JPH0791775A - Exhaust gas heat exchanger - Google Patents

Exhaust gas heat exchanger

Info

Publication number
JPH0791775A
JPH0791775A JP25508293A JP25508293A JPH0791775A JP H0791775 A JPH0791775 A JP H0791775A JP 25508293 A JP25508293 A JP 25508293A JP 25508293 A JP25508293 A JP 25508293A JP H0791775 A JPH0791775 A JP H0791775A
Authority
JP
Japan
Prior art keywords
exhaust
heat exchange
exhaust gas
engine
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25508293A
Other languages
Japanese (ja)
Other versions
JP3343665B2 (en
Inventor
Hisashi Kazuta
久 数田
Minoru Yamamoto
稔 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Motor Co Ltd
Original Assignee
Yamaha Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Motor Co Ltd filed Critical Yamaha Motor Co Ltd
Priority to JP25508293A priority Critical patent/JP3343665B2/en
Publication of JPH0791775A publication Critical patent/JPH0791775A/en
Application granted granted Critical
Publication of JP3343665B2 publication Critical patent/JP3343665B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0066Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids
    • F28D7/0075Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids with particular circuits for the same heat exchange medium, e.g. with the same heat exchange medium flowing through sections having different heat exchange capacities or for heating or cooling the same heat exchange medium at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0003Recuperative heat exchangers the heat being recuperated from exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation

Abstract

PURPOSE:To reduce in size by obtaining a high heat exchanging efficiency, to improve an exhaust efficiency without decreasing engine performance, to improve a silencing effect and to integrate it with an engine. CONSTITUTION:An exhaust gas heat exchanger 4 heat exchanges exhaust gas flowing in an exhaust passage with other fluid flowing out of the passage, and comprises an upstream side heat exchanging unit 10 having an uneven part at an expansion chamber 12 of the passage, wherein the unit 10 is connected directly to an exhaust side of the engine.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、例えばガスエンジン
によって駆動されるガスヒートポンプ装置に用いられる
排気ガス熱交換装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas heat exchange device used in a gas heat pump device driven by a gas engine, for example.

【0002】[0002]

【従来の技術】例えば、ガスエンジンによって駆動され
るガスヒートポンプ装置においては、ガスエンジンから
排出される高温、高圧の排気ガスを排気ガス熱交換装置
に導き、この排気ガスと共に素通りして逃げる廃熱を冷
却水と熱交換させて廃熱回収を図ったり、冷却によって
排気ガスの圧力を下げて消音し、或いは排気効率の向上
を図ることが行なわれる。
2. Description of the Related Art For example, in a gas heat pump device driven by a gas engine, high-temperature and high-pressure exhaust gas discharged from the gas engine is guided to an exhaust gas heat exchange device, and waste heat that passes through together with this exhaust gas and escapes. The waste heat is recovered by exchanging heat with the cooling water, the pressure of the exhaust gas is lowered by cooling to muffle the sound, or the exhaust efficiency is improved.

【0003】ところで、従来の排気ガス熱交換装置にお
いては、排気ガスが流れる排気通路はスパイラル状に巻
回された細いパイプ、または内壁に乱流生成板を取り付
けた直管等で構成されていた。
By the way, in the conventional exhaust gas heat exchange device, the exhaust passage through which the exhaust gas flows is composed of a thin pipe spirally wound, or a straight pipe having a turbulent flow generation plate attached to its inner wall. .

【0004】[0004]

【発明が解決しようとする課題】しかしながら、排気ガ
ス熱交換装置の排気通路をスパイラル状に巻回された細
いパイプで構成した場合には、パイプの内面に排気ガス
中に含まれるカーボンが付着してパイプが詰まり易い
他、パイプの単位長さ当りの表面積が小さくなり、熱交
換効率が悪くなるという問題がある。
However, when the exhaust passage of the exhaust gas heat exchange device is constituted by a thin pipe spirally wound, carbon contained in the exhaust gas adheres to the inner surface of the pipe. Therefore, there is a problem that the pipe is easily clogged and the surface area per unit length of the pipe becomes small, resulting in poor heat exchange efficiency.

