JPH0792138A - Lactic acid sensor - Google Patents

Lactic acid sensor

Info

Publication number
JPH0792138A
JPH0792138A JP5238178A JP23817893A JPH0792138A JP H0792138 A JPH0792138 A JP H0792138A JP 5238178 A JP5238178 A JP 5238178A JP 23817893 A JP23817893 A JP 23817893A JP H0792138 A JPH0792138 A JP H0792138A
Authority
JP
Japan
Prior art keywords
lactic acid
enzyme
reaction layer
electrode
ability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5238178A
Other languages
Japanese (ja)
Other versions
JP3078966B2 (en
Inventor
Toshihiko Yoshioka
俊彦 吉岡
Shiro Nankai
史朗 南海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP05238178A priority Critical patent/JP3078966B2/en
Publication of JPH0792138A publication Critical patent/JPH0792138A/en
Application granted granted Critical
Publication of JP3078966B2 publication Critical patent/JP3078966B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

PURPOSE:To make it possible to determine lactic acid and including L-lactic acid and D-lactic acid through a simple operation by detecting variation of concentration electrochemically using an enzyme having a function for racemizing lactic acid and an enzyme having function for oxidizing lactic acid. CONSTITUTION:A carboxymethylcellulose(CMC) layer of hydrophilic polymer is formed on an electrode system comprising a working electrode 4 and a pair electrode 5 formed on a substrate 1. An enzyme having function for oxidizing lactic acid, i.e., lactic acid oxidase, and an enzyme having function for racemizing lactic acid, i.e., lactic acid racemase, are dissolved into a phosphoric acid buffer and developed onto a CMC layer and then it is dried to form a reaction layer 11. When the reaction layer 11 is dissolved into a sample liquid, only one of L-lactic acid or D-lactic acid is oxidized by the lactic acid oxidase and the other lactic acid not oxidized by the enzyme is converted, by the lactic acid racemase, into D-lactic acid or L-lactic acid being oxidized by enzyme thus allowing simultaneous determination of L-lactic acid and D-lactic acid.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、試料中の乳酸成分につ
いて、迅速かつ高精度な定量を簡便に実施することので
きるバイオセンサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a biosensor capable of quickly and accurately quantifying a lactic acid component in a sample.

【0002】[0002]

【従来の技術】酵素電極を用いた乳酸の定量方法として
は、酵素に乳酸オキシダーゼを用い、過酸化水素電極と
組み合わせた方式が開示されている(例えば、医器学、
54巻68ページ、1984年)。この方式による測定
機器について説明する。用いる酵素電極は、乳酸オキシ
ダーゼをアセチルセルロース膜上に固定化し、表面をポ
リカーボネート薄膜で被覆した固定化酵素膜と、白金と
銀からなる過酸化水素電極とから構成されている。そし
て、この測定機器はフローラインを有し、試料液は緩衝
液による混合希釈の後、酸素を含む空気が混入され、脱
泡器を経て前記酵素電極部分へと導入される。試料液中
の乳酸と固定化酵素膜中の乳酸オキシダーゼとが反応す
ると同時に過酸化水素が生成する。この過酸化水素の増
加量を、過酸化水素電極によって計ることで乳酸の定量
を行うものである。
2. Description of the Related Art As a method for quantifying lactic acid using an enzyme electrode, a method in which lactate oxidase is used as an enzyme and combined with a hydrogen peroxide electrode is disclosed (for example, in medical engineering,
54, 68, 1984). A measuring device according to this method will be described. The enzyme electrode used is composed of an immobilized enzyme membrane in which lactate oxidase is immobilized on an acetylcellulose membrane and the surface is covered with a polycarbonate thin film, and a hydrogen peroxide electrode composed of platinum and silver. The measuring instrument has a flow line, and the sample solution is mixed and diluted with a buffer solution, mixed with air containing oxygen, and introduced into the enzyme electrode portion through a defoamer. At the same time that lactic acid in the sample solution reacts with lactate oxidase in the immobilized enzyme membrane, hydrogen peroxide is produced. Lactic acid is quantified by measuring the increased amount of hydrogen peroxide with a hydrogen peroxide electrode.

【0003】[0003]

