反応容器を用意しなければならないので、測
定効率が悪いという問題がある。またこのような測定を
行う場合、吸光度を求めるべき特定波長において測定対
象の吸収スペクトルに血清色調例えば乳びの吸収スペク
トルが重なっているときには、この血清色調による吸光
度分だけ測定すべき真の吸光度に上乗せされるので測定
誤差が大きくなるという問題がある。
(Problems to be Solved by the Invention) By the way, in the conventional automatic chemical analyzer, in case of measuring the absorbance by multi-wavelength photometry, it is necessary to prepare a plurality of corresponding reaction vessels in order to measure a plurality of items. There is a problem of inefficiency. Further, when performing such a measurement, when the absorption spectrum of the measurement target at the specific wavelength for which the absorbance is to be measured is overlapped with the absorption spectrum of serum color such as chyle, the true absorption to be measured is the absorbance corresponding to the absorption due to this serum color. Since it is added, there is a problem that the measurement error becomes large.

第7図(a),(b)はこの様子を示すもので、第7図
(a)のように測定対象の吸収スペクトルS′上の特定
波長(第1の波長)λ1において乳び等の血清色調の吸
収スペクトルS′が重なって存在しているときは、測定
すべき吸収スペクトルS′は前記スペクトルS′の影響
を受けてこの分上乗せされることになり見かけ上の吸光
度が増加し、吸収スペクトルSのようになる。このため
各スペクトルS,S′,S″上の波長λ1に対応した吸光度は
各々A1,A′1,A″1となり、測定すべき真の吸光度はA′
1であるにも拘らず誤ったA1が測定されてしまうことに
なる。この弊害を防止するために第7図(b)のように
特定波長λ1からlだけ離れたスペクトルの下降する位
置に補正のための波長λcを設定し、このλcに対応した
吸光度Acを求めてこれら2波長間の吸光度差ΔA′=A1
−Acを求めて補正することが行われているが厳密には
A″1−A″cが誤差となるため依然として血清色調の影
響を避けることはできない。これは特に免疫分析のよう
に測定感度の悪い分析を行う場合は、lを大きめに設定
しなければならないのでその傾向が著しくなる。
FIGS. 7 (a) and 7 (b) show this state. As shown in FIG. 7 (a), chyle or the like occurs at a specific wavelength (first wavelength) λ 1 on the absorption spectrum S ′ of the measurement object. When the absorption spectra S'of the serum color tone of the above exist, the absorption spectra S'to be measured are added by this amount due to the influence of the spectra S'and the apparent absorbance increases. , The absorption spectrum S is obtained. Therefore, the absorbance corresponding to the wavelength λ 1 on each spectrum S, S ′, S ″ becomes A 1 , A ′ 1 , A ″ 1 , respectively, and the true absorbance to be measured is A ′.
Even though it is 1 , the wrong A 1 will be measured. In order to prevent this adverse effect, as shown in FIG. 7 (b), the wavelength λ c for correction is set at the position where the spectrum is distant by l from the specific wavelength λ 1 , and the absorbance A corresponding to this λ c is set. By finding c , the difference in absorbance between these two wavelengths ΔA ′ = A 1
Although correction is performed by obtaining −A c , strictly speaking, the effect of serum color tone cannot be avoided because A ″ 1 −A ″ c causes an error. This is particularly the case when 1 is set to a large value when an assay with poor measurement sensitivity such as an immunoassay is performed, and this tendency becomes remarkable.

本発明は異常のような事情に対処して成されたもので、
測定効率を改善すると共に血清色調による影響を軽減す
るようにした自動化学分析装置を提供することを目的と
するものである。
The present invention has been made in response to a situation such as an abnormality,
It is an object of the present invention to provide an automatic chemical analyzer that improves measurement efficiency and reduces the influence of serum color tone.