【0005】また、内壁に乱流生成板を取り付けた直管
で排気通路を構成した場合も、直管の単位長さ当りの表
面積が小さいために高い熱交換効率を得ることができな
いという問題がある。
Further, even when the exhaust passage is formed by a straight pipe having a turbulent flow generation plate attached to the inner wall, there is a problem that a high heat exchange efficiency cannot be obtained because the surface area per unit length of the straight pipe is small. is there.

【0006】さらに、このような排気通路をスパイラル
状に巻回された細いパイプ、または内壁に乱流生成板を
取り付けた直管等で構成したものを、ガスエンジンに直
接接続すると、排気抵抗が大きくて排気効率が悪く、ま
た排気圧力が大きくて消音効果も充分でなく、さらにエ
ンジン性能が低下するという問題があり、ガスエンジン
と一体に直接組み付けることが困難であった。
Further, if such an exhaust passage is constituted by a thin pipe wound in a spiral shape or a straight pipe having a turbulent flow generation plate attached to its inner wall, the exhaust resistance is increased when directly connected to a gas engine. It is large and the exhaust efficiency is low, and the exhaust pressure is large and the sound deadening effect is not sufficient. Further, there is a problem that the engine performance is deteriorated, and it is difficult to assemble the gas engine directly.

【0007】この発明は、前記問題に鑑みてなされたも
ので、高い熱交換効率を得ることができて小型化が可能
で、しかもエンジン性能が低下することなく、排気効率
を向上すると共に、消音効果を向上することができ、エ
ンジンと一体化可能な排気ガス熱交換装置を提供するこ
とを目的としている。
The present invention has been made in view of the above-mentioned problems, and it is possible to obtain a high heat exchange efficiency and to reduce the size, and further, to improve the exhaust efficiency without reducing the engine performance and to reduce the noise. It is an object of the present invention to provide an exhaust gas heat exchange device which can improve the effect and can be integrated with an engine.

【0008】[0008]

【課題を解決するための手段】前記課題を解決するため
に、請求項1記載の発明は、排気通路内を流れる排気ガ
スと排気通路外を流れる他の流体との間で熱交換を行な
う排気ガス熱交換装置において、前記排気通路の膨張室
に凹凸を有する上流側熱交換部を有し、この上流側熱交
換部をエンジンの排気側に直接接続可能にしたことを特
徴としている。
In order to solve the above-mentioned problems, the invention as claimed in claim 1 is an exhaust system for exchanging heat between an exhaust gas flowing in an exhaust passage and another fluid flowing outside the exhaust passage. The gas heat exchange device is characterized in that the expansion chamber of the exhaust passage has an upstream heat exchange section having irregularities, and the upstream heat exchange section can be directly connected to the exhaust side of the engine.

【0009】また、請求項2記載の発明は、排気通路内
を流れる排気ガスと排気通路外を流れる他の流体との間
で熱交換を行なう排気ガス熱交換装置において、前記排
気通路の膨張室に凹凸を有する上流側熱交換部と、前記
排気通路を断面が非円形なスクリューパイプで構成した
下流側熱交換部とを有し、前記上流側熱交換部をエンジ
ンの排気側に直接接続可能にしたことを特徴としてい
る。
Further, in the exhaust gas heat exchange device for exchanging heat between the exhaust gas flowing inside the exhaust passage and another fluid flowing outside the exhaust passage, the expansion chamber of the exhaust passage is provided. It has an upstream heat exchange part having unevenness and a downstream heat exchange part where the exhaust passage is composed of a screw pipe with a non-circular cross section, and the upstream heat exchange part can be directly connected to the exhaust side of the engine. It is characterized by having done.

【0010】[0010]

【作用】請求項1記載の発明では、上流側熱交換部を有
し、この上流側熱交換部をエンジンの排気側に直接接続
可能にしている。エンジンの排気側から排気ガスが上流
側熱交換部の排気通路の膨張室に排気され、この膨張室
により排気ガスの排気抵抗が小さくなって排気効率が向
上すると共に、また排気圧力が小さくなって消音効果も
向上する。しかも、膨張室の凹凸によって表面が増加し
ているため、排気ガスの他の流体への熱伝達率が高めら
れ、高い熱交換効率を得ることができる。
According to the first aspect of the invention, the heat exchanger has an upstream heat exchange portion, and the upstream heat exchange portion can be directly connected to the exhaust side of the engine. Exhaust gas is exhausted from the exhaust side of the engine into the expansion chamber of the exhaust passage of the upstream heat exchange section, and this expansion chamber reduces exhaust resistance of the exhaust gas to improve exhaust efficiency and also reduces exhaust pressure. The sound deadening effect is also improved. Moreover, since the surface of the expansion chamber is increased due to the unevenness of the expansion chamber, the heat transfer coefficient of the exhaust gas to other fluids is increased, and high heat exchange efficiency can be obtained.

