JPH0792343B2 - Iron ore preliminary reduction device - Google Patents

Iron ore preliminary reduction device

Info

Publication number
JPH0792343B2
JPH0792343B2 JP61071563A JP7156386A JPH0792343B2 JP H0792343 B2 JPH0792343 B2 JP H0792343B2 JP 61071563 A JP61071563 A JP 61071563A JP 7156386 A JP7156386 A JP 7156386A JP H0792343 B2 JPH0792343 B2 JP H0792343B2
Authority
JP
Japan
Prior art keywords
reduction
fluidized bed
ore
furnace
reduction furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61071563A
Other languages
Japanese (ja)
Other versions
JPS62228879A (en
Inventor
達彦 江頭
信義 西原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP61071563A priority Critical patent/JPH0792343B2/en
Publication of JPS62228879A publication Critical patent/JPS62228879A/en
Publication of JPH0792343B2 publication Critical patent/JPH0792343B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、溶融還元法に使用するため、鉄鉱石を流動層
予備還元炉で還元する装置に関する。
TECHNICAL FIELD The present invention relates to an apparatus for reducing iron ore in a fluidized bed preliminary reduction furnace for use in a smelting reduction method.

〔従来の技術〕 鉄鉱石を還元して溶銑を製造するために、高炉を使用す
る方法,シャフト炉で還元した鉄鉱石を電気炉で溶解す
る方法等が従来から採用されている。
[Prior Art] In order to reduce iron ore to produce hot metal, a method of using a blast furnace, a method of melting iron ore reduced in a shaft furnace in an electric furnace, and the like have been conventionally adopted.

高炉を使用する方法においては、熱源及び還元剤として
多量のコークスを使用している。また、鉄源である鉄鉱
石は、炉内における通気性,還元性を向上させるために
通常焼結され、焼結鉱として高炉に装入されている。こ
のようなことから、該高炉法は、強粘結炭を乾溜するた
めのコークス炉設備及び焼結鉱を製造するための焼結設
備を必要とする。したがって、該高炉法には、多大な設
備費は勿論のこと、多くのエネルギー及び労働が必要と
なる。このため、高炉法には処理コストが高くなるとい
う欠点があった。更に、強粘結炭は世界的に賦存量が少
なく、しかもその分布が地域的に偏っているため、供給
が不安定である。
In the method using a blast furnace, a large amount of coke is used as a heat source and a reducing agent. Further, iron ore, which is an iron source, is usually sintered in order to improve air permeability and reducibility in the furnace, and is charged into a blast furnace as a sintered ore. For this reason, the blast furnace method requires coke oven equipment for dry distillation of strong coking coal and sintering equipment for producing sinter. Therefore, the blast furnace method requires a large amount of energy and labor as well as a large amount of equipment cost. Therefore, the blast furnace method has a drawback that the processing cost is high. Moreover, the supply of strong coking coal is unstable because the amount of endowment is small worldwide and the distribution is unevenly distributed locally.

一方、シャフト炉による鉄鉱石の還元法では、鉄鉱石を
ペレット化する前処理を行うことが必要となり、また還
元剤,熱源として高価な天然ガス等を多量に消費すると
いう欠点がある。
On the other hand, the iron ore reduction method using the shaft furnace has a drawback that it requires pretreatment for pelletizing the iron ore and consumes a large amount of reducing agent, expensive natural gas and the like as a heat source.

このような従来の溶銑製造技術に代わるものとして、溶
融還元法が注目を浴びている。この方法で使用する溶融
還元炉は、使用する原料に制約を受けることなく、より
小規模な設備により鉄系合金の溶湯を製造することを目
的として開発されたものである。
The smelting reduction method has been attracting attention as an alternative to such conventional hot metal production technology. The smelting reduction furnace used in this method was developed for the purpose of producing a molten iron-based alloy by a smaller-scale facility without being restricted by the raw material used.