【発明が解決しようとする課題】このような従来の測定
方法においては、酵素膜の交換の必要があり、さらにポ
ンプ、混合器、脱泡器などを備えた機器が必要である。
従って、フローラインの洗浄などのメンテナンスが要求
され、一定量の試料液を供給するなど、操作が複雑で、
かつ簡便性に欠けていた。また、従来方法で用いられて
いる酵素は、L−乳酸に対しては特異的な酸化能を有す
るが、D−乳酸を酸化させる能力は備えていない。例え
ばヨーグルトや乳酸菌飲料等の食品関連分野において
は、L体とD体両方を含めた乳酸の定量が必要である
が、従来の機器を用いた方法ではD−乳酸濃度を測定で
きない。D−乳酸濃度の定量については、自動分析装置
は開発されておらず、酵素反応と分光分析とを組み合わ
せた方法が一般的である。この方法には、多大な時間と
労力を要するとともに、人の手作業によるため人為的誤
差を生じ易い等の欠点を有していた。従って、本発明
は、簡易な操作でL体とD体を含めた乳酸を定量できる
乳酸センサを提供することを目的とする。
In such a conventional measuring method, it is necessary to replace the enzyme membrane, and further a device equipped with a pump, a mixer, a defoamer and the like.
Therefore, maintenance such as cleaning of the flow line is required, and the operation is complicated, such as supplying a fixed amount of sample liquid,
And it lacked in simplicity. Further, the enzyme used in the conventional method has a specific oxidizing ability for L-lactic acid, but does not have an ability for oxidizing D-lactic acid. For example, in the food-related fields such as yogurt and lactic acid bacteria beverages, it is necessary to quantify lactic acid including both L-form and D-form, but it is impossible to measure D-lactic acid concentration by a method using a conventional device. Regarding the quantification of D-lactic acid concentration, an automatic analyzer has not been developed, and a method that combines an enzymatic reaction and spectroscopic analysis is generally used. This method requires a great deal of time and labor, and has the drawbacks that human error is likely to occur due to manual work by a person. Therefore, an object of the present invention is to provide a lactic acid sensor capable of quantifying lactic acid including L-form and D-form by a simple operation.

【0004】[0004]

【課題を解決するための手段】上記の課題を解決するた
めに本発明は、乳酸を酸化する能力を有する酵素ととも
に、乳酸をラセミ化する能力を有する酵素を用い、乳酸
の酸化反応にともなう物質濃度変化を電気化学的に検出
するための電極を具備する乳酸センサを提供するもので
ある。さらに具体的には、本発明の乳酸センサは、絶縁
性の基板上に形成した作用極と対極を含む電極系と前記
電極系上に位置する反応層を具備し、前記反応層が、少
なくとも親水性高分子、乳酸を酸化する能力を有する酵
素および乳酸をラセミ化する能力を有する酵素を含むこ
とを特徴とする。
[Means for Solving the Problems] In order to solve the above-mentioned problems, the present invention uses an enzyme capable of racemizing lactic acid together with an enzyme capable of oxidizing lactic acid, and a substance accompanying the oxidation reaction of lactic acid. It is intended to provide a lactate sensor having an electrode for electrochemically detecting a change in concentration. More specifically, the lactic acid sensor of the present invention comprises an electrode system including a working electrode and a counter electrode formed on an insulating substrate, and a reaction layer located on the electrode system, wherein the reaction layer is at least hydrophilic. Characteristic polymer, an enzyme capable of oxidizing lactic acid, and an enzyme capable of racemizing lactic acid.

【0005】また、本発明の乳酸センサは、絶縁性の基
板上に形成した作用極と対極を含む電極系と、前記電極
系上に位置する反応層と、前記電極系近傍に位置する補
助反応層を具備し、前記反応層が少なくとも親水性高分
子と乳酸を酸化する能力を有する酵素を含み、前記補助
反応層が少なくとも乳酸をラセミ化する能力を有する酵
素を含むこと特徴とする。ここにおいて、反応層がさら
に電子受容体を含む構成、あるいは乳酸を酸化する能力
を有する酵素が、L−乳酸を酸化する能力を有する酵素
と、D−乳酸を酸化する能力を有する酵素の組合せから
なり、さらに反応層中に補酵素を含む構成をとることが
できる。
In addition, the lactic acid sensor of the present invention comprises an electrode system including a working electrode and a counter electrode formed on an insulating substrate, a reaction layer located on the electrode system, and an auxiliary reaction located near the electrode system. A layer is provided, and the reaction layer contains at least a hydrophilic polymer and an enzyme having an ability to oxidize lactic acid, and the auxiliary reaction layer contains an enzyme having at least an ability to racemize lactic acid. Here, the reaction layer further includes an electron acceptor, or a combination of an enzyme having an ability to oxidize lactic acid with an enzyme having an ability to oxidize L-lactic acid and an enzyme having an ability to oxidize D-lactic acid is used. In addition, the reaction layer may further contain a coenzyme.

【0006】[0006]

【作用】本発明によれば、乳酸を酸化する能力を有する
1つの酵素は、L体またはD体の一方のみを酸化させる
が、乳酸をセラミ化する能力を有する酵素によって、前
記酵素により酸化されないD体またはL体を前記酵素に
より酸化されるL体またはD体に転換することになる。
従って、本発明により、簡易な操作で試料中のL−乳酸
とD−乳酸とを同時に定量することができる乳酸センサ
を得ることができる。
According to the present invention, one enzyme having an ability to oxidize lactic acid oxidizes only one of L-form and D-form, but is not oxidized by the enzyme having an ability to ceramize lactic acid. The D-form or L-form will be converted to the L-form or D-form that is oxidized by the enzyme.
Therefore, according to the present invention, it is possible to obtain a lactic acid sensor capable of simultaneously quantifying L-lactic acid and D-lactic acid in a sample with a simple operation.