【0011】請求項2記載の発明では、上流側熱交換部
と、下流側熱交換部とを有し、この上流側熱交換部をエ
ンジンの排気側に直接接続可能にしている。エンジンの
排気側から排気ガスが上流側熱交換部の排気通路の膨張
室に排気され、この膨張室により排気ガスの排気抵抗が
小さくなって排気効率が向上すると共に、また排気圧力
が小さくなって消音効果も向上する。しかも、膨張室の
凹凸によって表面が増加しているため、排気ガスの他の
流体への熱伝達率が高められ、高い熱交換効率を得るこ
とができる。
According to the second aspect of the present invention, the heat exchanger comprises an upstream heat exchange section and a downstream heat exchange section, and the upstream heat exchange section can be directly connected to the exhaust side of the engine. Exhaust gas is exhausted from the exhaust side of the engine into the expansion chamber of the exhaust passage of the upstream heat exchange section, and this expansion chamber reduces exhaust resistance of the exhaust gas to improve exhaust efficiency and also reduces exhaust pressure. The sound deadening effect is also improved. Moreover, since the surface of the expansion chamber is increased due to the unevenness of the expansion chamber, the heat transfer coefficient of the exhaust gas to other fluids is increased, and high heat exchange efficiency can be obtained.

【0012】上流側熱交換部から排気ガスが下流側熱交
換部に導入されるが、この下流側熱交換部では排気ガス
通路がスクリューパイプで構成されているため、排気ガ
スがスクリューパイプ内を旋回流となって流れ、排気ガ
スの乱流効果によって排気ガスの他の流体への熱伝達率
が高められ、高い熱交換効率が得られる。
Exhaust gas is introduced from the upstream side heat exchange section to the downstream side heat exchange section. However, since the exhaust gas passage is constituted by a screw pipe in this downstream side heat exchange section, the exhaust gas flows inside the screw pipe. The flow becomes a swirl flow, and the turbulent effect of the exhaust gas enhances the heat transfer coefficient of the exhaust gas to other fluids, resulting in high heat exchange efficiency.

【0013】[0013]

【実施例】以下、この発明の排気ガス熱交換装置の実施
例を図面に基づいて説明する。図1は排気ガス熱交換装
置を組み付けたガスエンジンの側面図、図2は排気ガス
熱交換装置の断面図、図3は排気ガス熱交換装置の側面
図、図4は図2のIV-IV線に沿う断面図、図5は図2の
V−V線に沿う断面図、図6は図2のVI-VI線に沿う断
面図、図7はスクリューパイプの断面図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of an exhaust gas heat exchange device of the present invention will be described below with reference to the drawings. 1 is a side view of a gas engine having an exhaust gas heat exchange device assembled therein, FIG. 2 is a cross-sectional view of the exhaust gas heat exchange device, FIG. 3 is a side view of the exhaust gas heat exchange device, and FIG. 4 is IV-IV of FIG. 5 is a sectional view taken along line VV of FIG. 2, FIG. 6 is a sectional view taken along line VI-VI of FIG. 2, and FIG. 7 is a sectional view of a screw pipe.

【0014】ガスエンジン1は、ガスヒートポンプ装置
の駆動源であり、このガスエンジン1はガスを燃料とし
て作動するものであって、このガスエンジン1によって
図示しないコンプレッサが駆動され、このコンプレッサ
によって冷媒が圧縮されて冷房または暖房に供される。
The gas engine 1 is a drive source of a gas heat pump device. The gas engine 1 operates by using gas as a fuel. The gas engine 1 drives a compressor (not shown), and the compressor generates a refrigerant. Compressed and used for cooling or heating.