このような溶融還元法の一つとして、本発明者等は、先
に第4図に示すようなフローで構成される方法を特願昭
59−184056号として提案した。
As one of such smelting reduction methods, the inventors of the present invention have applied for a method including the flow previously shown in FIG.
Proposed as No. 59-184056.

この方法によるとき、次のようにして溶銑が製造され
る。すなわち、鉄鉱石1及び石灰石2は、流動層予熱炉
3内で石炭4と空気5との燃焼反応で生じた熱によって
加熱される。その結果、石灰石2(CaCO3)は、生石灰
(CaO)となって流動層予備還元炉6に供給される。
According to this method, hot metal is manufactured as follows. That is, the iron ore 1 and the limestone 2 are heated by the heat generated by the combustion reaction between the coal 4 and the air 5 in the fluidized bed preheating furnace 3. As a result, the limestone 2 (CaCO 3 ) becomes quicklime (CaO) and is supplied to the fluidized bed preliminary reduction furnace 6.

流動層予備還元炉6内では、流動状態の予熱鉱石及び生
石灰に、石炭7及び酸素又は酸素含有ガス8が吹き込ま
れる。この石炭7は、流動層予備還元炉6内で予熱鉱石
と熱交換し、また酸素との反応による部分燃焼によって
熱分解する。これによって、石炭7は、還元性のガスを
発生すると共に、チャー9となる。
In the fluidized bed preliminary reduction furnace 6, coal 7 and oxygen or oxygen-containing gas 8 are blown into the preheated ore and quicklime in a fluidized state. The coal 7 exchanges heat with preheated ore in the fluidized bed preliminary reduction furnace 6 and is thermally decomposed by partial combustion due to reaction with oxygen. As a result, the coal 7 generates a reducing gas and becomes char 9.

他方、溶融還元炉10で発生したガス又はそのガスを脱炭
酸処理して得られる還元ガス11は、流動層予備還元炉6
からの燃料ガス12との熱交換によって700〜900℃に昇温
された後、流動層予備還元炉6に吹き込まれる。流動層
予備還元炉6に吹き込まれた還元ガス11は、石炭7の熱
分解により生成した還元ガスと混合され、流動状態にあ
る高温の粉粒状鉄鉱石を還元し、還元鉱13を生成する。
On the other hand, the gas generated in the smelting reduction furnace 10 or the reducing gas 11 obtained by decarbonating the gas is the fluidized bed preliminary reduction furnace 6
After being heated to 700 to 900 ° C. by heat exchange with the fuel gas 12 from the above, it is blown into the fluidized bed preliminary reduction furnace 6. The reducing gas 11 blown into the fluidized bed preliminary reduction furnace 6 is mixed with the reducing gas generated by the thermal decomposition of the coal 7, and reduces the high temperature powdery iron ore in a fluidized state to generate the reduced ore 13.

また、流動層予熱炉3内に生成した生石灰14は、予熱鉱
石と共に流動層予備還元炉6に装入され、流動層予備還
元炉6内にあるガスの脱硫を行う。次いで、該生石灰14
は、還元鉱13及びチャー9と共に流動層予備還元炉6か
ら排出される。
The quicklime 14 produced in the fluidized bed preheating furnace 3 is charged into the fluidized bed preliminary reduction furnace 6 together with the preheated ore to desulfurize the gas in the fluidized bed preliminary reduction furnace 6. Then the quicklime 14
Is discharged from the fluidized bed preliminary reduction furnace 6 together with the reduction ore 13 and the char 9.

このようにして得られた還元鉱13,チャー9及び生石灰1
4に対して、溶融還元炉10における熱バランス上必要な
石炭,コークス等の炭材が外部から加えられ、混練され
る。次いで、混合物は、ブリケットマシン等の塊成化装
置15によってブリケット16に成形された後、装入装置17
によって溶融還元炉10に装入される。
Reduced ore 13, char 9 and quicklime 1 thus obtained
4, coal materials such as coal and coke necessary for heat balance in the smelting reduction furnace 10 are added from the outside and kneaded. Next, the mixture is molded into a briquette 16 by an agglomerating device 15 such as a briquette machine, and then a charging device 17
Is charged into the smelting reduction furnace 10.