[発明の構成] (課題を解決するための手段) 上記目的を達成するために本発明は、反応容器に測定対
象の試料を分注する試料分注手段と、前記反応容器に互
いに影響し合わない複数の試薬を分注する試薬分注手段
と、反応容器に分注された前記試料及び複数の試薬の反
応液に光を入射し、複数の波長毎に透過光を測光する測
定手段と、前記複数の試薬それぞれに対応して設定され
た複数の特定波長の測光結果及び前記特定波長より一方
の側に設定された少なくとも補正のための第1及び第2
の波長に対応する測光結果からそれぞれの波長に対応す
る吸光度を求め、それらに基づき血清色調による誤差を
補正して前記複数の試薬に対応する項目の分析を行う分
析手段とを備えることを特徴とする。
[Structure of the Invention] (Means for Solving the Problems) In order to achieve the above object, the present invention relates to a sample dispensing means for dispensing a sample to be measured into a reaction container, and the reaction container to influence each other. Reagent dispensing means for dispensing a plurality of reagents not included, measuring means for injecting light into the reaction liquid of the sample and a plurality of reagents dispensed into the reaction container, and measuring transmitted light for each of a plurality of wavelengths, First and second at least corrections for photometric results of a plurality of specific wavelengths set corresponding to each of the plurality of reagents and one side of the specific wavelengths
The absorbance corresponding to each wavelength from the photometric results corresponding to the wavelength of, and based on them, the error due to the serum color tone is corrected based on the analysis means for analyzing the items corresponding to the plurality of reagents. To do.

(作用) 上記構成の本発明によれば、試料が分注された反応容器
に互いに影響し合わない複数の試薬を分注し、その反応
液に光を入射し、複数の波長毎に透過光を測光し、複数
の試薬それぞれに対応して設定された複数の特定波長の
測光結果及び前記特定波長より一方の側に設定された少
なくとも補正のための第1及び第2の波長に対応する測
光結果からそれぞれの波長に対応する吸光度を求め、そ
れらに基づき血清色調による誤差を補正して同時に複数
の試薬に対応する複数項目の分析を行うことができる。
(Operation) According to the present invention having the above configuration, a plurality of reagents that do not affect each other are dispensed into a reaction container in which a sample is dispensed, light is incident on the reaction solution, and transmitted light is transmitted at each of a plurality of wavelengths. And a photometric result of a plurality of specific wavelengths set corresponding to each of the plurality of reagents and a photometric result corresponding to at least the first and second wavelengths for correction set on one side of the specific wavelengths. It is possible to obtain the absorbance corresponding to each wavelength from the result, correct the error due to the serum color tone based on the absorbance, and simultaneously analyze a plurality of items corresponding to a plurality of reagents.

(実施例) 以下図面を参照して本発明実施例を説明する。Embodiments Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の自動化学分析装置の実施例を示すブロ
ック図で、透過光を測光する測定手段としての光検出器
16はフォトダイオードアレイから成り第5図に示すよう
に回折格子15によって分光された多波長を検出するため
のもので、検出電流は各々アンプ17に出力されて電圧に
変換された後、マルチプレクサ18によって1波長のみが
選択されてA/D変換器19に加えられる。A/D変換器19は入
力信号をディジタル信号に変換し、このディジタル信号
はインターフェイス20を介して分析手段としてのCPU
(中央演算処理素子)21に加えられる。
FIG. 1 is a block diagram showing an embodiment of an automatic chemical analyzer according to the present invention, which is a photodetector as a measuring means for measuring transmitted light.
Reference numeral 16 is a photodiode array for detecting multiple wavelengths dispersed by the diffraction grating 15 as shown in FIG. 5. The detected currents are output to the amplifiers 17 and converted into voltages, respectively, and then the multiplexer 18 Only one wavelength is selected by and added to the A / D converter 19. The A / D converter 19 converts an input signal into a digital signal, and this digital signal is passed through an interface 20 to a CPU as an analysis means.
(Central processing element) 21.

CPU21はディジタル信号に基づき、第2図に示すように
測定対象のスペクトル上に少なくともλ1,λc,λ2
設定して、これら各波長における吸光度を組み合わせて
演算処理することにより2つの項目D1,D2を測定する機
能を有している。このうちλ1,λ2は2つの項目D1,D2
に対応した位置に設定され、λcはλ1,λ2間で吸光度
の変化が少ない位置に設定される。すなわち、λ1,λc
より吸光度A1,Acが求められ項目D1に対応する吸光度が
測定され、λ2,λcより吸光度A2,Acが求められ項目D2
に対応する吸光度が測定される。CPU21によって演算処
理された吸光度のデータはこれに内蔵されているメモリ
に格納される。
Based on the digital signal, the CPU 21 sets at least λ 1 , λ c , and λ 2 on the spectrum to be measured as shown in FIG. 2 , and combines the absorbances at each of these wavelengths to perform two arithmetic operations. It has the function of measuring D 1 and D 2 . Of these, λ 1 and λ 2 are two items D 1 and D 2
Is set to a position corresponding to, and λ c is set to a position where there is little change in absorbance between λ 1 and λ 2 . That is, λ 1 , λ c
The absorbances A 1 and A c are obtained from the above, the absorbance corresponding to the item D 1 is measured, and the absorbances A 2 and A c are obtained from λ 2 and λ c , and the item D 2 is obtained.
The absorbance corresponding to is measured. The absorbance data processed by the CPU 21 is stored in the memory incorporated therein.