【0015】ガスエンジン1はシリンダ2が傾斜して配
置され、このエンジン1の排気側3の側部には排気ガス
熱交換装置4が組み付けられ、ガスエンジン1と排気ガ
ス熱交換装置4が一体化されている。この排気ガス熱交
換装置4の組み付けは、ガスエンジン1の下部にボルト
5で固定した取付ステー6に排気ガス熱交換装置4のケ
ーシング7に形成した下取付部7aをボルト8で締め付
け固定し、排気ガス熱交換装置4のケーシング7に形成
した上取付部7bは取付ボルト9でガスエンジン1に直
接締め付け固定している。
The cylinder 2 of the gas engine 1 is arranged so as to be inclined, and an exhaust gas heat exchange device 4 is attached to the side of the exhaust side 3 of the engine 1 so that the gas engine 1 and the exhaust gas heat exchange device 4 are integrated. Has been converted. The exhaust gas heat exchange device 4 is assembled by fastening the lower mounting portion 7a formed on the casing 7 of the exhaust gas heat exchange device 4 to the mounting stay 6 fixed to the lower portion of the gas engine 1 with the bolt 5, and fixing it. The upper mounting portion 7b formed on the casing 7 of the exhaust gas heat exchange device 4 is directly fastened and fixed to the gas engine 1 with a mounting bolt 9.

【0016】排気ガス熱交換装置4には排気通路の膨張
室に凹凸を有する上流側熱交換部10と、排気通路を断
面が非円形なスクリューパイプで構成した下流側熱交換
部11とが備えられている。
The exhaust gas heat exchange device 4 is provided with an upstream heat exchange section 10 having an unevenness in the expansion chamber of the exhaust passage, and a downstream heat exchange section 11 having an exhaust passage formed of a screw pipe having a non-circular cross section. Has been.

【0017】上流側熱交換部10はケーシング7内に排
気通路の膨張室12が形成され、この膨張室12内には
フィン13や突起14で凹凸が形成されている。この膨
張室12内には一方の側部7cから区画壁7dが他方の
側部7eに近接して伸び、この側部7e側で連通した上
膨張室12aと下膨張室12bが形成されている。
In the upstream heat exchange section 10, an expansion chamber 12 of an exhaust passage is formed in a casing 7, and in this expansion chamber 12, fins 13 and projections 14 are formed to be uneven. In the expansion chamber 12, a partition wall 7d extends from one side portion 7c in proximity to the other side portion 7e, and an upper expansion chamber 12a and a lower expansion chamber 12b that are in communication on the side portion 7e side are formed. .

【0018】上流側熱交換部10の排気通路の上膨張室
12aの周囲には、上冷却水通路15aが形成され、こ
の上冷却水通路15aは区画壁7dにまで伸びている。
また、下膨張室12bの周囲には下冷却水通路15bが
形成され、この下冷却水通路15bには下流側熱交換部
11から冷却水が導かれ、この下冷却水通路15bから
上冷却水通路15aを通ってケーシング7の上側部に形
成された冷却水出口15cから排出され、冷却水はガス
エンジン1の冷却水通路に供給される。
An upper cooling water passage 15a is formed around the upper expansion chamber 12a of the exhaust passage of the upstream heat exchange section 10, and the upper cooling water passage 15a extends to the partition wall 7d.
Further, a lower cooling water passage 15b is formed around the lower expansion chamber 12b, cooling water is guided from the downstream heat exchange section 11 to the lower cooling water passage 15b, and the upper cooling water is supplied from the lower cooling water passage 15b. The cooling water is discharged from a cooling water outlet 15c formed in the upper portion of the casing 7 through the passage 15a, and the cooling water is supplied to the cooling water passage of the gas engine 1.

【0019】上流側熱交換部10はケーシング7に接続
部7fが形成され、この接続部7fをガスエンジン1の
排気側3に直接接続可能になっている。ガスエンジン1
の排気側3から排気ガスがケーシング7の4箇所に形成
された排気ガス入口16から上膨張室12aに導入さ
れ、この排気ガスは下膨張室12bに導かれて、さらに
下流側熱交換部11に導かれる。
A connecting portion 7f is formed in the casing 7 of the upstream heat exchange portion 10, and the connecting portion 7f can be directly connected to the exhaust side 3 of the gas engine 1. Gas engine 1
Exhaust gas from the exhaust side 3 is introduced into the upper expansion chamber 12a through exhaust gas inlets 16 formed at four locations of the casing 7, and this exhaust gas is guided to the lower expansion chamber 12b, and further downstream heat exchange section 11 Be led to.