【0007】[0007]

【実施例】以下、本発明を実施例により説明する。 [実施例1]図1は本発明の一実施例として作製した乳
酸センサのうち反応層を除いた斜視図、図2は同乳酸セ
ンサの模式断面図である。以下に乳酸センサの作製方法
について説明する。ポリエチレンテレフタレートからな
る絶縁性の基板1上に、スクリーン印刷により銀ペ−ス
トを印刷してリ−ド2、3を形成する。つぎに、樹脂バ
インダーを含む導電性カーボンペーストを用いて電極系
のうち作用極4を、つづいて絶縁性ペーストからなる絶
縁層6を順次印刷により形成する。絶縁層6は作用極4
の露出部分の面積を一定とし、かつリ−ド2、3を部分
的に覆っている。最後に樹脂バインダーを含む導電性カ
ーボンペーストを用いて電極系のうち対極5を印刷形成
する。なお、電極4および5はそれぞれリード2および
3に接続されている。
EXAMPLES The present invention will be described below with reference to examples. [Embodiment 1] FIG. 1 is a perspective view of a lactic acid sensor manufactured as an embodiment of the present invention, excluding a reaction layer, and FIG. 2 is a schematic sectional view of the lactic acid sensor. The method for producing the lactate sensor will be described below. On an insulating substrate 1 made of polyethylene terephthalate, silver paste is printed by screen printing to form leads 2 and 3. Next, the working electrode 4 of the electrode system is formed by using a conductive carbon paste containing a resin binder, and then the insulating layer 6 made of an insulating paste is sequentially formed by printing. Insulating layer 6 is working electrode 4
The area of the exposed portion is constant and the leads 2 and 3 are partially covered. Finally, the counter electrode 5 of the electrode system is printed by using a conductive carbon paste containing a resin binder. The electrodes 4 and 5 are connected to the leads 2 and 3, respectively.

【0008】次に、前記電極系上に親水性高分子として
カルボキシメチルセルロ−ス(以下CMCと略す)の
0.5wt%水溶液を展開し、乾燥させてCMC層を形成
する。つづいて、前記CMC層上に乳酸を酸化する能力
を有する酵素として乳酸オキシダーゼ(EC1.1.
3.2;以下LODと略す)と、乳酸をラセミ化する能
力を有する酵素として乳酸ラセマーゼ(EC5.1.
2.1)をリン酸緩衝液(pH7.0)に溶解させた溶
液を展開し、温風乾燥器中で乾燥させて反応層11を形
成する。上記の反応層形成工程において、酵素の混合水
溶液を滴下するとCMC層は一度溶解し、その後の乾燥
過程で酵素と混合された形で反応層11を形成する。し
かし、攪拌等をともなわないため完全な混合状態とはな
らず、電極系表面はCMCのみによって被覆された状態
となる。すなわち、酵素および後記実施例で加える電子
受容体などが電極系表面に接触し難いために、高精度な
センサ応答を有する乳酸センサを得ることができる。
Next, a 0.5 wt% aqueous solution of carboxymethyl cellulose (hereinafter abbreviated as CMC) as a hydrophilic polymer is spread on the electrode system and dried to form a CMC layer. Then, lactate oxidase (EC1.1.EC) as an enzyme having an ability to oxidize lactic acid on the CMC layer.
3.2; hereinafter abbreviated as LOD) and lactate racemase (EC5.1.) As an enzyme having the ability to racemize lactic acid.
A solution obtained by dissolving 2.1) in a phosphate buffer (pH 7.0) is developed and dried in a warm air dryer to form the reaction layer 11. In the reaction layer forming step, when the mixed aqueous solution of the enzyme is dropped, the CMC layer is once dissolved, and the reaction layer 11 is formed in the form of being mixed with the enzyme in the subsequent drying process. However, since it is not accompanied by stirring or the like, it is not in a completely mixed state, and the electrode system surface is in a state of being covered only with CMC. That is, since it is difficult for the enzyme and the electron acceptor added in the examples described below to contact the surface of the electrode system, it is possible to obtain a lactate sensor having a highly accurate sensor response.

【0009】上記のように作製した乳酸センサに、試料
液として乳酸水溶液10μlを反応層11上へ滴下し、
5分後に電極系の対極5を基準にして作用極4にアノー
ド方向へ+1.0Vのパルス電圧を印加し、5秒後の電
流値を測定したところ、試料液中の乳酸濃度に比例した
応答電流値が得られた。反応層11が試料液に溶解する
と、試料液中のD−乳酸は乳酸ラセマーゼによってラセ
ミ化されてL−乳酸が生成する。あらかじめ試料液中に
存在したL−乳酸と、前記ラセミ化により生成したL−
乳酸は共にLODによって酸化され、同時に溶液中の酸
素が還元され過酸化水素が生成する。次に、前記の電圧
印加により、生成した過酸化水素の酸化電流が得られ、
この電流値は基質である乳酸の濃度に対応する。
10 μl of an aqueous lactic acid solution was dropped onto the reaction layer 11 as a sample solution to the lactic acid sensor produced as described above,
After 5 minutes, a pulse voltage of +1.0 V was applied to the working electrode 4 in the anode direction based on the counter electrode 5 of the electrode system, and the current value after 5 seconds was measured. The response was proportional to the concentration of lactic acid in the sample solution. The current value was obtained. When the reaction layer 11 is dissolved in the sample solution, D-lactic acid in the sample solution is racemized by the lactate racemase to produce L-lactic acid. L-lactic acid previously present in the sample solution and L-lactic acid produced by the racemization
Both lactic acid is oxidized by LOD, and at the same time, oxygen in the solution is reduced to generate hydrogen peroxide. Next, by applying the above voltage, an oxidation current of the generated hydrogen peroxide is obtained,
This current value corresponds to the concentration of lactic acid which is a substrate.