さらに、CPU21は、乳び等の血清色調の吸収スペクトル
S″に重なって測定対象の吸収スペクトルS′が存在し
見かけ上の吸収スペクトルがSであるとき、第3図に示
すように補正のための第1の波長λc1,補正のための第
2の波長λc2を、測定項目D1に対応する波長λ1より一
方の側に設定して、これら波長λ1,λc1,λc2に対応
した吸光度から以下に示す式に基づいて吸光度の補正を
行う機能を有している。なお、補正のための第2の波長
λc2は測定対象の吸収スペクトルS′の吸光度が略Oに
低下した位置に選ばれる。
Further, when there is an absorption spectrum S'to be measured and the apparent absorption spectrum S overlaps with the absorption spectrum S "of the serum color tone of milky milk etc. and the apparent absorption spectrum is S, the CPU 21 corrects as shown in FIG. The first wavelength λ c1 and the second wavelength λ c2 for correction are set to one side of the wavelength λ 1 corresponding to the measurement item D 1 , and these wavelengths λ 1 , λ c1 , and λ c2 are set. It has a function of correcting the absorbance from the corresponding absorbance based on the following equation: The second wavelength λ c2 for the correction is such that the absorbance of the absorption spectrum S ′ of the measurement target is reduced to approximately O. Selected to the position.

第3図のように測定対象の吸収スペクトルS′,血清色
調の吸収スペクトルS″,見かけ上の吸収スペクトルS
において、波長λ1に対応した吸光度を各々A1,A′1,A″
1、補正のための第1の波長λc1に対応した吸光度を各
々Ac1,A′c1,A″c1、補正のための第2の波長λc2に対
応した吸光度を各々Ac2,A′c2,A″c2とすると、次式が
成立する。
As shown in FIG. 3, the absorption spectrum S ′ of the measurement object, the absorption spectrum S ″ of the serum color tone, the apparent absorption spectrum S
, The absorbance corresponding to the wavelength λ 1 is A 1 , A ′ 1 , A ″
1. Absorbances corresponding to the first wavelength λ c1 for correction are A c1 , A ′ c1 and A ″ c1 , respectively, and absorbances corresponding to the second wavelength λ c2 for correction are A c2 and A ′, respectively. If c2 , A ″ c2 , then the following equation holds.

A″1=A1−A′1 A″c1=Ac1−A′c1 A″c2=Ac2−A′c2 Ac2=A″c2 A′c2=0 また、k1=A″1/A″c2 k2=A″c1/A″c2 k1:λc2の吸光度A″c2をλ1の吸光度A″1に補正する
係数, k2:λc2の吸光度A″c2をλc1の吸光度A″c1に補正す
る係数, そして、λ1,λc1,λc2における見かけ上の吸収スペ
クトルSから次式のようにして吸光度差ΔA″を求める
ことができる。
A " 1 = A 1 -A ' 1 A" c1 = A c1 -A' c1 A " c2 = A c2 -A ' c2 A c2 = A" c2 A'c2 = 0 Also, k 1 = A " 1 / a "c2 k 2 = a" c1 / a: " coefficient for correcting the 1, k 2: λ c2 absorbance a for" the c2 'c2 k 1 absorbance a of lambda c2 "absorbance a of lambda 1 c2 of lambda c1 From the coefficient for correcting the absorbance A ″ c1 and the apparent absorption spectrum S at λ 1 , λ c1 , and λ c2 , the absorbance difference ΔA ″ can be obtained by the following equation.

ΔA″=(A1−Ac1)−{(k1−1)Ac2−(k2−1)A
c2}…(1) この吸光度差ΔA″を基にCPU21によって演算補正が行
われる。
ΔA ″ = (A 1 −A c1 ) − {(k 1 −1) A c2 − (k 2 −1) A
c2 } (1) The CPU 21 corrects the calculation based on the absorbance difference ΔA ″.