【0020】このように、ガスエンジン1の燃焼室での
混合気の燃焼によって生じた高温、高圧の排気ガスは、
排気ガス熱交換器4の上流側熱交換部10に導入され、
ここで冷却水との間で熱交換して冷却される。
As described above, the high-temperature, high-pressure exhaust gas generated by the combustion of the air-fuel mixture in the combustion chamber of the gas engine 1 is
Introduced into the upstream heat exchange section 10 of the exhaust gas heat exchanger 4,
Here, it is cooled by exchanging heat with the cooling water.

【0021】この上流側熱交換部10の排気通路の膨張
室12により、ガスエンジン1の排気側3からの排気ガ
スの排気抵抗が小さくなり、排気効率が向上すると共
に、また排気圧力が小さくなり消音効果も向上する。し
かも、上流側熱交換部10の膨張室12にはフィン13
や突起14で凹凸が形成されており、この凹凸によって
表面積が増加して、高い熱交換効率を得ることができ
る。
Due to the expansion chamber 12 in the exhaust passage of the upstream heat exchange section 10, the exhaust resistance of the exhaust gas from the exhaust side 3 of the gas engine 1 is reduced, the exhaust efficiency is improved, and the exhaust pressure is reduced. The sound deadening effect is also improved. Moreover, the fins 13 are provided in the expansion chamber 12 of the upstream heat exchange section 10.
The protrusions and protrusions 14 form irregularities, and the irregularities increase the surface area, so that high heat exchange efficiency can be obtained.

【0022】下流側熱交換部11の排気ガス通路は断面
が非円形なスクリューパイプ20で構成しており、この
複数のスクリューパイプ20の一端部に閉塞プレート2
1を設け、他方にガスケット22を設け、さらに中間部
にガイドプレート23を設けてパイプユニット24にし
ている。このスクリューパイプ20は、図7に示すよう
に、十字形断面を有し、その外周に放射状に突出する4
つの凸部20aはスクリューパイプ20の外周を長さ方
向に沿ってスパイラルを描いている。
The exhaust gas passage of the downstream heat exchange section 11 is constituted by a screw pipe 20 having a non-circular cross section, and the closing plate 2 is provided at one end of the plurality of screw pipes 20.
1 is provided, a gasket 22 is provided on the other side, and a guide plate 23 is provided at an intermediate portion to form a pipe unit 24. As shown in FIG. 7, the screw pipe 20 has a cruciform cross section, and projects radially toward the outer periphery thereof.
The two convex portions 20a draw a spiral along the lengthwise direction on the outer circumference of the screw pipe 20.

【0023】パイプユニット24はケーシング7に形成
された冷却水室25に配置され、この冷却水室25の下
側に冷却水入口26が形成され、上側に冷却水出口27
が形成されている。ガスエンジン1から冷却水が冷却水
入口26から冷却水室25に供給され、この冷却水室2
5を循環して冷却水出口27から上流側熱交換部10の
下冷却水通路15bに供給される。
The pipe unit 24 is arranged in a cooling water chamber 25 formed in the casing 7, a cooling water inlet 26 is formed below the cooling water chamber 25, and a cooling water outlet 27 is formed above.
Are formed. Cooling water is supplied from the gas engine 1 to the cooling water chamber 25 through the cooling water inlet 26, and the cooling water chamber 2
5, and is supplied from the cooling water outlet 27 to the lower cooling water passage 15b of the upstream heat exchange section 10.

【0024】パイプユニット24の閉塞プレート21は
Oリング28でシールされ、さらにガスケット29を介
してカバー30がボルト31でケーシング7の側部7e
に締め付け固定されている。このカバー30で集合排気
室32が形成され、このカバー30の中央部に排気ガス
出口33が設けられ、またカバー30の下側にはドレン
水出口34が設けられている。
The closing plate 21 of the pipe unit 24 is sealed with an O-ring 28, and the cover 30 is further bolted via a gasket 29 to the side portion 7e of the casing 7.
It is fastened and fixed to. A collective exhaust chamber 32 is formed by the cover 30, an exhaust gas outlet 33 is provided at the center of the cover 30, and a drain water outlet 34 is provided under the cover 30.