【0010】[実施例2]図3は本発明の一実施例とし
て作製した乳酸センサのうち反応層および補助反応層を
除いた分解斜視図、図4は同乳酸センサの分解斜視図、
図5は同乳酸センサのカバーおよびスペーサーを除いた
模式断面図である。以下に乳酸センサの作製方法につい
て説明する。実施例1と同様にして、絶縁性の基板1上
に、スクリーン印刷により図3に示すリ−ド2、3、作
用極4および対極5からなる電極系、絶縁層6を形成す
る。次に、前記電極系上に親水性高分子としてCMCの
0.5wt%水溶液を展開し、乾燥させてCMC層を形成
する。つづいて、前記CMC層上に酵素としてLODと
乳酸ラセマーゼの混合水溶液を展開し、温風乾燥器中で
乾燥させて反応層11を形成する。つぎに、乳酸ラセマ
ーゼをリン酸緩衝液に溶解させた溶液を絶縁層6上へ展
開し、乾燥させて補助反応層12を形成する。前記のよ
うにして反応層11および補助反応層12を形成した
後、カバー22およびスペーサー21を図3または図4
中、一点鎖線で示すような位置関係をもって接着する。
[Embodiment 2] FIG. 3 is an exploded perspective view of the lactic acid sensor manufactured as one embodiment of the present invention, excluding the reaction layer and the auxiliary reaction layer. FIG. 4 is an exploded perspective view of the same lactic acid sensor.
FIG. 5 is a schematic cross-sectional view of the lactate sensor excluding a cover and a spacer. The method for producing the lactate sensor will be described below. In the same manner as in Example 1, the electrode system including the leads 2 and 3, the working electrode 4 and the counter electrode 5 shown in FIG. 3, and the insulating layer 6 are formed on the insulating substrate 1 by screen printing. Next, a 0.5 wt% aqueous solution of CMC as a hydrophilic polymer is spread on the electrode system and dried to form a CMC layer. Subsequently, a mixed aqueous solution of LOD and lactose racemase as an enzyme is developed on the CMC layer and dried in a warm air drier to form the reaction layer 11. Next, a solution in which lactase racemase is dissolved in a phosphate buffer is spread on the insulating layer 6 and dried to form the auxiliary reaction layer 12. After forming the reaction layer 11 and the auxiliary reaction layer 12 as described above, the cover 22 and the spacer 21 may be formed as shown in FIG.
The inner and inner parts are bonded with the positional relationship shown by the one-dot chain line.

【0011】カバーを装着すると、カバーとスペーサー
によって生じる空間部の毛細管現象によって、試料液は
センサ先端の試料供給孔10に接触させるだけの簡易操
作で容易に反応層部分へ導入される。なお、試料液の供
給をより一層円滑にするためには、さらに必要に応じて
レシチンの有機溶媒溶液を試料供給部から反応層11上
にかけて展開し乾燥するとよい。さらに、前記レシチン
による処理を実施した場合には、前記カバーとスペーサ
ーによって生じる空間部が毛細管現象を発現し得ない程
度の大きさとなる場合においても、試料液の供給が可能
となる。試料液の供給量はカバーとスペーサーによって
生じる空間容積に依存するため、あらかじめ定量する必
要がない。さらに、測定中の試料液の蒸発を最小限に抑
えることができ、精度の高い測定が可能となる。
When the cover is attached, the sample liquid is easily introduced into the reaction layer portion by a simple operation of bringing the sample liquid into contact with the sample supply hole 10 at the tip of the sensor due to the capillary action of the space portion generated by the cover and the spacer. In order to make the supply of the sample solution smoother, it is advisable to further spread an organic solvent solution of lecithin from the sample supply section onto the reaction layer 11 and dry it if necessary. Furthermore, when the treatment with the lecithin is carried out, the sample liquid can be supplied even when the space formed by the cover and the spacer has a size such that the capillary phenomenon cannot be expressed. Since the amount of the sample solution supplied depends on the space volume generated by the cover and the spacer, it is not necessary to quantify in advance. Furthermore, evaporation of the sample liquid during measurement can be minimized, and highly accurate measurement can be performed.