この溶融還元炉10内には、上吹きランス18から酸素19が
浴に向かって吹き付けられると共に、底吹き羽口20から
浴中に酸素及び炭材が吹き込まれている。そして、ブリ
ケット16に含まれている炭材,底吹き羽口20から酸素と
共に吹き込まれている炭材,装入装置17から供給された
コークス21等の炭材は、上吹きランス18から供給された
酸素と反応し、溶融還元炉10内に多量の熱を発生する。
この発生熱によって、ブリケット16中の還元鉱13が溶解
し、還元が進行して溶銑22となる。
In the smelting reduction furnace 10, oxygen 19 is blown toward the bath from the top blowing lance 18, and oxygen and carbonaceous material are blown into the bath from the bottom blowing tuyere 20. The carbonaceous material contained in the briquette 16, the carbonaceous material blown together with oxygen from the bottom blowing tuyere 20, the coke 21 supplied from the charging device 17 and the like are supplied from the top blowing lance 18. And reacts with oxygen to generate a large amount of heat in the smelting reduction furnace 10.
The generated heat melts the reduction ore 13 in the briquette 16 and the reduction proceeds to form hot metal 22.

一方、還元鉱13中の脈石と炭材及び生石灰14とが反応し
て、スラグ23が生成する。このスラグ23は、溶融還元炉
10内に貯留し、時間が経過するにつれその量を増してい
く。そこで、該スラグ23を間欠的又は連続的に炉外に排
出する。
On the other hand, the gangue in the reduced ore 13 reacts with the carbonaceous material and the quick lime 14 to generate the slag 23. This slag 23 is a smelting reduction furnace
It will be stored within 10 and its amount will increase over time. Therefore, the slag 23 is discharged out of the furnace intermittently or continuously.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

このような溶融還元法においては、特にその開発過程か
らしても明らかなように、使用可能な原料の範囲の拡
大,熱回収の効率化,溶融還元炉における製錬反応の促
進等を如何にして達成するかが今後の課題である。
In such a smelting reduction method, as is clear from the development process, how to expand the range of usable raw materials, improve the efficiency of heat recovery, promote the smelting reaction in the smelting reduction furnace, etc. It is a future issue whether to achieve it.

しかし、一般炭,粉鉱石等の廉価な原料を使用すると、
処理過程で多量の粉塵が発生する。このため、炉内の通
気性が悪くなって多量のガスを吹き込むことができず、
生産性を上げることが困難となる。そこで、このような
粉鉱石等はブリケット或いはペレット等の塊状化を行
い、粉塵を発生しない原料に加工して使用されている。
また、これまでに開発されている溶融還元法において
は、流動層予備還元炉から排出される還元鉱は、必要に
応じて熱回収した後、単に溶融還元炉に投入しているに
過ぎない。このような方式では、効率的な熱回収及び製
錬反応の促進を行うことに限度がある。
However, if cheap raw materials such as steam coal and powdered ore are used,
A large amount of dust is generated during the treatment process. Therefore, the air permeability in the furnace is poor and a large amount of gas cannot be blown in,
It becomes difficult to increase productivity. Therefore, such a powdered ore or the like is used by being processed into a raw material that does not generate dust, by lumping briquettes or pellets.
Further, in the smelting reduction methods developed so far, the reducing ore discharged from the fluidized bed preliminary reduction furnace is merely charged into the smelting reduction furnace after heat recovery as necessary. In such a system, there is a limit in efficient heat recovery and promotion of the smelting reaction.