【0025】パイプユニット24の他方はガスケット2
2がボルト35でケーシング7の側部7cに締め付け、
さらにガスケット22を介してカバー36がボルト37
でケーシング7の側部7cに締め付け固定されている。
このカバー36で連通集合排気室38が形成され、この
連通集合排気室38に上流側熱交換部10の下膨張室部
12bから排気ガスが導入される。この排気ガスは連通
集合排気室38からパイプユニット24のスクリューパ
イプ20を通って集合排気室32に導かれ、この集合排
気室32から排気ガス出口33より排出される。
The other side of the pipe unit 24 is the gasket 2.
2 is fastened to the side portion 7c of the casing 7 with the bolt 35,
Further, the cover 36 is fixed to the bolt 37 via the gasket 22.
It is fastened and fixed to the side portion 7c of the casing 7.
The cover 36 forms a communicating and collecting exhaust chamber 38, and exhaust gas is introduced into the communicating and collecting exhaust chamber 38 from the lower expansion chamber portion 12b of the upstream heat exchange section 10. The exhaust gas is guided from the communicating collective exhaust chamber 38 to the collective exhaust chamber 32 through the screw pipe 20 of the pipe unit 24, and is exhausted from the collective exhaust chamber 32 from the exhaust gas outlet 33.

【0026】このように、下流側熱交換部11の排気通
路がスクリューパイプ20で構成されているため、排気
ガスはスクリューパイプ20内を旋回流となって流れ、
排気ガスの乱流効果によって排気ガスの冷却水への熱伝
達率が高められ、高い熱交換効率が得られる。
As described above, since the exhaust passage of the downstream heat exchange section 11 is constituted by the screw pipe 20, the exhaust gas flows as a swirling flow in the screw pipe 20,
Due to the turbulent effect of the exhaust gas, the heat transfer coefficient of the exhaust gas to the cooling water is increased, and high heat exchange efficiency is obtained.

【0027】この排気ガス熱交換器4において、上流側
熱交換部10と、下流側熱交換部11とで、排気ガスが
冷却水との間で熱交換してこれが有する熱が有効に回収
されると同時に、その温度及び圧力が下げられて排気騒
音が低減される。この冷却水との間で熱交換を終えた排
気ガスは、図示しない排気サイレンサに導入され、ここ
で消音された後、最終的に大気中に放出される。
In the exhaust gas heat exchanger 4, the exhaust gas exchanges heat with the cooling water in the upstream heat exchange section 10 and the downstream heat exchange section 11, and the heat contained therein is effectively recovered. At the same time, the temperature and pressure are lowered and exhaust noise is reduced. The exhaust gas that has completed heat exchange with this cooling water is introduced into an exhaust silencer (not shown), where it is silenced and finally released into the atmosphere.

【0028】[0028]

【発明の効果】以上の説明で明らかな如く、請求項1記
載の発明は、上流側熱交換部を有し、この上流側熱交換
部をエンジンの排気側に直接接続可能にしたから、エン
ジンからの排気ガスが上流側熱交換部の排気通路の膨張
室により排気抵抗が小さくなって排気効率が向上すると
共に、また排気圧力が小さくなって消音効果も向上し、
しかも膨張室の凹凸によって表面積が増加して高い熱交
換効率を得ることができる。従って、高い熱交換効率を
得ることができて小型化が可能で、しかもエンジン性能
が低下することなく、排気効率を向上すると共に、消音
効果を向上することができ、エンジンと一体化が可能で
ある。
As is apparent from the above description, the invention according to claim 1 has the upstream heat exchange section, and the upstream heat exchange section can be directly connected to the exhaust side of the engine. The exhaust gas from the exhaust gas is reduced by the expansion chamber in the exhaust passage of the upstream heat exchange section to reduce exhaust resistance and improve exhaust efficiency, and also the exhaust pressure is reduced to improve noise reduction effect.
Moreover, the surface area increases due to the unevenness of the expansion chamber, and high heat exchange efficiency can be obtained. Therefore, it is possible to obtain high heat exchange efficiency, downsizing, and to improve exhaust efficiency without reducing engine performance, improve noise reduction effect, and integrate with the engine. is there.