このとき、反応容器2には分析すべき試料の他に測定す
べき第1の項目D1に対応した第1の試薬及び第2の項目
D2に対応した第2の試薬が混合され、これら第1及び第
2の試薬は互いに影響し合わないで共存し得るものが選
ばれる。これら第1及び第2の項目D1,D2は異なった波
長λ1,λ2を特定することによって同一反応容器から同
時に測定し得る。
At this time, in the reaction container 2, in addition to the sample to be analyzed, the first reagent and the second item corresponding to the first item D 1 to be measured.
The second reagent corresponding to D 2 is mixed, and those which can coexist without affecting each other are selected. These first and second items D 1 and D 2 can be measured simultaneously from the same reaction vessel by specifying different wavelengths λ 1 and λ 2 .

操作パネル22はキーボードを備えており分析を行う必要
なデータ入力を行うためのものであり、例えば測定項目
に対応した波長を入力するために用いられる。ディスプ
レイ23は周知のCRT等から成り操作パネル22からのデー
タ入力に基づきCPU21によって演算された結果を表示
し、またこれら表示結果はプリンタ24から出力すること
ができる。
The operation panel 22 is provided with a keyboard and is used for inputting data required for analysis, and is used, for example, for inputting a wavelength corresponding to a measurement item. The display 23 is composed of a well-known CRT or the like and displays the results calculated by the CPU 21 based on the data input from the operation panel 22, and these display results can be output from the printer 24.

以下本実施例の作用を説明する。The operation of this embodiment will be described below.

反応容器2に分析すべき試料の他に測定すべき第1の項
目D1に対応した第1の試薬及び第2の項目D2に対応した
第2の試薬を混合した後、これら反応液に光源6からの
光を入射することにより透過した光を光スイッチ12を介
して回折格子15に入射して多波長に分光する。各波長に
対応した電流が光検出器16によって検出された後、必要
な処理が行われてCPU21によって各吸光度が演算されて
メモリ内に格納される。このとき操作パネル22を介して
設定する波長データ例えば前記第1の項目D1に対応した
波長λ1,第2の項目D2に対応した波長λ2,及びλ1
λ2間に位置し吸光度の変化が少ない位置に補正のため
の波長λcの3つの波長を設定する。これによってCPU21
は、第2図に示すようにλ1,λcの吸光度A1,Acから項
目D1に対応する吸光度を測定すると同時にλ2,λcの吸
光度A2,Acから項目D2に対応する吸光度を測定する。こ
れらの測定結果はディスプレイ23に表示され、必要に応
じてプリンタ24から出力される。
In addition to the sample to be analyzed in the reaction container 2, a first reagent corresponding to the first item D 1 to be measured and a second reagent corresponding to the second item D 2 are mixed and then added to these reaction solutions. The light transmitted by the light from the light source 6 is incident on the diffraction grating 15 through the optical switch 12 and is split into multiple wavelengths. After the current corresponding to each wavelength is detected by the photodetector 16, necessary processing is performed and each absorbance is calculated by the CPU 21 and stored in the memory. At this time, wavelength data set via the operation panel 22, for example, the wavelength λ 1 corresponding to the first item D 1 , the wavelength λ 2 corresponding to the second item D 2 , and λ 1 ,
Three wavelengths λ c for correction are set at positions where they are located between λ 2 and have little change in absorbance. This makes CPU21
As shown in FIG. 2, the absorbance corresponding to item D 1 is measured from the absorbances A 1 and A c of λ 1 and λ c , and at the same time, the absorbances A 2 and A c of λ 2 and λ c are changed to item D 2 . Measure the corresponding absorbance. These measurement results are displayed on the display 23 and output from the printer 24 as needed.

従って、同一反応容器から第1の項目D1及び第2の項目
D2を同時に測定することができるので測定効率を改善す
ることができ、同数の項目を測定する場合に反応容器の
数を少なくすることができる。また、設定すべき波長は
3波長に限らず4波長以上にしてもよい。
Therefore, the first item D 1 and the second item from the same reaction vessel
Since D 2 can be measured at the same time, the measurement efficiency can be improved, and the number of reaction vessels can be reduced when measuring the same number of items. Further, the wavelengths to be set are not limited to three wavelengths and may be four wavelengths or more.