そこで本発明は、溶融還元法により鉄鉱石から溶銑を得
るに際し、賦存量の多い一般炭と現在利用価値の少ない
微粉鉱石を原料として用い、資源の拡大活用及び溶銑コ
ストの低下を図ることを目的とする。
Therefore, the present invention, when obtaining hot metal from the iron ore by the smelting reduction method, the use of steam coal with a large amount of endowment and fine powder ore with low present utility value as raw materials, aiming at the expanded utilization of resources and reduction of hot metal cost And

〔問題点を解決するための手段〕[Means for solving problems]

本発明の鉄鉱石予備還元装置は、その目的を達成するた
めに、溶融還元法に使用する予備還元鉱石を製造する設
備において、流動層予備還元炉の出口にサイクロンを設
け、該サイクロン下部と、流動層予備還元炉下部とを、
キャリアガス吹き込み口を設けたニューマチックフィー
ダーを介し連結して、外部粒子循環装置を形成し、この
外部粒子循環装置に細粒状の還元鉱を取り出す排出部を
設け、且つ、前記流動層予備還元炉の底部に粗粒状の還
元鉱を取り出す排出部を設けてなることを特徴とする。
Iron ore pre-reduction apparatus of the present invention, in order to achieve the object, in a facility for producing a pre-reduction ore used in the smelting reduction method, a cyclone is provided at the outlet of the fluidized bed pre-reduction furnace, the cyclone lower part, The lower part of the fluidized bed preliminary reduction furnace
An external particle circulating device is formed by connecting through a pneumatic feeder provided with a carrier gas blowing port, and an outlet for taking out fine granular reduced ore is provided in the external particle circulating device, and the fluidized bed preliminary reducing furnace is also provided. It is characterized in that a discharge part for taking out coarse-grained reduction ore is provided at the bottom part of.

〔作用〕[Action]

すなわち、本発明においては、流動層予熱炉から排出さ
れる排ガスと鉄鉱石,石灰石等の製鉄原料を流動層予備
還元炉に供給するとともに、粉粒状の石炭も併せて装入
し、溶融還元炉で発生したガスあるいは脱炭酸ガス処理
して得られる還元ガスを流動層予備還元炉の下部から吹
き込む。この還元ガスは、炭材を酸素と部分燃焼反応さ
せることにより生成したガスと混合される。そしてこの
ガスは、高温の鉄鉱石を流動状態にして還元し、還元鉱
を生成する。生成された還元鉱は流動層予備還元炉の下
部に設けた排出部から採取される。還元ガスの空塔速度
を大にして流動粒子とのスリップ速度を大きくとること
により、還元反応の促進を行い生産性を向上させること
ができる。このとき、装入原料粒子の多くが流動層予備
還元炉から還元ガスに同併して飛散する。この飛散した
装入原料粒子を循環供給させるため、流動層予備還元炉
出口に設けたサイクロンで粒子を捕集して再び流動層予
備還元炉内へ循環供給させるような外部粒子循環装置を
付設する。粉鉱石の循環還元により、還元率の向上と還
元性及び還元率コントロール性が向上する。
That is, in the present invention, the exhaust gas discharged from the fluidized bed preheating furnace and the iron ore raw materials such as iron ore and limestone are supplied to the fluidized bed preliminary reduction furnace, and coal in the form of granules is also charged to the smelting reduction furnace. The gas generated in 1 or the reducing gas obtained by the decarbonation treatment is blown from the lower part of the fluidized bed preliminary reduction furnace. This reducing gas is mixed with the gas generated by the partial combustion reaction of the carbonaceous material with oxygen. And this gas makes high temperature iron ore into a fluid state and reduces it, and produces | generates a reduction ore. The produced reduction ore is collected from the discharge part provided in the lower part of the fluidized bed preliminary reduction furnace. By increasing the superficial velocity of the reducing gas and increasing the slip velocity with the fluidized particles, it is possible to accelerate the reduction reaction and improve the productivity. At this time, most of the charged raw material particles are scattered together with the reducing gas from the fluidized bed preliminary reduction furnace. In order to circulate and supply the scattered charged raw material particles, an external particle circulation device is attached so as to collect particles by a cyclone provided at the outlet of the fluidized bed preliminary reduction furnace and circulate and supply them again into the fluidized bed preliminary reduction furnace. . The circulation reduction of fine ore improves the reduction rate and the reducibility and controllability of the reduction rate.