【0029】また、請求項2記載の発明は、上流側熱交
換部と、下流側熱交換部とを有し、この上流側熱交換部
をエンジンの排気側に直接接続可能にしたから、エンジ
ンからの排気ガスが上流側熱交換部の排気通路の膨張室
により排気抵抗が小さくなって排気効率が向上すると共
に、また排気圧力が小さくなって消音効果も向上し、し
かも膨張室の凹凸によって表面積が増加して高い熱交換
効率を得ることができる。
Further, the invention according to claim 2 has an upstream heat exchange portion and a downstream heat exchange portion, and the upstream heat exchange portion can be directly connected to the exhaust side of the engine. The exhaust gas from the upstream heat exchange section has an expansion chamber in the exhaust passage that reduces exhaust resistance to improve exhaust efficiency, and also reduces exhaust pressure to improve the sound deadening effect. Can be increased to obtain high heat exchange efficiency.

【0030】また、下流側熱交換部の排気通路がスクリ
ューパイプで構成されているため、排気ガスはスクリュ
ーパイプ内を旋回流となって流れ、排気ガスの乱流効果
によって排気ガスの他の流体への熱伝達率が高められ、
高い熱交換効率が得られ、排気ガスの流動抵抗を低く抑
えつつ、高い熱交換効率を得ることができる。
Further, since the exhaust passage of the downstream heat exchange section is constituted by the screw pipe, the exhaust gas flows as a swirling flow in the screw pipe, and the turbulent effect of the exhaust gas causes other fluids of the exhaust gas to flow. The heat transfer rate to the
High heat exchange efficiency can be obtained, and high heat exchange efficiency can be obtained while suppressing the flow resistance of exhaust gas to a low level.

【0031】従って、高い熱交換効率を得ることができ
て小型化が可能で、しかもエンジン性能が低下すること
なく、排気効率を向上すると共に、消音効果を向上する
ことができ、エンジンと一体化が可能である。
Therefore, a high heat exchange efficiency can be obtained, downsizing can be achieved, and the exhaust efficiency can be improved and the silencing effect can be improved without deteriorating the engine performance. Is possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】排気ガス熱交換装置を組み付けたガスエンジン
の側面図である。
FIG. 1 is a side view of a gas engine assembled with an exhaust gas heat exchange device.

【図2】排気ガス熱交換装置の断面図である。FIG. 2 is a sectional view of an exhaust gas heat exchange device.

【図3】排気ガス熱交換装置の側面図である。FIG. 3 is a side view of an exhaust gas heat exchange device.

【図4】図2のIV-IV線に沿う断面図である。FIG. 4 is a sectional view taken along line IV-IV in FIG.

【図5】図2のV−V線に沿う断面図である。5 is a cross-sectional view taken along the line VV of FIG.

【図6】図2のVI-VI線に沿う断面図である。6 is a sectional view taken along line VI-VI in FIG.

【図7】スクリューパイプの断面図である。FIG. 7 is a cross-sectional view of a screw pipe.

【符号の説明】[Explanation of symbols]

4 排気ガス熱交換装置 10 上流側熱交換部 11 下流側熱交換部 12 膨張室 20 スクリューパイプ 4 Exhaust Gas Heat Exchanger 10 Upstream Heat Exchanger 11 Downstream Heat Exchanger 12 Expansion Chamber 20 Screw Pipe