次に特定波長(測定すべき波長)における測定対象の吸
収スペクトルS′に乳び等の血清色調のスペクトルS″
が重なっているときは、第3図に示すようなλ1
λc1,λc2の吸光度A1,Ac1,Ac2からCPU21は前記
(1)式に従って吸光度差ΔA″を求めこれに応じて演
算補正を行う。従って、測定対象の吸収スペクトルS′
に基づいた真の吸光度を求めることができるので血清色
調による影響を軽減することができる。血清色調は乳び
以外にも溶血や黄疸等の場合にも同様に適用することが
できる。
Next, the absorption spectrum S'of the measurement object at a specific wavelength (wavelength to be measured) is added to the spectrum S "of serum color tone such as chyle.
, The λ 1 , as shown in Fig. 3,
From the absorbances A 1 , A c1 and A c2 of λ c1 and λ c2, the CPU 21 obtains the absorbance difference ΔA ″ according to the above equation (1) and corrects the calculation accordingly. Therefore, the absorption spectrum S ′ of the measurement target is obtained.
Since it is possible to obtain the true absorbance based on, it is possible to reduce the influence of the serum color tone. The serum color tone can be similarly applied to hemolysis, jaundice, etc. in addition to chyle.

[発明の効果] 以上述べたように本発明によれば、試料と互いに影響し
合わない複数の試薬とを反応させ、その反応液の複数の
波長の透過光を測光し、複数の試薬に対応する特定波長
の測光結果及び前記特定波長より一方の側に設定された
少なくとも補正のための第1及び第2の波長に対応する
測光結果からそれぞれの波長に対応する吸光度を求め、
それらに基づき血清色調による誤差を補正して複数の試
薬に対応する項目の分析を行うようにしたので、複数項
目を同一反応容器で同時に測定することができるので測
定効率を改善することができ、しかも、血清色調による
誤差を除く補正を行うようにしたので、血清色調の影響
を軽減して分析を行うことができる。
[Effects of the Invention] As described above, according to the present invention, a sample is reacted with a plurality of reagents that do not affect each other, and the transmitted light of a plurality of wavelengths of the reaction solution is measured to support a plurality of reagents. Determining the absorbance corresponding to each wavelength from the photometric result of the specific wavelength and the photometric result corresponding to at least the first and second wavelengths for correction set on one side of the specific wavelength,
Based on them, the error due to the serum color tone was corrected to analyze the items corresponding to a plurality of reagents, so that it is possible to measure a plurality of items in the same reaction container at the same time, so that the measurement efficiency can be improved, Moreover, since the correction is performed to eliminate the error due to the serum color tone, the analysis can be performed while reducing the influence of the serum color tone.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の自動化学分析装置の実施例を示すブロ
ック図、第2図及び第3図は本実施例装置の作用を説明
する吸光度特性図、第4図は自動化学分析装置の一構成
例を示す概略図、第5図は自動化学分析装置の多波長測
定システムを示す構成図、第6図は吸光度測定を示す特
性図、第7図(a),(b)は血清色調による吸光度測
定への影響を説明する特性図である。 2……反応容器、12……光スイッチ、15……回折格子、
16……光検出器、21……CPU(中央演算処理素子)。
FIG. 1 is a block diagram showing an embodiment of the automatic chemical analyzer of the present invention, FIGS. 2 and 3 are absorbance characteristic diagrams for explaining the operation of the apparatus of the present embodiment, and FIG. 4 is an example of the automatic chemical analyzer. FIG. 5 is a schematic diagram showing a configuration example, FIG. 5 is a configuration diagram showing a multi-wavelength measuring system of an automatic chemical analyzer, FIG. 6 is a characteristic diagram showing absorbance measurement, and FIGS. 7 (a) and 7 (b) are according to serum color tone. It is a characteristic view explaining influence on absorbance measurement. 2 ... Reaction vessel, 12 ... Optical switch, 15 ... Diffraction grating,
16 ... Photo detector, 21 ... CPU (central processing unit).