このようにして、流動層予備還元炉下部の排出部からは
粗粒状の還元鉱を、また外部粒子循環装置からは細粒状
の還元鉱をそれぞれ採取することができる。
In this way, it is possible to collect coarse-grained reduction ore from the discharge part in the lower part of the fluidized bed preliminary reduction furnace and fine-grained reduction ore from the external particle circulation device.

〔実施例〕〔Example〕

以下、実施例により本発明の特徴を具体的に説明する。 Hereinafter, the features of the present invention will be specifically described with reference to examples.

第1図は本発明の基本的構成を示す概略図である。図に
おいて、流動層予備還元炉6には、流動層予熱炉3(第
4図参照)から送られてきた粉鉱石,石灰石等の原料25
が切出弁41を介して装入される。また、この流動層予備
還元炉6内には、粉粒状の石炭7も切出弁43を介して併
せて装入され、溶融還元炉10(第4図参照)で発生した
ガスあるいは脱炭酸ガス処理して得られる還元ガス11が
調節弁45を介して流動層予備還元炉6の底部から吹き込
まれる。この還元ガス11は、切出弁43を介して装入され
た石炭7を酸素と部分燃焼反応させることにより生成し
たガスと混合される。この還元ガスは、高温の鉄鉱石を
流動状態にして還元し、還元鉱を生成する。還元ガスの
空塔速度を大にして流動粒子とのスリップ速度を大きく
取ることにより還元反応の促進を行い生産性を向上させ
る。このとき、装入原料粒子の多くが流動層予備還元炉
6から還元ガスに同伴して飛散するため、流動層予備還
元炉6の出口に設けたサイクロン31で粒子を捕集し、こ
の粒子をホッパ32に貯留し、ニューマチックフィーダ33
を介して流動層予備還元炉6内へ循環供給させる。この
粒子の循環供給のための気体として、調節弁46を介して
流量調節された還元ガス11を用いる。粉鉱石の循環還元
により還元率の向上と均一還元性及び還元率コントロー
ル性が向上する。そして流動層予備還元炉6の下部の排
出部からは粗粒状の還元鉱26が、またニューマチックフ
ィーダ33からは細粒状の還元鉱27がそれぞれ連続的に採
取される。採取する還元鉱26,27の量は、切出弁42及び4
4の開度を調節することにより適当な量に加減する。
FIG. 1 is a schematic diagram showing the basic configuration of the present invention. In the figure, a fluidized bed preliminary reduction furnace 6 is provided with a raw material 25 such as powdered ore and limestone sent from the fluidized bed preheating furnace 3 (see FIG. 4).
Are charged through the cut-out valve 41. The fluidized bed preliminary reduction furnace 6 is also charged with powdered coal 7 through a cut-off valve 43, and gas generated in the smelting reduction furnace 10 (see FIG. 4) or decarbonated gas is discharged. The reducing gas 11 obtained by the treatment is blown from the bottom of the fluidized bed preliminary reduction furnace 6 through the control valve 45. The reducing gas 11 is mixed with a gas generated by causing the coal 7 charged through the cutoff valve 43 to partially burn with oxygen. This reducing gas brings the high temperature iron ore into a fluid state and reduces it to produce reduced ore. By increasing the superficial velocity of the reducing gas and increasing the slip velocity with the fluidized particles, the reduction reaction is promoted and the productivity is improved. At this time, since most of the charged raw material particles are scattered along with the reducing gas from the fluidized bed preliminary reduction furnace 6, the particles are collected by the cyclone 31 provided at the outlet of the fluidized bed preliminary reduction furnace 6 and the particles are collected. Stored in hopper 32, pneumatic feeder 33
It is circulated and fed into the fluidized bed preliminary reduction furnace 6 via. As the gas for circulating and supplying the particles, the reducing gas 11 whose flow rate is adjusted via the adjusting valve 46 is used. Circular reduction of fine ore improves the reduction rate and improves the uniform reduction rate and control of the reduction rate. Coarse-grained reduction ore 26 is continuously sampled from the lower discharge part of the fluidized bed preliminary reduction furnace 6, and fine-grained reduction ore 27 is continuously sampled from the pneumatic feeder 33. The amount of reduction ore 26, 27 to be collected is determined by the cutoff valves 42 and 4
Adjust the opening to adjust the amount appropriately.