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 排気通路内を流れる排気ガスと排気通路
外を流れる他の流体との間で熱交換を行なう排気ガス熱
交換装置において、前記排気通路の膨張室に凹凸を有す
る上流側熱交換部を有し、この上流側熱交換部をエンジ
ンの排気側に直接接続可能にしたことを特徴とする排気
ガス熱交換装置。
1. An exhaust gas heat exchange device for exchanging heat between an exhaust gas flowing in an exhaust passage and another fluid flowing outside the exhaust passage, wherein an upstream heat exchange having an unevenness in an expansion chamber of the exhaust passage. An exhaust gas heat exchange device, characterized in that the upstream side heat exchange section can be directly connected to the exhaust side of the engine.
【請求項2】 排気通路内を流れる排気ガスと排気通路
外を流れる他の流体との間で熱交換を行なう排気ガス熱
交換装置において、前記排気通路の膨張室に凹凸を有す
る上流側熱交換部と、前記排気通路を断面が非円形なス
クリューパイプで構成した下流側熱交換部とを有し、前
記上流側熱交換部をエンジンの排気側に直接接続可能に
したことを特徴とする排気ガス熱交換装置。
2. An exhaust gas heat exchange device for exchanging heat between exhaust gas flowing in an exhaust passage and another fluid flowing outside the exhaust passage, wherein an upstream heat exchange having an unevenness in an expansion chamber of the exhaust passage. And a downstream side heat exchange section in which the exhaust passage is constituted by a screw pipe having a non-circular cross section, and the upstream side heat exchange section can be directly connected to the exhaust side of the engine. Gas heat exchanger.
JP25508293A 1993-09-17 1993-09-17 Exhaust gas heat exchanger Expired - Lifetime JP3343665B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25508293A JP3343665B2 (en) 1993-09-17 1993-09-17 Exhaust gas heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25508293A JP3343665B2 (en) 1993-09-17 1993-09-17 Exhaust gas heat exchanger

Publications (2)

Publication Number Publication Date
JPH0791775A true JPH0791775A (en) 1995-04-04
JP3343665B2 JP3343665B2 (en) 2002-11-11

Family

ID=17273886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25508293A Expired - Lifetime JP3343665B2 (en) 1993-09-17 1993-09-17 Exhaust gas heat exchanger

Country Status (1)

Country Link
JP (1) JP3343665B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011530060A (en) * 2008-08-02 2011-12-15 ピールブルク ゲゼルシャフト ミット ベシュレンクテル ハフツング Heat transfer unit for internal combustion engines
JP2012514733A (en) * 2009-01-07 2012-06-28 ゼス・インコーポレイテツド Heat exchanger and method of making and using it
JP2015232307A (en) * 2014-06-10 2015-12-24 トヨタ自動車株式会社 EGR passage

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011530060A (en) * 2008-08-02 2011-12-15 ピールブルク ゲゼルシャフト ミット ベシュレンクテル ハフツング Heat transfer unit for internal combustion engines
US8511074B2 (en) 2008-08-02 2013-08-20 Pierburg Gmbh Heat transfer unit for an internal combustion engine
JP2012514733A (en) * 2009-01-07 2012-06-28 ゼス・インコーポレイテツド Heat exchanger and method of making and using it
JP2015232307A (en) * 2014-06-10 2015-12-24 トヨタ自動車株式会社 EGR passage

Also Published As

Publication number Publication date
JP3343665B2 (en) 2002-11-11

Similar Documents

Publication Publication Date Title
FR2827372B1 (en) HEAT EXCHANGER OF EXHAUST GAS
US4694894A (en) Heat exchangers
KR20070121805A (en) Exhaust gas heat exchanger, in particular an exhaust gas cooler for exhaust gas recirculation in a motor vehicle
JP2001159377A (en) Exhaust gas recirculation cooler
JP3781386B2 (en) EGR gas cooling device
JP2005069228A (en) Muffler
EP0446274A1 (en) Non-icing quiet air-operated pump.
JPH0791775A (en) Exhaust gas heat exchanger
JP4031393B2 (en) EGR cooler
JPH1113549A (en) Egr cooler
JP2002310007A (en) Egr gas cooling structure
JPH11193992A (en) Multitubular egr gas cooling device
JP2000204941A (en) Exhaust gas heat recovering device
JPH11287588A (en) Egr cooler
JPH06137776A (en) Exhaust gas heat exchanger
CN2232487Y (en) Recuperative dissipative muffler for diesel engine
CN216617643U (en) Diesel generating set tail gas waste heat utilization silencing device that discharges fume
JP2019127931A (en) Intake and exhaust device of engine
CN203532005U (en) Engine silencer used on fracturing equipment
CN2498341Y (en) Bellow bypassed composite silencer
KR19990036709A (en) Cooling structure of EV valve
CN2844451Y (en) Sectional diesel engine exhaust pipe device
JPH09250844A (en) Freezing cycle
JPH0221538Y2 (en)
JP2003262122A (en) Heat exchanger for engine

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110830

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20120830

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20120830

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130830

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250