【0012】上記のように作製した乳酸センサに、試料
液として乳酸水溶液3μlを試料供給孔23より供給す
ると、試料液は速やかに空気孔24部分まで達し、補助
反応層12および反応層11が順次溶解する。実施例1
と同様にして、試料液を供給してから4分後に電極系の
対極5を基準にして作用極4にアノード方向へ+1.0
Vのパルス電圧を印加し、5秒後の電流値を測定したと
ころ、試料液中の乳酸濃度に比例した応答電流値が得ら
れた。試料液中のD−乳酸濃度が高い場合には、反応層
11中の乳酸ラセマーゼの作用のみでは一定時間内に十
分なラセミ化が起こらない。乳酸ラセマーゼを含んだ補
助反応層12を設けることによって、短時間で乳酸濃度
の定量が可能となる。また、反応層11中に乳酸ラセマ
ーゼを含まず、補助反応層12中にのみ乳酸ラセマーゼ
を含ませて乳酸センサを作製したところ、センサの保存
信頼性が向上する効果が得られた。これは反応層11中
に複数の酵素を含ませることによって生じた酵素活性の
低下を避けることができたことによる。
When 3 μl of the lactic acid aqueous solution as a sample solution is supplied from the sample supply hole 23 to the lactic acid sensor manufactured as described above, the sample solution quickly reaches the air holes 24, and the auxiliary reaction layer 12 and the reaction layer 11 are sequentially formed. Dissolve. Example 1
In the same manner as described above, 4 minutes after supplying the sample solution, the working electrode 4 is +1.0 toward the anode with the counter electrode 5 of the electrode system as a reference.
When a pulse voltage of V was applied and the current value was measured 5 seconds later, a response current value proportional to the concentration of lactic acid in the sample solution was obtained. When the concentration of D-lactic acid in the sample solution is high, sufficient racemization does not occur within a fixed time only by the action of the lactate racemase in the reaction layer 11. By providing the auxiliary reaction layer 12 containing the lactate racemase, the lactic acid concentration can be quantified in a short time. Further, when a lactic acid sensor was produced by adding lactate racemase only in the auxiliary reaction layer 12 without containing the lactate racemase in the reaction layer 11, the effect of improving the storage reliability of the sensor was obtained. This is because it was possible to avoid a decrease in enzyme activity caused by the inclusion of a plurality of enzymes in the reaction layer 11.

【0013】[実施例3]実施例1と同様にして、絶縁
性の基板1上に、スクリーン印刷により図1に示すリ−
ド2、3、作用極4および対極5からなる電極系、絶縁
層6を形成する。次に、前記電極系上に親水性高分子と
してCMCの0.5wt%水溶液を展開し、乾燥させてC
MC層を形成する。つづいて、前記CMC層上に酵素と
してLODと乳酸ラセマーゼ、さらに電子受容体として
フェリシアン化カリウムの混合水溶液を展開し、温風乾
燥器中で乾燥させて反応層11を形成する。上記のよう
に作製した乳酸センサに、試料液として乳酸水溶液10
μlを反応層11上へ滴下し、5分後に電極系の対極5
を基準にして作用極4にアノード方向へ+0.5Vのパ
ルス電圧を印加し、5秒後の電流値を測定したところ、
試料液中の乳酸濃度に比例した応答電流値が得られた。
[Embodiment 3] In the same manner as in Embodiment 1, the reel shown in FIG. 1 is formed on the insulating substrate 1 by screen printing.
The electrode system including the electrodes 2, 3, the working electrode 4, and the counter electrode 5, and the insulating layer 6 are formed. Next, a 0.5 wt% aqueous solution of CMC as a hydrophilic polymer is spread on the electrode system and dried to form C.
Form the MC layer. Then, a mixed aqueous solution of LOD and lactose racemase as an enzyme and potassium ferricyanide as an electron acceptor is developed on the CMC layer and dried in a warm air dryer to form a reaction layer 11. The lactic acid sensor produced as described above was added with a lactic acid aqueous solution 10 as a sample solution.
μl was dropped on the reaction layer 11, and 5 minutes later, the counter electrode 5 of the electrode system was
A pulse voltage of +0.5 V was applied to the working electrode 4 in the direction of the anode with reference to, and the current value after 5 seconds was measured.
A response current value proportional to the concentration of lactic acid in the sample solution was obtained.

【0014】反応層11が試料液に溶解すると、試料液
中のD−乳酸は乳酸ラセマーゼによってラセミ化されL
−乳酸が生成する。このL−乳酸とあらかじめ試料液中
に存在していたL−乳酸はともにLODによって酸化さ
れ、同時にフェリシアン化カリウムがフェロシアン化カ
リウムに還元される。次に、前記のパルス電圧の印加に
より、生成したフェロシアン化カリウムの酸化電流が得
られ、この電流値は基質である乳酸の濃度に対応する。
電子受容体を反応層中に含ませることにより、より高濃
度の乳酸濃度定量が可能となった。さらに、実施例2に
示したように、乳酸ラセマーゼを含む補助反応層を絶縁
層上に作製すると、より高濃度の乳酸を短時間で測定可
能な乳酸センサが実現できる。
When the reaction layer 11 is dissolved in the sample solution, D-lactic acid in the sample solution is racemized by the lactase racemase to give L-lactic acid.
-Lactic acid is produced. Both L-lactic acid and L-lactic acid that was previously present in the sample solution are oxidized by LOD, and at the same time potassium ferricyanide is reduced to potassium ferrocyanide. Next, by applying the pulse voltage, an oxidation current of the generated potassium ferrocyanide is obtained, and this current value corresponds to the concentration of lactic acid as a substrate.
By including an electron acceptor in the reaction layer, it became possible to quantify a higher concentration of lactic acid. Further, as shown in Example 2, when the auxiliary reaction layer containing lactate racemase is formed on the insulating layer, a lactic acid sensor capable of measuring higher concentration of lactic acid in a short time can be realized.