捕集した粒子を流動層予備還元炉6内に循環供給させる
ためにニューマチックフィーダ33を用いるのは、次のよ
うな理由による。すなわち、サイクロン31,ホッパ32及
びニューマチックフィーダ33で構成される循環系は、サ
イクロン31の部分と流動層予備還元炉6の下部で数百mm
水柱以上の圧力差がある。このため、粒子循環時のガス
シールが難しく、さらには循環粒子が高温であり、耐
熱、耐摩耗性のある切出装置が必要である。このため粉
体シールと気体輸送を組合わせたニューマチックフィー
ダを用いるのである。これによりシール性を向上するこ
とができ、かつ回転機械部がないため、耐熱、耐摩耗性
も良い。
The pneumatic feeder 33 is used to circulate and feed the collected particles into the fluidized bed preliminary reduction furnace 6 for the following reason. That is, the circulation system composed of the cyclone 31, the hopper 32, and the pneumatic feeder 33 is several hundred mm in the portion of the cyclone 31 and the lower part of the fluidized bed preliminary reduction furnace 6.
There is a pressure difference above the water column. For this reason, it is difficult to seal the gas during the circulation of particles, and the circulating particles are at a high temperature, and a cutting device having heat resistance and wear resistance is required. For this reason, a pneumatic feeder that combines powder seal and gas transportation is used. As a result, the sealing property can be improved, and since there is no rotating mechanical part, heat resistance and wear resistance are also good.

このように、本発明においては、流動層予備還元炉6か
らの還元鉱27,26の排出口を、サイクロン31,ホッパ32及
びニューマチックフィーダ33で構成される粒子循環系と
流動層予備還元炉6の下部に設ける。粒子循環系からは
流動層予備還元炉6内の流動層を飛散した還元鉱の細か
な粒子が風ふるい効果によって比較的整粒化されて得ら
れる。したがって、この排出還元鉱27は気体輸送が可能
であり、溶融還元炉10内にはノズル吹き込みが可能であ
る。一方、流動層予備還元炉6の下部には比較的粒径の
粗い還元鉱が滞留流動しており、この比較的粗い粒子の
還元鉱26を流動層予備還元炉6の下部に設けた排出口よ
り排出する。これは気体輸送するには大き過ぎるため、
コンベヤ類で機械的に搬送処理される。
As described above, in the present invention, the outlets of the reducing ores 27 and 26 from the fluidized bed preliminary reduction furnace 6 are provided with the particle circulation system including the cyclone 31, the hopper 32 and the pneumatic feeder 33 and the fluidized bed preliminary reduction furnace. Provided at the bottom of 6. From the particle circulation system, fine particles of the reduced ore scattered in the fluidized bed in the fluidized bed preliminary reduction furnace 6 are relatively sized by the air sieving effect. Therefore, the discharged reduction ore 27 can be transported by gas, and nozzles can be blown into the smelting reduction furnace 10. On the other hand, in the lower part of the fluidized bed preliminary reduction furnace 6, a relatively small-sized reducing ore is retained and fluidized, and this relatively coarse particle of the reduction ore 26 is provided in the lower part of the fluidized bed preliminary reduction furnace 6. Eject more. This is too large for gas transport,
It is mechanically conveyed and processed by conveyors.