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭54−84781(JP,A) 特開 昭48−94492(JP,A) 特開 昭57−106843(JP,A) 特開 昭63−66466(JP,A) 特開 昭63−129998(JP,A) 特開 昭63−148166(JP,A) ─────────────────────────────────────────────────── --- Continuation of the front page (56) Reference JP-A-54-84781 (JP, A) JP-A-48-94492 (JP, A) JP-A-57-106843 (JP, A) JP-A-63- 66466 (JP, A) JP 63-129998 (JP, A) JP 63-148166 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】反応容器に測定対象の試料を分注する試料
分注手段と、 前記反応容器に互いに影響し合わない複数の試薬を分注
する試薬分注手段と、 反応容器に分注された前記試料及び複数の試薬の反応液
に光を入射し、複数の波長毎に透過光を測光する測定手
段と、 前記複数の試薬それぞれに対応して設定された複数の特
定波長の測光結果及び前記特定波長より一方の側に設定
された少なくとも補正のための第1及び第2の波長に対
応する測光結果からそれぞれの波長に対応する吸光度を
求め、それらに基づき血清色調による誤差を補正して前
記複数の試薬に対応する項目の分析を行う分析手段とを
備えることを特徴とする自動化学分析装置。
1. A sample dispensing means for dispensing a sample to be measured into a reaction container, a reagent dispensing means for dispensing a plurality of reagents that do not affect each other into the reaction container, and a reagent dispensed into the reaction container. In addition, light is incident on the reaction liquid of the sample and a plurality of reagents, and a measuring unit that measures transmitted light for each of a plurality of wavelengths, and a photometric result of a plurality of specific wavelengths set corresponding to each of the plurality of reagents and The absorbances corresponding to the respective wavelengths are obtained from the photometric results corresponding to at least the first and second wavelengths for correction set on one side of the specific wavelength, and the error due to the serum color tone is corrected based on the absorbances. An automatic chemical analysis device comprising: an analysis unit that analyzes items corresponding to the plurality of reagents.
JP63237580A 1988-09-22 1988-09-22 Automatic chemical analyzer Expired - Lifetime JPH0792432B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63237580A JPH0792432B2 (en) 1988-09-22 1988-09-22 Automatic chemical analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63237580A JPH0792432B2 (en) 1988-09-22 1988-09-22 Automatic chemical analyzer

Publications (2)

Publication Number Publication Date
JPH0285745A JPH0285745A (en) 1990-03-27
JPH0792432B2 true JPH0792432B2 (en) 1995-10-09

Family

ID=17017424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63237580A Expired - Lifetime JPH0792432B2 (en) 1988-09-22 1988-09-22 Automatic chemical analyzer

Country Status (1)

Country Link
JP (1) JPH0792432B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114295568A (en) * 2021-12-31 2022-04-08 深圳麦科田生物医疗技术股份有限公司 Blood sample index correction system and blood sample index correction method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2534624Y2 (en) * 1990-06-20 1997-05-07 株式会社ニッテク Automatic analyzer
JP5319696B2 (en) * 2008-11-17 2013-10-16 株式会社日立ハイテクノロジーズ Automatic analyzer
JP5681548B2 (en) * 2011-03-31 2015-03-11 日本光電工業株式会社 Method for measuring pH of medium solution and pH measuring apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5484781A (en) * 1977-12-19 1979-07-05 Hitachi Ltd Absorptiometric analysis method
JPS57106843A (en) * 1980-12-23 1982-07-02 Shimadzu Corp Multiple wavelength multi-absorptiometric analyzing apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114295568A (en) * 2021-12-31 2022-04-08 深圳麦科田生物医疗技术股份有限公司 Blood sample index correction system and blood sample index correction method

Also Published As

Publication number Publication date
JPH0285745A (en) 1990-03-27

Similar Documents

Publication Publication Date Title
KR100200273B1 (en) Analytical method of multi-component aqueous solution and apparatus for the same
US5696580A (en) Method of and apparatus for measuring absorbance, component concentration or specific gravity of liquid sample
EP0091126B1 (en) Fluorimeter
EP0400342B1 (en) Method of infra red analysis
JPH02216032A (en) Test carrier analysis and apparatus used therefor
US4946279A (en) Flourescence spectrophotometer for measuring fluorescent light of a plurality of wavelength conditions
US3988591A (en) Photometric method for the quantitative determination of a material or substance in an analysis substance and photoelectric photometer for the performance of the aforesaid method
JPH0666808A (en) Chromogen measurement method
JPS5852550A (en) Dissolution method for ghost peak of flow injection analysis
GB2059580A (en) Fluorometer with high sensitivity and stability
JPH0792432B2 (en) Automatic chemical analyzer
JPH0433386B2 (en)
JPH10132735A (en) Automatic analyzing device
JPS60125542A (en) Measured data correcting method
JPS63101734A (en) Automatic chemical analyzer
JPH0536748B2 (en)
JP2008058155A (en) Medical photometer
JPH0257863B2 (en)
JPS63205546A (en) Automatic analysis instrument
JPS63103945A (en) Method for measuring information in serum
JP2006098228A (en) Spectrophotometer, biochemical analyzer and measuring method
JPH0534275A (en) Fluid component measuring apparatus
JPH0513573B2 (en)
JPS5838744B2 (en) Analyzer for clinical testing
JPS6385414A (en) Multibeam photometry instrument