【0015】[実施例4]実施例1と同様にして、絶縁
性の基板1上に、スクリーン印刷により図1に示すリ−
ド2、3、作用極4および対極5からなる電極系、絶縁
層6を形成する。次に、前記電極系上に親水性高分子と
してCMCの0.5wt%水溶液を展開し、乾燥させてC
MC層を形成する。つづいて、前記CMC層上に酵素と
してD−乳酸デヒドロゲナーゼ(EC1.1.1.2
8;以下、D−LDHと略す)とLODと乳酸ラセマー
ゼ、電子受容体としてフェリシアン化カリウム、さらに
補酵素としてニコチンアミドアデニンジヌクレオチド
(以下、NADと略す)の混合水溶液を展開し、温風乾
燥器中で乾燥させて反応層11を形成する。上記のよう
に作製した乳酸センサに、試料液として乳酸水溶液10
μlを反応層11上へ滴下し、3分後に電極系の対極5
を基準にして作用極4にアノード方向へ+0.5Vのパ
ルス電圧を印加し、5秒後の電流値を測定したところ、
試料液中の乳酸濃度に比例した応答電流値が得られた。
[Embodiment 4] In the same manner as in Embodiment 1, the reel shown in FIG. 1 is printed on the insulating substrate 1 by screen printing.
The electrode system including the electrodes 2, 3, the working electrode 4, and the counter electrode 5, and the insulating layer 6 are formed. Next, a 0.5 wt% aqueous solution of CMC as a hydrophilic polymer is spread on the electrode system and dried to form C.
Form the MC layer. Subsequently, D-lactate dehydrogenase (EC1.1.1.2) was added as an enzyme on the CMC layer.
8; hereinafter, abbreviated as D-LDH), LOD, lactate racemase, potassium ferricyanide as an electron acceptor, and a mixed aqueous solution of nicotinamide adenine dinucleotide (hereinafter, abbreviated as NAD) as a coenzyme, and the mixture is dried in a warm air dryer. The reaction layer 11 is formed by drying in the inside. The lactic acid sensor produced as described above was added with a lactic acid aqueous solution 10 as a sample solution.
μl was dropped on the reaction layer 11, and 3 minutes later, the counter electrode 5 of the electrode system was
A pulse voltage of +0.5 V was applied to the working electrode 4 in the direction of the anode with reference to, and the current value after 5 seconds was measured.
A response current value proportional to the concentration of lactic acid in the sample solution was obtained.

【0016】反応層11が試料液に溶解すると、試料液
中のD−乳酸は乳酸ラセマーゼによってラセミ化されL
−乳酸が生成する。このL−乳酸とあらかじめ試料液中
に存在していたL−乳酸はともにLODによって酸化さ
れ、同時にフェリシアン化カリウムがフェロシアン化カ
リウムに還元される。さらに、D−乳酸はD−LDHに
よる酸化作用も受け、補酵素であるNADが還元されて
NADHが生成するが、このNADHはフェリシアン化
カリウムと反応し、その結果フェロシアン化カリウムが
生成する。次に、前記のパルス電圧の印加により、上記
2つの反応経路により生成したフェロシアン化カリウム
の酸化電流が得られ、この電流値は基質である乳酸の濃
度に対応する。LODと乳酸ラセマーゼの反応系とD−
LDHとNADの反応系を組み合わせて用いることによ
って、より短時間で乳酸濃度測定が可能となる。一方、
NADの還元によって生成したNADHは、必ずしも電
子受容体と共役させる必要はなく、直接電極系で酸化さ
せることにより定量することも可能である。
When the reaction layer 11 is dissolved in the sample solution, the D-lactic acid in the sample solution is racemized by the lactate racemase to form L.
-Lactic acid is produced. Both L-lactic acid and L-lactic acid that was previously present in the sample solution are oxidized by LOD, and at the same time potassium ferricyanide is reduced to potassium ferrocyanide. Further, D-lactic acid is also oxidized by D-LDH and coenzyme NAD is reduced to produce NADH. This NADH reacts with potassium ferricyanide, resulting in the production of potassium ferrocyanide. Next, by applying the pulse voltage, an oxidation current of potassium ferrocyanide produced by the above two reaction paths is obtained, and this current value corresponds to the concentration of the substrate lactic acid. Reaction system of LOD and Lactase racemase and D-
By using the LDH and NAD reaction systems in combination, the lactic acid concentration can be measured in a shorter time. on the other hand,
NADH produced by reduction of NAD does not necessarily have to be conjugated with an electron acceptor, and can be quantified by directly oxidizing it with an electrode system.