装入原料の粒度分布が広く、大粒の鉄鉱石が装入される
場合、あるいは流動還元過程で焼結、造粒して大粒化す
るものがある場合、第2図に示すように流動層予備還元
炉6の炉床に設けたガス分散板6aをすりばち状にして中
央部から粗大粒子を排出させる。また、粗大粒子の鉱石
の還元速度は微粉に比べて非常に遅いため、第3図に示
すように粗大粒子の排出管47に粒子を一時貯留し、調節
弁48を介して還元ガス11を排出管47の下端から流す。こ
のように構成することにより、排出管47内の粗大粒子の
還元を促進させると共に、還元ガス11の上昇粒で微粉と
大粒子の風ふるいを行わせる。排出管47内の粒子は切出
弁42を聞くことによりホッパ49内に排出され、さらに切
出弁50を開くことにより、還元鉱26として採取される。
If the raw material has a wide particle size distribution and a large amount of iron ore is charged, or if there is a material that is sintered and granulated in the fluidization reduction process to become a large grain, the fluidized bed reserves as shown in Fig. 2. The gas dispersion plate 6a provided on the hearth of the reduction furnace 6 is shaped like a squirrel to discharge coarse particles from the central portion. Further, since the reduction rate of the coarse particle ore is much slower than that of the fine powder, the particles are temporarily stored in the coarse particle discharge pipe 47 as shown in FIG. 3, and the reducing gas 11 is discharged through the control valve 48. Run from the bottom of tube 47. With this configuration, the reduction of the coarse particles in the discharge pipe 47 is promoted, and the rising particles of the reducing gas 11 cause the fine particles and the large particles to be air-sieved. The particles in the discharge pipe 47 are discharged into the hopper 49 by listening to the cutoff valve 42, and are collected as the reduction ore 26 by opening the cutout valve 50.

〔発明の効果〕〔The invention's effect〕

上述したように、本発明においては、流動層予備還元炉
で発生する微粉を捕集して流動層予備還元炉内に循環さ
せる構成とし、還元鉱を流動層予備還元炉とその循環系
とから採取するようにしている。このため、溶融還元法
においても廉価な一般炭及び粉鉱石を使用することが可
能となった。したがって、資源利用拡大が可能となり、
かつ溶銑のコストダウンを図ることができる。さらに、
高反応率,ガス利用率向上によりコンパクトな還元設備
となる。
As described above, in the present invention, the fine powder generated in the fluidized bed preliminary reduction furnace is collected and circulated in the fluidized bed preliminary reduction furnace, and the reducing ore is fed from the fluidized bed preliminary reduction furnace and its circulation system. I try to collect it. For this reason, it has become possible to use inexpensive steam coal and powdered ore even in the smelting reduction method. Therefore, it becomes possible to expand the use of resources,
Moreover, the cost of hot metal can be reduced. further,
Compact reduction equipment due to high reaction rate and improved gas utilization rate.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の基本的構成を示す概略図、第2図及び
第3図は本発明の他の構成例を示す概略図、第4図は本
発明者等が先に開発した溶融還元法のフローを示す。
FIG. 1 is a schematic diagram showing the basic constitution of the present invention, FIGS. 2 and 3 are schematic diagrams showing another constitutional example of the present invention, and FIG. 4 is a smelting reduction previously developed by the present inventors. The flow of the method is shown.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特公 昭60−46354(JP,B2) ─────────────────────────────────────────────────── --Continued front page (56) References Japanese Patent Publication Sho 60-46354 (JP, B2)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】溶融還元法に使用する予備還元鉱石を製造
する設備において、流動層予備還元炉の出口にサイクロ
ンを設け、該サイクロン下部と、流動層予備還元炉下部
とを、キャリアガス吹き込み口を設けたニューマチック
フィーダーを介し連結して、外部粒子循環装置を形成
し、この外部粒子循環装置に細粒状の還元鉱を取り出す
排出部を設け、且つ、前記流動層予備還元炉の底部に粗
粒状の還元鉱を取り出す排出部を設けてなることを特徴
とする鉄鉱石予備還元装置。
1. A facility for producing pre-reduced ore used in a smelting reduction method, wherein a cyclone is provided at an outlet of a fluidized bed pre-reduction furnace, and a lower portion of the cyclone and a lower portion of the fluidized bed pre-reduction furnace are provided with a carrier gas blowing port. To form an external particle circulation device, and the external particle circulation device is provided with a discharge part for taking out fine-grained reduction ore, and at the bottom of the fluidized bed preliminary reduction furnace. An iron ore pre-reduction device, characterized in that it is provided with a discharge part for taking out granular reduction ore.
JP61071563A 1986-03-28 1986-03-28 Iron ore preliminary reduction device Expired - Lifetime JPH0792343B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61071563A JPH0792343B2 (en) 1986-03-28 1986-03-28 Iron ore preliminary reduction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61071563A JPH0792343B2 (en) 1986-03-28 1986-03-28 Iron ore preliminary reduction device

Publications (2)

Publication Number Publication Date
JPS62228879A JPS62228879A (en) 1987-10-07
JPH0792343B2 true JPH0792343B2 (en) 1995-10-09

Family

ID=13464304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61071563A Expired - Lifetime JPH0792343B2 (en) 1986-03-28 1986-03-28 Iron ore preliminary reduction device

Country Status (1)

Country Link
JP (1) JPH0792343B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2972942B1 (en) * 2011-03-21 2017-11-24 Arkema France PROCESS FOR MANUFACTURING CARBON NANOTUBES AND APPARATUS FOR CARRYING OUT THE PROCESS

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6046354A (en) * 1983-08-23 1985-03-13 Sanpo Shindo Kogyo Kk Method for processing aluminum bronze in order to obtain superplasticity

Also Published As

Publication number Publication date
JPS62228879A (en) 1987-10-07

Similar Documents

Publication Publication Date Title
SU1674694A3 (en) Method and apparatus for preparing molten iron-containing materials from finely divided ore
CN101705317B (en) Harmless process method for chrome slag by utilizing metallurgy sintering and blast furnace
JPH0792343B2 (en) Iron ore preliminary reduction device
US4207093A (en) Process for reducing metal oxide containing ores
JPH0639608B2 (en) Iron ore preheating / reducing device
JP2502976B2 (en) Iron ore preliminary reduction device
JPS6311609A (en) Prereduction device for iron ore
JPS6311610A (en) Prereduction device for iron ore
JPH0637659B2 (en) Iron ore fluidized bed reduction device
JPH0130888B2 (en)
US6863710B1 (en) Sinter mix enhancer
JPH0774368B2 (en) Iron ore fluidized bed reduction device
JPS62228870A (en) Out-of-core circulator for fluidized-bed spare reducing furnace
JPS62228878A (en) Iron ore spare reducing device
JPS6311611A (en) Prereduction device for iron ore
JPS62979B2 (en)
JPS62228882A (en) Iron ore spare reducing device
US2116679A (en) Process for the working up of lead ores
JP2000119722A (en) Production of reduced iron pellet
JPH02141516A (en) Method for melt-reduction refining of iron
JPS62228889A (en) Preheater in iron-ore spare reduction facility
JPH02175809A (en) Smelting reduction iron-making method
JPH0637660B2 (en) Iron ore fluidized bed reduction device
JPS59104411A (en) Method for preheating raw material fed to fluidized bed type preliminary reducing furnace and fluidized bed type preliminary reducing furnace
JPH0676610B2 (en) Iron ore fluidized bed reduction device