【0017】上記実施例1から4では親水性高分子とし
てCMCを用いたが、これに限定されることはなく、他
のセルロース誘導体、具体的には、ヒドロキシエチルセ
ルロース、ヒドロキシプロピルセルロース、メチルセル
ロース、エチルセルロース、エチルヒドロキシエチルセ
ルロース、カルボキシメチルエチルセルロースを用いて
もよく、さらには、ポリビニルピロリドン、ポリビニル
アルコール、ゼラチンおよびその誘導体、アクリル酸お
よびその塩、メタアクリル酸およびその塩、スターチお
よびその誘導体、無水マレイン酸およびその塩を用いて
も同様の効果が得られる。
Although CMC was used as the hydrophilic polymer in Examples 1 to 4 above, the present invention is not limited to this, and other cellulose derivatives, specifically, hydroxyethyl cellulose, hydroxypropyl cellulose, methyl cellulose, ethyl cellulose are used. , Ethyl hydroxyethyl cellulose, carboxymethyl ethyl cellulose may be used, and further, polyvinylpyrrolidone, polyvinyl alcohol, gelatin and its derivatives, acrylic acid and its salts, methacrylic acid and its salts, starch and its derivatives, maleic anhydride and The same effect can be obtained by using the salt.

【0018】一方、電子受容体としては、上記実施例に
示したフェリシアン化カリウム以外に、p−ベンゾキノ
ン、メルドラブルー、フェナジンメトサルフェート、メ
チレンブルー、フェロセンおよびその誘導体など、用い
る酸化還元酵素と共役するものであれば自由に使用する
ことができる。また、上記実施例において、酵素および
電子受容体については試料液に溶解する方式について示
したが、これに制限されることはなく、固定化によって
試料液に不溶化させた場合にも適用することができる。
さらに、上記実施例では作用極と対極からなる2電極系
について述べたが、参照電極を加えた3電極系にする
と、より精度の高い測定が可能である。
On the other hand, as the electron acceptor, in addition to potassium ferricyanide shown in the above examples, p-benzoquinone, meldra blue, phenazine methosulfate, methylene blue, ferrocene and derivatives thereof which are conjugated with the oxidoreductase to be used. You can use it freely. Further, in the above-mentioned examples, the method of dissolving the enzyme and the electron acceptor in the sample solution was shown, but the method is not limited to this, and it can be applied to the case of being insolubilized in the sample solution by immobilization. it can.
Further, although the two-electrode system including the working electrode and the counter electrode has been described in the above embodiment, the three-electrode system including the reference electrode enables more accurate measurement.

【0019】[0019]

【発明の効果】以上のように本発明によると、簡易な操
作で応答性に優れた乳酸センサを得ることができる。
As described above, according to the present invention, a lactic acid sensor having excellent responsiveness can be obtained by a simple operation.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例として作製した乳酸センサの
反応層を除いた斜視図である。
FIG. 1 is a perspective view of a lactic acid sensor manufactured as an example of the present invention, excluding a reaction layer.

【図2】同乳酸センサの模式断面図である。FIG. 2 is a schematic cross-sectional view of the lactate sensor.

【図3】本発明の別の実施例として作製した乳酸センサ
の反応層および補助反応層を除いた分解斜視図である。
FIG. 3 is an exploded perspective view of a lactic acid sensor manufactured as another embodiment of the present invention, excluding a reaction layer and an auxiliary reaction layer.

【図4】同乳酸センサの分解斜視図である。FIG. 4 is an exploded perspective view of the lactate sensor.

【図5】同乳酸センサのカバーおよびスペーサーを除い
た模式断面図である。
FIG. 5 is a schematic cross-sectional view of the lactate sensor excluding a cover and a spacer.

【符号の説明】[Explanation of symbols]

1 絶縁性の基板 2、3 リード 4 作用極 5 対極 6 絶縁層 11 反応層 12 補助反応層 21 スペーサー 22 カバー 23 試料供給孔 24 空気孔 1 Insulating substrate 2, 3 Lead 4 Working electrode 5 Counter electrode 6 Insulating layer 11 Reaction layer 12 Auxiliary reaction layer 21 Spacer 22 Cover 23 Sample supply hole 24 Air hole

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 乳酸を酸化する能力を有する酵素、乳酸
をラセミ化する能力を有する酵素および乳酸の酸化反応
にともなう物質濃度変化を電気化学的に検出するための
電極を具備することを特徴とする乳酸センサ。
1. An enzyme having the ability to oxidize lactic acid, an enzyme having the ability to racemize lactic acid, and an electrode for electrochemically detecting a change in the concentration of a substance associated with the oxidation reaction of lactic acid. Lactic acid sensor.
【請求項2】 絶縁性の基板上に形成した作用極と対極
を含む電極系と前記電極系上に位置する反応層を具備
し、前記反応層が、少なくとも親水性高分子、乳酸を酸
化する能力を有する酵素および乳酸をラセミ化する能力
を有する酵素を含むことを特徴とする乳酸センサ。
2. An electrode system including a working electrode and a counter electrode formed on an insulating substrate, and a reaction layer located on the electrode system, wherein the reaction layer oxidizes at least a hydrophilic polymer and lactic acid. A lactate sensor comprising an enzyme having the ability and an enzyme having the ability to racemate lactic acid.
【請求項3】 絶縁性の基板上に形成した作用極と対極
を含む電極系と、前記電極系上に位置する反応層と、前
記電極系近傍に位置する補助反応層を具備し、前記反応
層が少なくとも親水性高分子と乳酸を酸化する能力を有
する酵素を含み、前記補助反応層が少なくとも乳酸をラ
セミ化する能力を有する酵素を含むこと特徴とする乳酸
センサ。
3. An electrode system including a working electrode and a counter electrode formed on an insulative substrate, a reaction layer located on the electrode system, and an auxiliary reaction layer located in the vicinity of the electrode system. A lactic acid sensor, wherein the layer contains at least a hydrophilic polymer and an enzyme capable of oxidizing lactic acid, and the auxiliary reaction layer contains at least an enzyme capable of racemizing lactic acid.
【請求項4】 反応層がさらに乳酸をラセミ化する能力
を有する酵素を含む請求項3記載の乳酸センサ。
4. The lactic acid sensor according to claim 3, wherein the reaction layer further contains an enzyme having the ability to racemize lactic acid.
【請求項5】 反応層がさらに電子受容体を含む請求項
2または3記載の乳酸センサ。
5. The lactic acid sensor according to claim 2, wherein the reaction layer further contains an electron acceptor.
【請求項6】 乳酸を酸化する能力を有する酵素が、L
−乳酸を酸化する能力を有する酵素と、D−乳酸を酸化
する能力を有する酵素の組合せからなり、さらに反応層
中に補酵素を含む請求項2または3記載の乳酸センサ。
6. An enzyme having the ability to oxidize lactic acid is L
The lactic acid sensor according to claim 2 or 3, which comprises a combination of an enzyme capable of oxidizing lactic acid and an enzyme capable of oxidizing D-lactic acid, and further comprises a coenzyme in the reaction layer.
JP05238178A 1993-09-24 1993-09-24 Lactic acid sensor Expired - Fee Related JP3078966B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05238178A JP3078966B2 (en) 1993-09-24 1993-09-24 Lactic acid sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05238178A JP3078966B2 (en) 1993-09-24 1993-09-24 Lactic acid sensor

Publications (2)

Publication Number Publication Date
JPH0792138A true JPH0792138A (en) 1995-04-07
JP3078966B2 JP3078966B2 (en) 2000-08-21

Family

ID=17026340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05238178A Expired - Fee Related JP3078966B2 (en) 1993-09-24 1993-09-24 Lactic acid sensor

Country Status (1)

Country Link
JP (1) JP3078966B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0744466A2 (en) * 1995-05-24 1996-11-27 Co.Ri.Al. S.C.P.A. Method for the determination of lactic acid in organic materials of alimentary interest and biosensor for putting this method into effect
US6032519A (en) * 1996-11-21 2000-03-07 Nissan Motor Co., Ltd. Throttle opening degree detection apparatus
JP2001318071A (en) * 2000-03-02 2001-11-16 Fumiyo Kusunoki Measurement electrode, measurement device and method of determining for ulcerative colitis

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0744466A2 (en) * 1995-05-24 1996-11-27 Co.Ri.Al. S.C.P.A. Method for the determination of lactic acid in organic materials of alimentary interest and biosensor for putting this method into effect
EP0744466A3 (en) * 1995-05-24 1998-06-10 Co.Ri.Al. S.C.P.A. Method for the determination of lactic acid in organic materials of alimentary interest and biosensor for putting this method into effect
US6032519A (en) * 1996-11-21 2000-03-07 Nissan Motor Co., Ltd. Throttle opening degree detection apparatus
JP2001318071A (en) * 2000-03-02 2001-11-16 Fumiyo Kusunoki Measurement electrode, measurement device and method of determining for ulcerative colitis
JP4522528B2 (en) * 2000-03-02 2010-08-11 文代 楠 Ulcerative colorectal disease measuring electrode, ulcerative colorectal disease measuring device, and ulcerative colorectal disease determining method

Also Published As

Publication number Publication date
JP3078966B2 (en) 2000-08-21

Similar Documents

Publication Publication Date Title
JP3297630B2 (en) Biosensor
JP3621084B2 (en) Biosensor
US6340428B1 (en) Device and method for determining the concentration of a substrate
US6740215B1 (en) Biosensor
JP3267936B2 (en) Biosensor
JP2760234B2 (en) Substrate concentration measurement method
JP2502635B2 (en) Biosensor
US6214612B1 (en) Cholesterol sensor containing electrodes, cholesterol dehydrogenase, nicotinamide adenine dinucleotide and oxidized electron mediator
JPH1142098A (en) Quantitative determination of substrate
JP2658769B2 (en) Biosensor
JP3267933B2 (en) Substrate quantification method
JP3024394B2 (en) Biosensor and measurement method using the same
JP3437016B2 (en) Biosensor and method of quantifying substrate using the same
JP2502665B2 (en) Biosensor
JP2000180399A (en) Determination method of substrate
JP2001249103A (en) Biosensor
JP3078966B2 (en) Lactic acid sensor
JPH09297121A (en) Cholesterol sensor
JP3370414B2 (en) Manufacturing method of biosensor
JPH11101771A (en) Biosensor and determination of substrate using the same
JP3245103B2 (en) Biosensor and Substrate Quantification Method Using It
JPH0783872A (en) Biosensor and manufacture thereof
JP3297623B2 (en) Biosensor
JP3487064B2 (en) Substrate quantification method
JPH08338824A (en) Biosensor, manufacture for biosensor and method for determining specific compound

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080616

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090616

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110616

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees